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Abstract

Various experimental studies have shown that the availability of a

punishment option can increase the prevalence of cooperative beha-

viour in repeated social dilemmas. A punishment option is only effect-

ive if it is perceived a credible threat. We investigate if credibility of

punishment stems from standard strategic equilibrium considerations

(Nash Equilibrium or Subgame Perfect NE). We find that punishment

is credible due to non-strategic motivations (such as negative recipro-

city) and that subgame perfection does not further improve credibility.
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1 Introduction

Theory and empirical evidence point to potential future punishment as one

of the most effective factors for increasing the frequency of cooperative play

in social dilemma situations. In classical game theory possible threats play

an important role in supporting equilibria in repeated games where players

choose socially effi cient actions that are not equilibria of the stage game.

In infinitely repeated games the equilibria that yield cooperation in social

dilemmas are supported by players’willingness to punish each other in the

case of uncooperative behaviour (see e.g. the version of the Folk Theorem

by Friedman, 1971).1

In (long) finitely repeated games with multiple equilibria cooperation

in early periods can be supported as a subgame-perfect equilibrium by the

threat of switching to the stage-game equilibrium with lower payoffs if a de-

viation occurs (shown by Benoit and Krishna, 1985). Experimental studies

have shown that punishment opportunities are not only effective if exercising

them is part of an equilibrium strategy. In a seminal series of experiments

Fehr and Gächter (2000) showed that punishment opportunities can increase

cooperation considerably even if actually executing them is never part of a

subgame-perfect equilibrium. In their voluntary contribution game with

a punishment phase Nash equilibria exist, which are not subgame-perfect

and where the threat of non-credible punishment is suffi cient to induce co-

operation.2 While this leaves room for equilibrium considerations driving

the effectiveness of punishment, in the literature more emphasis is placed

on reasons other than equilibrium behaviour (e.g. negative reciprocity) for

why punishment opportunities increase the occurrence of cooperation.

Many experimental studies have studied either the behaviour in repeated

social dilemma games or the impact of explicit punishment stages in cooper-

ation games. However, to our knowledge, there is no study that compares

the effectiveness of punishment opportunities that are part of a subgame-

perfect equilibrium and those that are just part of a Nash equilibrium.3 This

study provides such a comparison. A natural hypothesis is that punishment

1See Dal Bó and Fréchette (2018) for a comprehensive meta study on the determinants
of cooperative play in infinitely repeated prisoner-dilemma games.

2For a general result on finitely repeated games see (Benoit and Krishna, 1987).
3The study closest to ours is Angelova et al. (2013), who compare subgame-perfect

punishment options that are either strict or weak stage-game Nash equilibria.
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which is subgame perfect is more effective, because it is only a credible threat

in that case. An alternative hypothesis could read as follows: the fact that

non-credible punishment has proven effective in many experimental studies

shows that credibility (in the sense of subgame perfection) of punishment is

not important. Nash equilibrium logic is suffi cient. A third hypothesis for

why it might not matter if punishment is an equilibrium in a subgame or not

is that humans might use punishment in a non-strategic manner. If people

punish others as a reaction to perceived unfairness, rather than as a discip-

lining device, then punishment becomes a credible option even if it is not

subgame-perfect.4 This study reports on experiments that were designed to

discriminate between these three hypotheses.

We find that punishment is often non-strategic and therefore becomes

credible regardless of the punishment being Nash in the stage game or not.

The existence of punishment opportunities increases cooperation frequencies

by anticipation of punishment but also by experience. Surprisingly, the in-

crease in cooperation is not greater when punishment is a stage-game Nash

equilibrium. Hence, subgame-prefection is not only not required for punish-

ment to be credible, it does not even increase the credibility of the threat of

being punished. We further find that the availability of punishment reduces

over-all welfare, as its execution is costly and provokes damaging counter-

punishment. The occurrence of counter-punishment does not depend on

punishment being a stage-game Nash equilibrium. This shows that also

counter-punishment is rather emotional than strategic. This is consistent

with some findings on feuds and counter-punishment (Nikiforakis and En-

gelmann, 2011; Nikiforakis, 2010, 2008).

2 Three prisoners’dilemma games

In what follows, we present three versions of a prisoners’ dilemma — the

standard game and two extended versions that contain a punishment ac-

tion. In one of the extended games punishment is a dominated strategy,

while mutual punishment is a Nash equilibrium in the other. For finitely

repeated versions of these games this has strong implications for the condi-

4This can be reconciled with standard theory by assuming that there are different types
of which one type has a preference for punishment. Then there exist sequential equilibria
with cooperation even if meeting a punishment type is rare (shown by Kreps and Wilson,
1982).
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tions under which we can expect to observe players choosing the cooperative

strategy. With standard preferences there is no Nash equilibrium in the ori-

ginal prisoners dilemma, where the cooperative action is ever played. In

the finitely-repeated extended prisoners dilemma with non-equilibrium pun-

ishment, Nash equilibria exist that can support cooperative play in early

stages. However, these Nash equilibria are not subgame perfect, as they are

built on the non-credible threat of punishment. Finally, the extended pris-

oner’s dilemma with punishment that is a stage game Nash equilibrium, has

subgame-perfect Nash equilibria, in which cooperative play occurs in early

stages.

First, take a version of the classic prisoners dilemma game shown in

Table 1. If this game is played repeatedly but finitely many times, then the

only Nash equilibrium prescribes that 〈D, d〉 is being played all the time.
We know that for reasons that are unrelated to punishment, the fraction of

cooperative behaviour in (one-shot) prisoners’dilemmas is positive. This is

typically reconciled by assuming that subjects either have other-regarding

preferences (such as in Fehr and Schmidt, 1999; Charness and Rabin, 2002;

Cox et al., 2008), that beliefs about intentions are payoff relevant (e.g.,

Rabin, 1993), or that reputation building is possible as a consequence of

some uncertainty about the rationality of players (Kreps et al., 1982).

c d
C 5, 5 0, 8
D 8, 0 2, 2

Table 1: A Prisoners Dilemma (Game 1)

Now turn your attention to Table 2, which shows an extended prisoners

dilemma that also contains a punishment strategy. Playing the punishment

strategy costs one monetary unit to the punisher and inflicts a damage of

four. If both players punish, then both pay the punishment cost and also

bear its damage, which results in a payoffof negative five for both players.5 If

this game is played T times, and we are looking for a subgame-perfect Nash

equilibrium, then the only equilibrium entails that 〈D, d〉 is being played in
5Recall that in public goods games the cost-damage ratio of punishment has been

shown to have to be below 1/3 for punishment to be effective (Nikiforakis and Normann,
2008). Here the ratio is lower if compared to the Nash outcome (i.e. 3/6) and identical if
compared to a reference point of mutual zero profits.
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all periods. The only stage-game Nash equilibrium 〈D, d〉 will be played in
the last period regardless of history. Taking into account that play in the

penultimate period cannot influence the continuation (if subgame-perfection

is assumed), then 〈D, d〉 is going to be played in the penultimate period
as well. This argument can be iteratively applied until the first period is

reached.

c d p
C 5, 5 0, 8 −4,−1
D 8, 0 2, 2 −4,−1
P −1,−4 −1,−4 −5,−5

Table 2: A Prisoners Dilemma with non-Nash punishment (Game 2)

However, there are Nash equilibria that are not subgame-perfect, where

in all but the last period 〈C, c〉 is played. To see this take the following
trigger strategy for the row player. Play C in the first period. In all sub-

sequent periods with t < T play C if only 〈C, c〉 has been observed in the
past. Otherwise play P. In the final period T play D if no prior deviation

from 〈C, c〉 occurred. Otherwise play P. Together with the symmetric trigger
strategy for the column player this strategy profile is a Nash Equilibrium.

To see why this is an equilibrium, observe that if both players follow the

equilibrium path, then in the last period they will play 〈D, d〉 , where nobody
has an incentive to deviate. In the penultimate period they are supposed

to play 〈C, c〉. The best deviation is playing D and earning 8 instead of

5, a gain of 3. However, according to the strategy profile this will lead to

〈P, p〉 instead of 〈D, d〉 resulting in a payoff of −5 instead of 2 in the last
round. So there is no incentive to deviate in the penultimate period. The

same logic applies for earlier periods, where the one-off gain from a deviation

remains the same, while the loss increases as the number of periods where

〈P, p〉 is played in response to a deviation increases. Hence, the threat of
punishment that is not a stage-game Nash equilibrium can be suffi cient to

uphold cooperation if we do not require that threats are credible in the sense

of subgame perfection.

Finally, consider the variant of the extended prisoners’dilemma in Table 3.

In this version of the game we have two stage-game equilibria, which are

〈D, d〉 and now also mutual punishment 〈P, p〉. In this game the threat of
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punishment is credible as both players choosing the punishment strategy

constitutes a stage-game Nash equilibrium. Consequently, by using credible

punishment, cooperation can be implemented in earlier rounds as part of an

SPNE. A trigger strategy is now not only Nash in the entire game but also

in any subgame. To see this, take the same strategies as a above —C up to

period T − 1 if only 〈C, c〉 has been played before and otherwise P until the
end of the game. Then play D in period T if only 〈C, c〉 was observed in the
past, otherwise play P. The column player plays the corresponding symmet-

ric strategy. Now for any history, in the final period we either observe 〈D, d〉
or 〈P, p〉 , which both are Nash. So the continuation after T − 1 periods is
subgame-perfect. The best deviation in T − 1 is to play D, which yields a
one-off gain of 3, which will be offset by a loss of the same size, as it would

trigger the continuation of 〈P, p〉 instead of 〈D, d〉 . So there is no incentive
to deviate in period T − 1. Again, the one-off deviation gain remains the
same for deviations in earlier periods (i.e. 3), while the loss increases since

there are more periods with mutual punishment following a deviation. This

strengthens the incentive to stick to cooperation earlier in the supergame.

c d p
C 5, 5 0, 8 −4,−1
D 8, 0 2, 2 −4,−1
P −1,−4 −1,−4 −1,−1

Table 3: A Prisoners Dilemma with Nash punishment (Game 3)

Note that in all the games above action profile 〈D, d〉 being played in all
periods remains a subgame-perfect equilibrium, regardless of the other equi-

libria described. There are many more Nash equilibria in both games with

punishment. While in Game 2 no further subgame-perfect Nash equilibria

exist, there are many more in Game 3.

2.1 Hypotheses

In what follows, we develop a set of hypotheses. For a start, one could

assume that adding a punishment actions does not alter play at all compared

to the game without.

Hypothesis (I). Adding a punishment option does not increase the fre-
quency of cooperative behaviour.
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Theoretically it is plausible that punishment options do not impact co-

operation. In the case where punishment is never stage-game Nash, the

refinement of subgame-perfection rules out any impact. Even if either new

subgame perfect equilibria emerge with the punishment option, or if we don’t

require subgame perfection, then the initial defection equilibrium still exists

and the impact of adding a punishment option on cooperation depends on

equilibrium selection (i.e. coordination of the players). Beyond that, there

are also behavioural arguments for why one might expect no impact. As

the standard prisoners’dilemma yields already some cooperation with only

a cooperative and a non-cooperative action, an additional action that leads

to negative stage-game profits for both might be regarded as irrelevant by

players. As a consequence punishment is neither executed, nor regarded as

a threat and therefore has no impact on cooperation rates. The natural

alternative hypothesis is as follows.

Hypothesis (IA). Adding a punishment option increases the frequency of
cooperative behaviour in at least one treatment.

If we reject Hypothesis I in favour of IA, then we need further hypotheses

to determine how behaviour relates to theory.

Hypothesis (II). The addition of a stage-game Nash punishment option
increases the frequency of cooperation by more than a non-Nash option.

Empirical support for Hypothesis II would count as evidence that at

least some of the increased cooperation can be attributed to the punishment

option being only credible if it is stage-game Nash. In the extreme case that

only in Game 3 (and not 2) increased cooperation frequencies are observed

we can conclude that punishment threats are only credible if they are part

of a SPNE. A natural alternative hypothesis is the following.6

Hypothesis (IIA). A punishment option increases cooperation to the same
extent irrespective of mutual punishment being stage-game Nash or not.

If people do fear punishment regardless of it being a credible threat in

the sense of subgame-perfection or not, then we would expect higher levels

of cooperative behaviour in both extended Prisoners’Dilemmas compared

6We omit the further possible alternative hypothesis of more cooperation in Game 2,
as is does not appear relevant.
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to the standard version. Such a finding would give support the view that

cooperation does not necessarily arise as the result of subgame-perfect play

alone. One possible reason for this could be that subjects cooperate be-

cause they follow the Nash logic and still fear punishment despite its lack of

credibility (in the sense of subgame perfection.)

Hypothesis (III). The observed increased cooperation in both extended games
can be attributed to play following a Nash equilibrium that does not have to

be subgame perfect.

However, this is not the only reason why Hypothesis IIA might be sup-

ported by the data. Note that the Nash logic that leads to cooperation

in Game 1 requires that punishment is never actually administered. From

the literature in public goods games we know that punishment is actually

observed. This hints at punishment that is actually credible due to factors

other than standard equilibrium considerations.

Hypothesis (IIIA). Punishment is credible in both extended games, as pun-
ishment is triggered by factors other than standard equilibrium considera-

tions.

Suppose punishment is triggered by reciprocity considerations or by an

emotion following perceived unfair behaviour. Similarly, one could think of

the existence of a type, who enjoys punishing. Then punishment becomes

a credible threat also in Game 2, where it is otherwise not credible (in the

sense of subgame perfection). Note that a small fraction of players who

punish for behavioural reasons might be suffi cient to lead to a high number

of punishers, as there might be an incentive for standard types to imitate the

behavioural types (such as in Kreps and Wilson, 1982; Kreps et al., 1982).

Unfortunately, it is not possible to directly test Hypothesis III versus

IIIA. For this purpose, we will use two different indicators drawn from ob-

served behaviour. Firstly, we will look at the frequency of punishment in

the last stage of the supergame. According to Hypothesis III we should

only observe subjects playing the defection strategy (and no punishment)

in Game 2, while both defection and punishment can be observed in Game

3. Non-strategic punishment, as postulated in Hypothesis IIIA, should lead

to similar levels of punishment in the last period in both games. Similarly,

we can compare the fraction of players that use the punishment strategy at
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least once in Game 2 and in Game 3. Similar and positive rates are again

evidence for Hypothesis IIIA.

3 Experimental Design

In our experiments the participants played five supergames consisting of six

repetitions of a stage game. Every supergame was played with a different

opponent, which was clearly indicated to the subjects. An on-screen mes-

sage read “This is a new phase. You are randomly matched with a new

person. You will play six periods of the game with this person.” In the

Baseline treatment the stage game underlying the six supergames was the

standard prisoners’dilemma (Game 1). We call the second treatment, where

Game 2 was played repeatedly Non-Nash, as here punishment is not a stage-

game Nash equilibrium. The final treatment, where subjects faced Game 3,

will be referred to Nash, indicating that punishment is a stage-game Nash

equilibrium.

Over-all 118 subjects, recruited via the online-recruiting system ORSEE

(Greiner, 2015) from the student body of the three universities in Adelaide,

participated in our six sessions. The experimental sessions were computer-

ized and conducted at the Adelaide Laboratory for Experimental Economics

(AdLab) using z-Tree (Fischbacher, 2007). Subjects earned experimental

Dollars, which were converted to real Australian Dollars at the rate of one

Australian Dollar for five Experimental Dollars. A session lasted about 60

minutes on average, for which subjects earned on average AUD 17.85.

4 Results

We start reporting our results by assessing the impact of punishment oppor-

tunities on cooperation rates. Next, we identify the underlying motivation

for punishment behaviour and finish with assessing the welfare implications

of punishment .

4.1 Cooperation rates

We start by comparing the frequencies of subjects choosing the cooperative

action across treatments. Figure 1 shows the evolution of the fraction of

cooperative actions chosen in the different stages of the supergames. In
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all three treatments the fraction of cooperative actions declines within a

supergame. Cooperation rates in the standard repeated prisoners’dilemma

are quite high in the first stage game (59 percent) but fall continuously to end

at 11 percent in the last period. These dynamics are consistent to findings

in other repeated prisoners’dilemma studies (e.g. Selten and Stoecker, 1986;

Andreoni and Miller, 1993; Cooper et al., 1996; Normann and Wallace, 2012;

Angelova et al., 2013). The fraction of cooperative actions in the two games

with punishment is slightly higher but follows a very similar path.
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Figure 1: Average cooperation rates by period and treatment

In order to be able to test if there are significantly different rates of

cooperation across the treatments we use the number of cooperative actions

chosen per supergame. As a supergame lasts for six periods and there are

two players, this measure ranges from zero to twelve. Figure 2 shows the

distributions of the measure across the three treatments.

It is very instructive that the distributions are bimodal in all three treat-

ments. Sustaining cooperation among two players in a supergame either

works very well or not at all. While the distributions of the number of co-

operative actions look almost indistinguishable between the two treatments

with punishment opportunities, in the Baseline treatment the density is
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higher at the less cooperative end. More than 35 percent of supergames

in the Baseline treatment result in none or only one cooperative action,

while for the other two treatment less than 20 percent fall into this cat-

egory. The average number of cooperative actions taken is similar in the

Nash and Non-Nash treatments (5.53 vs. 5.75) and lower in the Baseline

treatment (4.15). The differences between the two punishment treatments

and the Baseline are statistically significant (Nash vs. Baseline p < .06,

Non-Nash vs. Baseline p < .03; Mann-Whitney U-Tests)7.
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Figure 2: Distributions of the number of cooperative actions by treatment

Result 1. Punishment increases the fraction of cooperative choices to the
same extent regardless of it being credible (in the sense of subgame perfec-

tion) or not.

This result supports the two alternative Hypotheses IA and IIA, which

makes it necessary to look for evidence that allows us to discriminate between

Hypotheses III and IIIA.

7The M-W test is the preferred test here, as it performs quite well for bimodal distri-
butions, while the t-test lacks power. Kolmogorov-Smirnov tests on the equality of the
distributions and t-tests with unequal variance correction lead to similiar results.
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4.2 The Role of Punishment

One might expect that punishment behaviour differs depending on the game

played (i.e. Nash or Non-Nash) and the behavioural assumptions made. If

we assume that subjects play selfish equilibrium (subgame-perfect Nash),

then we would only expect to see punishment in the Nash treatment. In

a disequilibrium world, where punishment is used as a strategic tool, in

order to induce others to cooperate, one might expect punishment to occur

in both the treatments where it is available. However, one would expect

punishment to be more prominent in earlier periods, as then the future

cooperation induced is more likely to outweigh the cost. In contrast to this

intuition, punishment frequencies are increasing in both treatments, with

the fraction of punishment choices being highest in the last period in both

treatments. Figure 3 documents this.
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Figure 3: Fraction of Choices by Treatment over Time

The finding that punishment rates are highest in the last period in the

Non-Nash treatment (and at comparable levels as in the Nash treatment —

16.7 vs. 23.7 percent) suggests that a large proportion of punishment is non-

strategic and stems from negative reciprocity. Punishment in the final stage

of the supergame in the Non-Nash treatment cannot be the result of equilib-
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rium logic, as no Nash equilibrium exists where anybody actually punishes

in the last stage. Moreover, off-equilibrium strategic teaching motives can-

not be the cause, since there are no future periods. Hence, non-strategic

motivation such as reciprocity are likely drivers of punishment behaviour in

this treatment. This result is consistent with findings that punishment oc-

curs in one-shot public goods games with punishment opportunities (Walker

and Halloran, 2004).

As punishment is a stage game equilibrium in the Nash treatment, we

cannot conclude the same for the Non-Nash treatment from the use of pun-

ishment in the last period. For this purpose, we will assess how similar

punishment behaviour (with respect to frequency and dynamics) was in the

Nash and Non-Nash treatment. The closer punishment behaviour in the

Nash treatment resembles that in the Non-Nash treatment, where we have

been able to attribute it to non-strategic behaviour, the more confident we

can be that this is also the case in the Nash treatment. First, we test if

the fraction of games where at least one player punishes in the last period

differs across treatments. The raw percentages are 29.5 (Non-Nash) and

37.8 (Nash) percent. This difference is not significant (p = .21, test of pro-

portions, two-sided). Secondly, a visual inspection of the punishment rate

dynamics in Figure 3 gives the first clue that also punishment dynamics

might not be very different across treatments.

With a similar aim, we estimate a logit model on whether a player ever

used the punishment strategy in a supergame. In order to allow for cor-

relation across opponents within a super-game, we clustered errors on the

supergame level. As we were only interested in the impact of the treatment

and on the predicted margins with respect to the treatment, we relegate

the estimation results to the appendix. The coeffi cient on the treatment

dummy for the Non-Nash was highly insignificant (p = .704). Figure 4 plots

the predicted probabilities of a player punishing at least once in a supergame

by treatment, which result from the regression. The predicted probabilities

are virtually identical (Nash .31; Non-Nash .33) and clearly statistically not

significantly different (p = .70).

With this we reach the preliminary conclusion that punishment beha-

viour is quite similar in the Nash and Non-Nash treatment.

In our final piece of assessment we compare the history dependence of

play across treatments. If we cannot find any difference between Nash and
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Non-Nash, then this together with the findings above is strongest evidence

for no differences in behaviour in the two treatments with punishment op-

tions. For this purpose, we ran a multinomial logit regression. We estimate

how previous play of the opponent, the treatment and the previous-play-

treatment interaction influence the likelihood that a player cooperates, de-

fects or punishes. We control for demographics of the subjects as well as

for time trends within and across supergames.8 Table 4.2 reports the res-

ults. The base behaviour is“defect.”On the left of the Table we report the

estimated coeffi cients for the influence of the independent variable on the

likelihood to play “cooperate” instead, while we report the coeffi cients for

choosing the punishment strategy on the right. The standard errors are

shown in parentheses and stars denote significance on the five (single star)

and one-percent level (double star).9

We are mainly interested in how past choices of the opponent impacts

current play. More precisely, we want to know if there differences across

8We allow for clustering of errors on the subject level.
9We report the average marginal effects of primary variables only, as the average mar-

ginal effects of the interaction terms are hard to interpret.
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Coeffi cient (base: defect)
decision cooperate punish
otherdecisiont−1×treatment (base: cooperate×Nash)
cooporate×NoNash .010 (.183) .178 (.452)
defect×Nash −2.794∗∗ (.258) 1.418∗∗ (.397)
defect×NoNash −2.918∗∗ (.251) 1.327∗∗ (.376)
punish×Nash −.869∗ (.439) 2.641∗∗ (.530)
punish×NoNash −1.339∗∗ (.394) 2.306∗∗ (.532)

stage −.489∗∗ (.050) .197∗∗ (.068)

male .211 (.145) .601∗∗ (.230)

university level (base: pg coursework)
pg research 1.028∗∗ (.322) −.349 (.430)
undergraduate −.001 (.279) .011 (.305)

Controls (age, course, maths level, supergame)
included yes yes

Log PseudoL −1366.820
Observations 2000

Table 4: Multinomial logit explaining choices in the punishment treatments

treatments how players react to the past play of the opponent. We first

test if the differences between the six coeffi cients for the Nash treatment

and their corresponding coeffi cients for the Non-Nash treatments are jointly

zero. The test does not allow us to reject this hypothesis (p > .97, F-Test

with the null hypothesis that the coeffi cients are jointly equal). Testing

all differences separately does not yield a single significant difference even

without any p-value correction for multiple hypothesis testing. This allows

us to conclude that the dynamics of play are not different across treatments.

In order to get a better feel for the dynamics, in Figure 5 plot the pre-

dicted probabilities (from the multinomial logit) and the confidence intervals

of playing a certain action conditional on the past play of the opponent. It

is easy to see that the likelihoods of playing a certain action conditional on

the opponent’s past action are virtually identical for the two punishment

treatments. As expected pairwise tests yield no significant differences even

without any correction for multiple hypotheses testing.

This implies that the way subjects react to past behaviour of their oppon-
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ent does not differ with respect to whether punishment is a Nash equilibrium

of the stage game or not. Therefore, the likelihood of punishing condition-

ally on the action of the opponent in the period before is independent from

punishment being a stage-game Nash strategy. This finding provides further

support that the actual punishment is motivated by other factors than equi-

librium considerations. This further implies that the threat of punishment

is credible in both treatments.

As expected, we find that the likelihood of choosing the punishment

action is greater after the opponent defected than after the opponent co-

operated (p < .001, Wald Test, jointly for both treatments). Less intuitive

is that being punished in the period before makes it even more likely for

a subject to choose the punishment strategy (p < .05, Wald Test, jointly

for both treatments) than after defection. The fact that choosing the pun-

ishment strategy is most likely after having been punished, documents the

occurrence of counter-punishment and explains a large fraction of the up-

wards trend of punishment over time.10

10There still remains an unexplained upwards trend of about two percentage points per
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Moreover, having been punished the period before, reduces the probab-

ility of cooperating significantly (p < .001,Wald Test, jointly for both treat-

ments) compared to the case where the opponent cooperated in the period

before. Punishment is at least more effective in inducing cooperation of the

opponent than defecting (p < .001, Wald Test, jointly for both treatments).

This implies that executed punishment is effective, to a certain extent, at

inducing future cooperation. However, in many cases, punishment leads to

counter-punishment. This can potentially be attributed to the absence of a

feeling of guilt of the punished as shown by Hopfensitz and Reuben (2009).

Below we will show that this escalation of punishment is partly responsible

for a negative effect of punishment opportunities on average welfare, despite

the increase in the fraction of cooperative actions (see Nikiforakis and En-

gelmann, 2011, who obtain similar results in a public goods setting).11 We

briefly summarize our results.

Result 2. The use of punishment in the Non-Nash treatment cannot be ra-
tionalized by Nash equilibrium logic and has to be attributed to non-strategic

motivations.

Result 3. The use of punishment does not differ across treatments.

The two results above provide evidence for the alternative Hypothesis

IIIA. Punishment is credible in both treatments because subjects use it non-

strategically.

Result 4. Punishment is effective at increasing future cooperation (com-
pared to playing defect) but often also provokes counter-punishment.

4.3 Effi ciency

The higher fraction of cooperative choices in the punishment treatments does

not necessarily imply that social welfare is higher in those treatments. The

addition of a punishment option, might not only lead to more cooperation

due to the threat of punishment but also to welfare losses due the actual use

of the punishment action. Depending on which effect dominates punishment

options increase or decrease social welfare.

period.
11Some interesting results that are not related to our immediate research question are

that PhD students are more cooperative than undergraduate and coursework masters
students. Economics and science students are less cooperative than medicine, law and
engineering students and males tend to punish more often than females.
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Figure 6: Total Welfare Distributions in the Different Treatments

Figure 6 plots the distribution of welfare per supergame (i.e. the sum of

total profits for the two players in a supergame). Note that the minimum

welfare in the Baseline treatment is 24, while it can be much lower (and

even negative) in the two other treatments if subjects choose the punishment

strategy. Actual punishment had a negative influence on the welfare in many

supergames. In both treatments, where punishment was possible about 30

percent of the supergames led to welfare lower than the minimum welfare

in the standard Prisoners’Dilemma. In other words, in the punishment

treatments about 30 percent of the supergames ended with lower payouts

than if the players had just played the defect equilibrium in all rounds. This

welfare-destroying impact of actual punishment is not offset by the slightly

higher proportion of supergames with near maximum welfare (45 to 60) in

the punishment treatment.12

Average welfare is very similar in the punishment treatments (Nash

33,67, Non-Nash 34.2), while it is significantly higher in the Baseline treat-

12This is similar to the observation in stranger-matching public goods games with pun-
ishment, where the increased level of contributions is not suffi cient to outweigh welfare
lossed from exectuted punishment (Fehr and Gächter, 2000).
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ment (39.36, p < .018 vs. Nash and p < .026 vs. Non-Nash: two-sided,

two-sample t-tests).13 One important reason for the differences in welfare

stems from the observation that punishment is used non-strategically. In

particular punishment and counter-punishment in the last period as ob-

served are welfare damaging, as they cannot have any positive effect on

future cooperation.

Result 5. Even though punishment options induce more cooperative choices,
they decrease over-all welfare, since punishment is actually executed. This

effect does not depend on punishment being a stage-game equilibrium.

5 Conclusion

Punishment opportunities have been shown to be very effective in pub-

lic goods games, despite of being non-credible in the sense of subgame-

perfection (Fehr and Gächter, 2000).14 It was unclear, if the effectiveness of

punishment there has to do with Nash equilibrium logic in the supergame,

with punishment being credible as a strategic teaching tool or as a means of

exerting negative reciprocity. This paper uses variants of prisoners’dilemma

games in order to investigate this question. We find that the effectiveness

of punishment is neither related to Nash or subgame-perfect Nash equilib-

rium logic. Punishment is credible, as it is motivated by reciprocity. While

punishment opportunities increase the fraction of cooperative play, welfare

decreases, as the cost for punishment exceeds the welfare gains from slightly

more cooperation. The welfare damaging effect of punishment opportunit-

ies is stronger than expected, since some subjects react to punishment with

further welfare-damaging counter-punishment.

13Here a non-parametric Mann-Whitney test is not appropriate, as the null-hypothesis
of equal distributions can never be satisfied due to the different domains, which makes
the interpretation of the p-values impossible. Despite the well-known skewness issues, the
Welch-Satterthwaite corrected t-test for unequal variances, which we chose, performed
best in a recent Monte-Carlo study on data with similar characteristics (inhomogenous
skewness and sample size of about 100) as ours (Fagerland and Sandvik, 2009).
14The effectiveness seems to depend on factors such as the feedback format though

(Nikiforakis, 2010)
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A Logit regression on punishment in a supergame

Here we report the panel logit regression that estimates how the treatment

and other factors impact on the likelihood that a subject punishes at least

once in a supergame. In the text we referred to the absence of differences

across treatments.

ever punish ever punish
coeffi cient marginal effect

Treatment (base: Nash)
Non-Nash 0.111 0.022

(0.292) (0.057)

Age (base: under 26)
over 26 -0.560 -0.105

(0.365) (0.063)

Subject of Study (base: Arts)
Commerce/Finance -1.885∗∗∗ -0.393∗∗∗

(0.498) (0.106)
Economics -0.079 -0.019

(0.753) (0.181)
Engineering -0.582 -0.140

(0.483) (0.115)
Law -0.807 -0.193

(0.587) (0.136)
Medicine -1.814∗∗ -0.383∗∗

(0.598) (0.120)
Science -0.497 -0.120

(0.469) (0.112)

Higher maths (base: No)
Yes -0.061 -0.012

(0.306) (0.061)

Degree (base: Postgraduate Coursework)
Postgraduate Research -1.011 -0.198

(0.538) (0.101)
Undergraduate -0.486 -0.102

(0.399) (0.085)

Gender (base: Female)
Male 0.075 0.015

(0.240) (0.047)

Constant 0.800 —
(0.540)

Observations 400 400

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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B Sample Instructions

(Here are the instructions for the baseline treatment. The instructions for

the other treatments are identical up to the added action in the screenshot

and the reference table at the end.)

Experimental Instructions

Welcome to the experiment. Before we start, please read the instructions

carefully.

During the experiment, your earnings will be calculated in points rather

than dollars. Accumulated points will then be converted to Dollars at the

following exchange rate at the end of the session to determine your payment:

5 points = AUD $1.00

You will be paid in cash immediately after the experiment. You are

not allowed to communicate with other participants during the experiment.

Should you have any questions, please raise your hand and we will attend

to you individually. Failure to comply with the outlined rules will result

in exclusion from the experiment and we reserve the right to forfeit your

payment.

Summary
You will be playing 5 identical games consecutively.

Each game consists of 6 rounds and you will be asked to select one action

per round. You will be playing this game with another participant who will

be randomly assigned by a computer.

After every 6 rounds, you will be randomly paired with another parti-

cipant until you have played a total of 5 games.

The Game
This is a 2-player game. After you have been randomly assigned to

another participant by a computer, you and this other player will play a

game consisting of identical rounds. In each round, you will be asked to

choose an action. Similarly, the other player will also be asked to choose an

action at the same time.
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You will be presented with two actions (A or B) to choose from. The

other player will also be presented with two actions (X or Y) to choose from.

Your payoffs for every possible combination of actions that you and the

other player may make are shown on the same screen in a table. The other

player’s payoffs will be displayed in a similar fashion in a separate table

beneath your payoffs table.

You then indicate your choice of action at the bottom of the screen and

finalize your decision by clicking the “OK”button.

Payoffs
Both yours and the other player’s choice of action, and respective payoffs

for the current round will then be revealed after you have both finalized your

decisions.

The final payoff you receive in each round depends on:

1. The action that you have selected; and

2. The action that the other player has selected.

The payoff the other player receives depends on:

1. The action he/she has selected; and

2. The action you have selected.

The following is a screenshot to familiarize you with what to expect

during each round.
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The header on the top left hand corner of the screen indicates the cur-

rent round you and the other player are playing. The table beneath the

header shows your payoffs for all possible combinations of yours and the

other player’s actions. The box on the right side of the screen records your

payoffs and your partner’s payoffs for every round played. [Note: Every

game will be the same throughout the whole experiment. As a guide, please

refer to the table attached at the back of these instructions which tells you

your payoffs corresponding to all possible combinations of actions that you

and the other player may choose.]

A new game commences and you will be randomly paired with another

participant after every 6 rounds. This process repeats until 5 games have

been played. After all 5 games have been played, your total profit will be

recorded and you will be paid in cash.

[Note: Please refer to the table attached at the back of these instructions

which tells you your payoffs corresponding to all possible combinations of

actions that you and the other player may choose]

-End of Instructions-

 

      Your Partner’s Payoff 
 
Your Payoff 

 
X 

 
Y 

 
A 

 
5 5 

 
0 8 

 
B 

 
8 0 

 
2 2 

 

The table above illustrates payoffs in the game. Your payoffs are denoted by numbers within the shaded triangles whereas the other player’s 

payoffs are denoted by numbers within the un-shaded triangles. For example, if you chose ‘B’ and the other player chose ‘X’ in particular round, 

payoffs for that particular round are: 

 

Your Payoff = 8 

 

Your Partner’s Payoff = 0 
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