13 Script zur Vorlesung: Lineare Algebra I

Prof. Dr. Salma Kuhlmann

Korollar 13.1.

Sei V endlich dim Vektorraum über K. Es gilt: Alle Basen haben dieselbe Kardinalität.

Beweis

Seien Basen
$$\left\{ \begin{array}{l} \mathcal{B}_1 = \left\{ \beta_1, \dots, \beta_m \right\} \\ \mathcal{B}_2 = \left\{ \alpha_1, \dots, \alpha_n \right\} \end{array} \right\}$$
 erzeugt linear unabhängig $\left\{ \begin{array}{l} \text{Binear unabhängig} \\ \text{Example of } \text{erzeugt} \end{array} \right\}$ erzeugt Satz 12.9 impliziert $n \leq m$ und auch $m \leq n$, also $m = n$

Wir können nun eindeutig dim V definieren.

Definition 13.2.

Sei V endlich dim. K-Vektorraum. dim $V := |\mathcal{B}| \mathcal{B}$ eine Basis für V.

Wir können nun den Satz 12.9 umformulieren.

Korollar 13.3.

Sei V ein endlich dim Vektorraum; $n := \dim V$.

- (a) Jede Teilmenge mit mehr als n Elementen ist linear abhängig. (Eine linear unabhängige Teilmenge hat $\leq n$ Elemente.)
- (b) Jede Teilmenge mit weniger als n Elementen ist nicht erzeugend. (Eine erzeugende Teilmenge hat $\geq n$ Elemente.)

Beispiel 13.4.

- (a) $V = \{0\}, \quad \mathcal{B} = \emptyset, \quad \dim V = |\emptyset| = 0$
- (b) dim $K^n = n$, weil die Standardbasis $\mathcal{E} := \{e_1, \dots, e_n\}$ hat $|\mathcal{E}| = n$.
- (c) $K^{m \times n} = \text{Mat}_{m \times n}$ hat die Dimension mn: Die mn-Matrizen mit einer 1 in der ij-ten Stelle und 0 sonst ist eine Basis.

Korollar 13.5.

(d)
$$V = K^{\mathbb{N}} := \{f \mid f : \mathbb{N} \to K\}$$
 ist **nicht** endlich dim, weil die Elemente $f_i : \mathbb{N} \to K$

$$f_i(n) := \begin{cases} 1 & n = i \\ 0 & n \neq i \end{cases}$$

eine unendliche linear unabhängige Teilmenge definieren, nämlich $S:=\{f_i|i\in\mathbb{N}\}.$

Seien
$$i_1 < \cdots < i_k$$
 und $c_1 f_{i_1} + \cdots + c_k f_{i_k} = 0$, so ist $(c_1 f_{i_1} + \cdots + c_k f_{i_k})(i_l) = c_l = 0$, für alle $l = 1, \dots, k$.

Lemma 13.6.

(Fortsetzung Lemma)

Sei V ein K-Vektorraun. Sei S linear unabhängig in V und $\beta \notin \text{span}(S)$. Dann ist $S \cup \{\beta\}$ linear unabhängig.

Beweis

Seien $c_1, \ldots, c_m, b \in K$ mit $c_1\alpha_1 + \cdots + c_m\alpha_m + b\beta = 0$.

Behauptung: b = 0, sonst $b\beta = (-c_1)\alpha_1 + \cdots + (-c_m)\alpha_m, b \neq 0$.

Also $\beta = [(-c_i)b^{-1}]\alpha_1 + \cdots + [(-c_m)b^{-1}]\alpha_m \Rightarrow \beta \in \operatorname{span}(S)$ - Widerspruch.

Also b = 0.

Also $\sum c_i \alpha_i = 0$ und S ist linear unabhängig $\Rightarrow c_i = 0$, für alle $1 \le i \le m$.

Satz 13.7.

Sei V ein endlich dim K-Vektorraum und $W \subseteq V$ ein Unterraum. Jede linear unabhängige Teilmenge von W ist endlich und ist Teil einer (endlichen) Basis für W.

Beweis

Sei $S \subseteq W$ linear unabhängig und beobachte: $S \subseteq V$ ist linear unabhängig. Also $|S| \le \dim V$. Sei nun $S_0 \subseteq W$ linear unabhängig. Wir setzten S_0 zu einer Basis für W fort wie folgend.

Betrachte span $(S_0) \subseteq W$. Unterraum.

Falls = dann ist S_0 bereits eine Basis.

Fall \subsetneq , sei $\beta_1 \in W$; $\beta_1 \not\in \operatorname{span}(S_0)$. Setze $S_1 := S_0 \cup \{\beta_1\}$ linear unabhängig (Lemma 13.6).

Wiederhole: $S_1 \cup \{\beta_2\} := S_2$ linear unabhängig usw.

In höchstens dim V vielen Schritten erreichen wir $S_m = S_0 \cup \{\beta_1, \dots, \beta_m\}$, wofür span $(S_m) = W$ sein muss!

Ferner S_m linear unabhängig, also S_m Basis für W.

Korollar 13.8.

Sei W ein **echter** Unterraum vom endlich dim K-Vektorraum V (i.e. $W \subsetneq V$). Dann ist W endlich dim und dim $W < \dim V$.

Beweis

Setze $S_0 = \emptyset$ und setze fort wie im Beweis von Satz. Wir erhalten eine Basis S_m von W; span $(S_m) = W$ in $m \le \dim V$ vielen Schritten. Also $m := \dim W \le \dim V$.

Aber W echt; ex. $\beta \notin W$, i.e. $\beta \notin \operatorname{span}(S_m)$. Also $S_m \cup \{\beta\}$ linear unabhängig; so $m+1 \leq \dim V$. Also $m < \dim V$.

Korollar 13.9. (Basis Ergänzung)

Sei V endlich dim Vektorraum über K. Jede linear unabhängige Teilmenge ist Teil einer Basis.

Korollar 13.10.

Seien W_1, W_2 endlich dim K-Vektorräume. ($W_1 \subseteq V$ und $W_2 \subseteq V$ Unterräume.) Es gilt $W_1 + W_2$ ist endlich dim und dim $W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$.

Beweis

Satz und Korollare implizieren, dass $W_1 \cap W_2$ eine endliche Basis $\{\alpha_1, \ldots, \alpha_k\}$ hat und $\{\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_m\}$ Basis für $W_1, \{\alpha_1, \ldots, \alpha_k, \delta_1, \ldots, \delta_n\}$ Basis für W_2 für geeignete $\underbrace{\beta_1, \ldots, \beta_m}_{\in W_1}, \underbrace{\delta_1, \ldots, \delta_n}_{\in W_2}$.

Der Vektorraum $W_1 + W_2$ wird von $\alpha_1, \ldots, \alpha_k; \beta_1, \ldots, \beta_m; \delta_1, \ldots, \delta_n$ erzeugt.

Behauptung

Diese Vektoren sind linear unabhängig.

Beweis

$$\sum x_i \alpha_i + \sum y_j \beta_j + \sum z_r \delta_r = 0$$

$$\Rightarrow -\sum z_r \delta_r = \sum x_i \alpha_i + \sum y_j \beta_j.$$
(*).

Also $\sum z_r \delta_r \in W_1$. Aber auch $\in W_2$ per Definition. Also $\in W_1 \cap W_2$.

Also
$$\sum z_r \delta_r = \sum c_i \alpha_i$$
 für geeignete $c_1, \ldots, c_k \in K$.

Aber $\{\alpha_1, \ldots, \alpha_k, \delta_1, \ldots, \delta_n\}$ sind linear unabhängig $\Rightarrow z_r = 0$, für alle $1 \le r \le n$.

Also $\sum x_i \alpha_i + \sum y_j \beta_j = 0$ in (*) und $\{\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_m\}$ sind linear unabhängig $\Rightarrow x_i = 0$ und $y_j = 0$, für alle $1 \le i \le k$ und $1 \le j \le m$.

Also dim
$$W_1$$
 + dim W_2 = $(k+m) + (k+n) = k + (m+k+n)$.