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Additional lecture on Ordinals

1. Preliminaries

Theorem 1.1. (transfinite induction)
If (A,<) is a well-ordered set and P (x) a property such that

∀a ∈ A(∀b < a P (b)⇒ P (a)),

then P (a) holds for all a ∈ A.

Proof. Consider the set

B := {b ∈ A : P (b) is false}.
If B 6= ∅, let b = minB. Then ∀c < b P (c) is true but P (b) is false, a
contradiction. �

Definition 1.2. Let A be a well-ordered set. An initial segment of A is a
set of the form Aa := {b ∈ A : b 6 a}.

Proposition 1.3. No proper initial segment of a well-ordered set (A,6) is
∼= A.

Proof. Assume f : A → Aa is an isomorphism of ordered sets. Prove by
induction

∀x ∈ A : f(x) > x.

Since Aa ( A we find some b ∈ A\Aa, i.e. b > a. Therefore

f(b) > b > a,

contradicting f(b) ∈ Aa. �

Definition 1.4. A set A is transitive, if ∀a ∈ A ∀b ∈ a : b ∈ A (or
equivalently ∀a ∈ A : a ⊆ A).
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Lemma 1.5. Let A be a transitive set. Then ∈ is transitive on A if and
only if a is transitive for all a ∈ A.

Lemma 1.6. A union of transitive sets is transitive.

2. Ordinals

Definition 2.1. A set α is an ordinal if
(i) α is transitive,
(ii) (α,∈) is a well-ordered set.

Notation 2.2. Ord = {ordinals}

Remark 2.3. ∈ is an order on α ⇒ ∈ is transitive, i.e. ∀a ∈ α : a is
transitive.

Proposition 2.4. ∈ is a strict order on Ord.

Proof. If α ∈ β ∈ γ, then α ∈ γ by transitivity of γ. Therefore ∈ is transitive
on Ord. Now let α ∈ β. We claim β /∈ α. Otherwise α ∈ β ∈ α and therefore
α, β ∈ α, α ∈ β, β ∈ α, a contradiction. �

We write α < β instead of α ∈ β.

Example 2.5. Each n ∈ N = {0, 1, . . .} is an ordinal
0 = ∅,
1 = {0},
2 = {0, 1},
3 = {0, 1, 2},
...

n = {0, 1, . . . , n− 1}.
Moreover, N =: ω is an ordinal.

Proposition 2.6. ∀α ∈ Ord : α = {β ∈ Ord : β < α}.

Proof. Let β ∈ α. Then β is transitive. Thus β ⊆ α and (β,∈) = (α,∈)β. �

Lemma 2.7. Let α, β ∈ Ord such that β 6⊆ α. Then min(β\α) exists and is
= α, so α ∈ β.

Proof. Since β\α 6= ∅, γ := min(β\α) exists. To show: γ = α.
First let δ ∈ γ, i.e. δ < γ. Then δ /∈ β\α. Since δ ∈ γ ∈ β, we have δ ∈ β.
Hence δ ∈ α.
Now let δ ∈ α. If δ > γ, then α > γ, i.e. γ ∈ α, a contradiction. Therefore
δ < γ, i.e. δ ∈ γ. �
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Lemma 2.8. α 6 β ⇔ α ⊆ β.

Proof.
⇒ Clear if α = β. Otherwise α < β, i.e. α ∈ β and therefore α ⊆ β by

transitivity.
⇐ α ( β ⇒ α ∈ β ⇒ α < β.

�

Proposition 2.9. < (which is ∈) is a total order on Ord.

Proof. Assume α 66 β. Then α 6⊆ β. Hence β ∈ α, i.e. β < α. �

Proposition 2.10. If α 6= β, then α 6∼= β.

Proof. Without loss of generality α < β, so α is an initial segment of β. �

Proposition 2.11. (Ord, <) is well-ordered.

Proof. Assume α0 > α1 > α2 > . . . then (α0, <) is not well-ordered, a
contradiction. �

Proposition 2.12.
(i) If α ∈ Ord, then α ∪ {α} ∈ Ord.

(α+ 1 := α ∪ {α} is called the successor of α.)

(ii) If A is a set of ordinals, then
⋃
A ∈ Ord.

(supA :=
⋃
A is the supremum of A.)

Remark 2.13.
(i) n+ 1 = {0, . . . , n} = {0, . . . , n− 1} ∪ {n}.

(ii) supA is not always a max, e.g. A = {2n : n ∈ ω}. Then supA = ω,
but A has no max.

(iii) If α ∈ Ord, then supα = α.

Definition 2.14. An ordinal, which is not a succesor, is called a limit
ordinal.

Proposition 2.15. If α ∈ Ord and P (x) is a property such that
(1) P (0) is true,

(2) ∀β ∈ α(P (β)⇒ P (β + 1),

(3) if β ∈ α is a limit ordinal, then ∀γ < β P (γ)⇒ P (β),

Then P (β) holds for all β ∈ α.
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Theorem 2.16. If (A,<) is a well-ordered set, ∃!α ∈ Ord,∃!π : A → α an
isomorphism.

Definition 2.17. This unique ordinal α is called the order type of A,
written α = ot(A).

Lemma 2.18. If ∃α ∈ Ord such that A ↪→ α, then the theorem holds.

Proof. Let α = min{β ∈ Ord : A ↪→ β}.
(1) π(0) = minA.
(2) If π(β) has been defined, either β + 1 = α (and we are done) or

β + 1 < α and Aπ(β) ( A. Set π(β + 1) = min(A\Aπ(β)).
(3) If β is a limit ordinal and if π(γ) has already been defined for all

γ < β, we distinguish two cases:
If β = α we are done.
If β < α, set B = {π(γ) : γ < β} and set π(β) = min(A\B).

�

3. Arithmetic of ordinals

Definition 3.1. We define the ordinal sum α+ β by induction on β :

(i) α+ 0 = α,

(ii) α+ (β + 1) = (α+ β) + 1,

(iii) if β is a limit ordinal, then α+ β = sup
γ<β

(α+ γ).

Proposition 3.2.
(i) α+ (β + γ) = (α+ β) + γ

(ii) If β < γ, then α+ β < α+ γ.

Proof. We prove (i) by induction on γ.
- α+ (β + 0) = α+ β = (α+ β) + 0
-

α+ (β + (γ + 1)) = α+ ((β + γ) + 1)

= (α+ (β + γ)) + 1

= ((α+ β) + γ) + 1

= (α+ β) + (γ + 1).

-

α+ (β + γ) = α+ sup
δ<γ

(β + δ)

= sup
δ<γ

(α+ (β + δ))

= sup
δ<γ

((α+ β) + δ)

= (α+ β) + γ.

�
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Remark 3.3. + is not commutative, e.g. 1 + ω 6= ω + 1.

Definition 3.4. We define the ordinal product α · β by induction on β :

(i) α · 0 = 0,

(ii) α · (β + 1) = (α · β) + α,

(iii) if β is a limit ordinal, then α · β = sup
γ<β

(α · γ).

Definition 3.5. We define the ordinal exponentiation αβ by induction
on β :

(i) α0 = 1,

(ii) αβ+1 = αβ · α,

(iii) if β is a limit ordinal, then αβ = sup
γ<β

αγ .

Proposition 3.6. Let F be the set of functions β → α with finite support.
Define

f < g :⇔ f(γ) < g(γ),

where γ = max{δ : f(δ) 6= g(δ}. Then ot((F,<)) = αβ.

Proposition 3.7.
(i) α(β + γ) = αβ + αγ,

(ii) αβ+γ = αβ · αγ ,

(iii)
(
αβ
)γ

= αβ·γ .

Remark 3.8.
(i) (ω + 1) · 2 6= ω · 2 + 1 · 2,

(ii) (ω · 2)2 6= ω2 · 22.


