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Definition.

(1) A ring A is called Noetherian if every ideal I is finitely generated.
(2) Let A be a sub-ring of a field Ω. An element α ∈ Ω is said to be integral

over A if it satisfies a monic polynomial with coefficients from A: if there
exists a relation of the form αm + a1α

m−1 + · · ·+ am = 0 where ai ∈ A.
(3) A ring A ⊆ B ⊆ Ω is an integral extension of A if all its elements are

integral over A.
(4) The ring A is said to be integrally closed in Ω if every element of Ω which

is integral over A is already in A.
(5) A domain A is said to be integrally closed if it is integrally closed in its

field of fractions.
(6) A domain A is called a Dedekind domain if it satisfies the following condi-

tions:
(a) It is integrally closed.
(b) Every nonzero prime ideal p in A is maximal.
(c) It is a Noetherian ring.

(7) A fractional ideal in a domain A is a finitely generated A sub-module of
quot (A) (the field of fractions).

(8) If x ∈ quot (A), then (x) is the fractional ideal generated by x, namely it is
xA = {xa |a ∈ A }.

(9) If I, J are fractional ideals, then their product is the module containing all
finite sums of the form

∑
aibi where ai ∈ I,bi ∈ J. (check that it is also

a fractional ideal).
Comments: For us, a ring is always commutative, and an ideal is never the whole
ring.

Question 1.
Let A be a ring. Prove that the following are equivalent:

(1) A is Noetherian.
(2) For every nonempty set of ideals of A, P, there is a maximal element.
(3) There is no infinite increasing chain I0 ( I1 ( I2 . . . of ideals.

Question 2.
Let A be a sub-ring of a field Ω, and α ∈ Ω. Prove that the following are

equivalent:
(1) α is integral over A.
(2) The ring generated by α over A, denoted A [α], is finitely generated as an

A-module.
(3) There exists a finitely generated nonzero A-moduleM ⊆ Ω such that αM ⊆

M.
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Hint: for (3) implies (1): Suppose M is generated by {ω1, . . . ,ωn}, and that
αωi =

∑n
j=1 ai,jωj. Consider the matrix B = 〈ai,j〉, show that α solves the

monic polynomial m (x) = det (B− xI).

Question 3.

(1) Conclude from Question 2 that if A ⊆ Ω, then the set
{b ∈ Ω |b is integral over A } is a ring.
Hint: Note that if A [α] and A [β] are finitely generated, then so is A [α,β].

(2) Conclude from Question 2 that if A is a PID (principle ideal domain) then
A is integrally closed.
Hint: Suppose α = c/d ∈ quot (A) is integral over A, and let M be from
(3). Show that M = (a/b)A for some a,b ∈ A.

(3) Show directly from the definition that if A is a UFD (unique factorization
domain) then it is integrally closed.
Hint: Suppose α = c/d ∈ quot (A) is integral over A, and c/d is reduced,
and m (α) = 0 where m is monic of degree n. Multiply both sides of the
equation by dn−1.

Question 4.
Suppose A is a Dedekind Domain. Let K = quot (A).

(1) Prove that every nonzero ideal I in A contains a product of nonzero prime
ideals.
Hint: Suppose not. Let I be an ideal, maximal with properties: I 6= 0 and
I does not contain a product of nonzero primes (why does it exist?). We
may assume I is not prime, so there are a,b ∈ A such that a · b ∈ I but
a,b /∈ I. Then I+ (a) , I+ (b) strictly contain I, so they contain a product
of nonzero primes. Now look at their product.

For a fractional ideal 0 6= I, define I ′ = {x ∈ K |xI ⊆ A }.
(2) Show that I ′ is also a fractional ideal of A.

Hint: for showing that I ′ is finitely generated: if 0 6= c ∈ I then I ′ ⊆ (1/c)A,
so as A is Noetherian, I ′ is finitely generated.

(3) Suppose P is a nonzero prime. Show that P ′ * A.
Hint: We may assume P is not zero. Suppose 0 6= a ∈ P. By (1), there
are nonzero primes, P1, . . . ,Pr with r minimal such that (a) ⊇ P1 . . .Pr.
It follows that P ⊇ Pi for some i, so in fact P = Pi. Assume i = 1. By
minimality, there is some b /∈ (a) but b ∈ P2 . . .Pr. But (a) ⊇ P (b), so
b/a ∈ P ′\A.

(4) Suppose P is a nonzero prime. Show that P ′P = A.
Hint: it is enough to show that P ′P ⊇ A. Suppose not, then show that
P ′P = P. Then by Question 2, show that every element of P ′ is integral
over A, and thus P ′ ⊆ A.


