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Therefore p~2 A € Z(Q') and therewith g, = plx,. Q.E.D.

The next theorem will give some equivalent conditions for a valued field
(K, O} to be Henselian. All equivalent conditions will talk about (zeros of}
polynomials f € O[X] in one variable. There are, of course, many such equiv-
alents known. Here we concentrate on those used in the course of this book.
Observing that (5) = (1) uses only a separable polynomial, it is easy to
see that in the conditions (3) to {6) it suffices to consider only separable
polynomials from ([X] (where separable means without multiple zeros).

Here it is convenient to mention and to use an elementary result that is
proved in Section A.6 in more generality:

Suppose v is the valuation corresponding to ©. Then the definition

n ana —_
wlen X"+ +ag) == amuwmwy v{a;)

(for a; € K), and w(f/g) = w(f) —w(g) (for f,g € K[X]\ {0}) yields
a valuation w on K(X), by (A.6.3). This extension of v to K(X) is called
the Gauss extension. The property w(fg) = w(f} + w(g) will be used from
pow on in the following way. Let us call a polynomial f € O[X] primitive
if w(f) = 0, i.e., if at least one coefficient of f is a unit in O. Now clearly
the product of primitive polynomials from O[X] is again primitive, and if a
primitive polynomial f € O[X] has a factorization f = gh in K{X], then it
alse has a factorization f = g hy in O[X] with g; and h; both primitive, and
being constant multiples of f and g, respectively.

Theorem A.3.13 (“Hensel’'s Lemma”): For ¢ valued field (K,O) with
residue field K and residue ?QSQSQD&N%E a v @, the following are equiva-
Fent:
(1} (K,Q) is Henselian.
(2) Let f,g,h € O[X], where f has only separable irreducible factors,
f=gh#0, and G,.@ = 1. Then there exist g1,h1 € OX] with

f=ghi, =7, b1 =h, and degg = degg.

(3) For each f € O[X} and a € O with f(@) =0 gs.&.wo@ # 0, there
exists an ¢ € O with f(a) =0 and @ =7.

(4) For each f € O[X] and a € O with v(f(a)} > 2v(f'(a)}, there exists
an o € O with f(e) =0 and v(a — o) > v(f'(a)).

(5) Every polynomial X™ + ap_1 X" 14 -+ ap € O[X] with g, ¢ m
and @n_s,...,a0 € m has a zero in K.

(6} Every polynomial X™ + X™™1 + a2 X? 2+ .-+ ag € O[X] with
Op_2,...,00 € M has a zero in K.

Proof: Let L be the splitting field of f over K.

(1) = (2): Let O' be the unique extension of O to L (using (1), (A.3.8),
and (A.1.13)). Let f := apnX™ +--- +ag € O[X]. Since f # 0, f is primitive.
In I we have
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F=1lB:X —as), o€, B #0,

i=1

with n,mu?ﬁm@u, v(og)} =0, Le., {f;, a;) = 1. We may suppose that
g=t][B:X @), «fie @)

(possibly after re-numbering the factors). Set

a1 Icuﬁ v with mﬁﬁw ce 0%,
i=1

d=1

Such a ¢ exists because € [[;, B; is the leading coefficient of § € K[X]. Then
g1 = g and deg g3 = deg§ = m. Now set hy = f/g1. Then

et wﬁmxlﬁ?m.

i=m+1

We shall show that (each coefficient of) g; is invariant under all ¢ €
Gal(L/K v“ it will then follow that g1, E € O[X]. From ¢(0') = O follows
o(m’) = m'. Thus ¢ defines a mapping & : L — L by @ — o(a), which is an
automorphism of L/K. From (g, k) = 1 it follows that foreach i € {I,...,m}
there exists j € {1,...,m} such that

iy _ oy
Amvlm.

Thus ¢ permutes the zeros of g1, whence the coefficients of ¢; lie in K, and
therewith ¢ € O[X].

_ (2) = (3): First suppose f is separable. Set g(X) =X ~eand h=f/g €
K[X]. Then f = ghand (g, k) = 1, since /(@) # 0. There exist g1,k € O[X]
with f = g1y, 1 =9 = X — @, and deggs = 1 = degyg, by (2). It then
follows that g1 = e{X — ) withe€ O* and b€ O. Thene=1, f(b) =90,
and b=73.

Now let f be inseparable, and write f = fi fo, with f1, fa € O[X], where
fi is the product of the separable irreducible factors of f, and f; is the
product of the inseparable irreducible factors of f. Then fo(X) = f5(X7),
for some f5 € O[X], where p = char K = char O/m > 0. From f(z) = 0 and
(@) # 0 follows f1{&) = 0 and f{(a@) # 0 (since p > 1). Then the previous
paragraph implies that fi has a zero o € K with & = @, so f has one, too.

3) = (4): fla—X) = fla) — f'(a)X + X2g(X), for some g € O[X].
Writing X = f'(a)Y, and observing that v{f’(a)) # oo and hence f'(a) # 0,
we get
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fa= f'(@Y) _ f(a)
f'a)? f'a)?
Then f, € O[Y], since v(f(a)) > v(f'(a)?). Now f; = Y (YH(Y) — 1), which
has the simple zero 0 in the residue field. Therefore f; has a zero ¥ € m, by (3).
Then f has the zero a:=a — f'(a)y € O. Since y € m, v{a — a) > v(f'(a)).
(4)= (5): Let f=X"+ap 1 X" 14+ ... 4qgpasin (5). Then

F=X"+amgXtt = XYY o).

—Y + Y2R(Y) = f(Y).

Then —a@,”7 (#0) is a simple zero of 7. In particular,

o(F(=an-1)) > 0 = 5(f'(~an_1).
Then f has a zero in O, by (4).
(5) = (6): Trivial.

(6) = (5): Suppose f(X) = X"+ 0,1 X" 1 + .- + g with a,_; € OF
and an—s,...,a9 € m. Replace X by a,-1Y and divide by al _4; we obtain

.QAMNV ”M\3+M\§§H+QWEMM\§§N+...+ iy

o
Tn—1 Gp1

Apply (5) to g(¥} to obtain a zero y € K of g. Then & := ap_yy is a zero of
f-

(8) = (1): Suppose (K, ) were not Henselian. Then there would be a
finite Galois extension L/K in which O extends to @' and O, with O # 0"
It follows that Z(0') # Gal(L/K), since by (A.2.8), O' and O" are conjugate
over K. Hence m > 2 in (A.3.1.1). As in the proof of (A.3.3), and writing
B = 6,{8), there exists 8 € R = MNie; O with gl —~ 1 € m' and, for
i=2,...,m, A% cwm’ Then

F=f[X - =Xt amX™ 4 hag € O[X],
=1

—am_1 =5 A =1modm, aym_g=- *+ = ag = 0 mod m. Then f has a zero
in K, by (5). Hence 8 € K and thus 8 = gl for all 4, J. This contradicts
A =1 mod m and S@ = 0 mod m. (Note: f is separable.) Q.E.D.

Corollary A.3.14: Let (K',0') be Henselion, K CK', and O = KN ¢'. If
K is relatively separably closed in K', then (K, ©) is Henselian.

Proof: We use (1) = (5) and (5) = (1) of (A.8.13): Let
f=X"+a, 1 X" 1+ + g4 € O[X)

be separable, ap—1 ¢ m, and an_s3,...,ap € m. Then f has a zero in K',
hence alsoin K. Q.E.D. .
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Definition A.3.15: A valued fleld (K, O) is called algebraically mazimal if
it admits no proper, algebraic, immediate extension (K’, 0").

Note that K with the trivial valuation is algebraically maximal.

Definition A.3.16: A valued field (K, O) is called finitely ramified if either
charK = 0, or charK = p > 0 and there are only finitely many values
between ¢ and v(p).

Note that (K, 0) with O = K is finitely ramified, and that if (X, O} is
finitely ramified and © is nontrivial, then char K = 0. In fact, if char K = p>
0, then there are infinitely many elements between 0 and v(p) = v(0) = oo
in the value group.

Examples A.3.17: (1) Let < be an ordering of K, and let 0 = O(Z,<)
(A.1.2)(b). Then X is ordered, whence char K = 0.
(2) If T'o = Z and char K = 0, then (K, ) is finitely ramified.

Remark A.3.18: Suppose (K, ) is finitely ramified. Then for every n €
Z\ {0}, there are only finitely many values between 0 and v(n). To see this,
we consider the two cases, char K = p and charK = 0. If charK = p,
write n = p®s with p [ s; then v(n) = ev{p), so that there are e times as
many values between 0 and v(n) as between 0 and v(p) (approximately).
Now suppose char K = 0. Since in this case char K = 0, @ CK,and
mpNQ=(0) CO,sothat forall r € Q, 7 = r. Since char K = 0, for all
n € Z\ {0}, © # 0, whence v{n} = 0. Thus also in this case, there are only
finitely many values between 0 and v(n).

Theorem A.3.19: Suppose (K,O) is finitely ramified. Then (K, ) is
Henselian if and only if {K,O) is algebraically mazimal.

Proof: (<=) Let (K, O) be algebraically maximal. Then (K, ®) is Henselian,
since the Henselization is an algebraic, immediate extension.

(=) Let (K',0"} 2 (K, ) be a proper, algebraic, immediate extension.
Then clearly O # K, and thus char K = 0. Let o € K’ \ K. Without loss of
generality, suppose K'/K is finite, and let L be the normal closure of K'/K.
Then O extends uniquely to L. In particular, this extension also extends ('
from K’ to L. Now

2(8) =v(e(B)), forallfeL and o€ @:=Gal(L/K)? (4.3.19.1)

Let alt! = o, of?l .. al*l be the conjugates of a. Then

% This follows from the fact that alx = id or that the order of o is finite (cf.
Exercise A.7.4(iii)).




