18 Script zur Vorlesung: Lineare Algebra I

Prof. Dr. Salma Kuhlmann

Bemerkung 18.1.

V endlich dim; $T:V\to W$ eine lineare Transformation.

Es gilt: $R_T = T(V) \subseteq W$ (Unterraum) ist endlich erzeugt, weil:

Sei $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ eine Basis für V und $\alpha \in V$. Setze $\beta_i := T(\alpha_i)$ für jedes $i = 1, \dots, n$.

$$T(\alpha) = T(\sum c_i \alpha_i) = \sum c_i T(\alpha_i) = \sum c_i \beta_i.$$

$$\Rightarrow T(\alpha) \in \overline{\operatorname{span}} \{\beta_1, \dots, \beta_n\}.$$
 Also $\overline{R_T} = \operatorname{span} \{\beta_1, \dots, \beta_n\}.$

Satz 18.2.

V endlich dim; $T:V\to W$ eine lineare Transformation.

Es gilt: dim $V = \dim \ker T + \operatorname{rang} T$.

Beweis

Sei $\{\alpha_1, \ldots, \alpha_k\}$ eine Basis für $N = \ker T$. Sei $\alpha_{k+1}, \ldots, \alpha_n \in V$, so dass $\{\alpha_1, \ldots, \alpha_k, \alpha_{k+1}, \ldots, \alpha_n\}$ eine Basis für V ist.

Behauptung: $\{T(\alpha_{k+1}), \dots, T(\alpha_n)\}$ bilden eine Basis für R_T .

Beweis: Aus Bemerkung 18.1 folgt: $\{\underline{T(\alpha_1), \dots, T(\alpha_k)}, T(\alpha_{k+1}), \dots, T(\alpha_n)\}$ erzeugen R_T .

Also $\{T(\alpha_{k+1}), \ldots, T(\alpha_n)\}$ erzeugen R_T . Sei nun $\sum_{i=k+1}^n c_i(T(\alpha_i)) = 0$.

Also
$$T(\underbrace{\sum_{i=k+1}^{n} c_i \alpha_i}) = 0.$$

Also $\alpha \in N$; es existiert $b_1, \ldots, b_k \in K$ mit $\alpha = \sum_{i=1}^k b_i \alpha_i$.

Also
$$0 = \alpha - \alpha = \sum_{i=1}^k b_i \alpha_i - \sum_{j=k+1}^n c_j \alpha_j = 0.$$

Aber $\{\alpha_1, \ldots, \alpha_k, \alpha_{k+1}, \ldots, \alpha_n\}$ sind linear unabhängig also $b_1 = \cdots = b_k = c_{k+1} = \cdots = c_n = 0.$

Kapitel 3: § 3 Die Algebra der linearen Transformation

Seien V, W Vektorräume über K. Wir haben gesehen, dass Fkt $(V, W) = \{f : F : V \to W \text{ eine Funktion } \}$ versehen mit Funktion Addition und Skalarmultiplikation ein K-Vektorraum ist.

Satz 18.4.

Setze $L(V, W) := \{T : V \to W \text{ lineare Transformation}\} := L \text{ mit Addition}$ $(T + U)(\alpha) := T(\alpha) + U(\alpha) \text{ für alle } T \text{ und } U \in L, \alpha \in V \text{ und Skalarmultiplikation}$ $(dT)(\alpha) := d(T(\alpha)) \text{ für } d \in K.$ Es gilt: $T + U \in L \text{ und } dT \in L.$

Beweis

$$(T+U)(c\alpha+\beta) = c(T+U)(\alpha) + (T+U)(\beta) \text{ (Übungsaufgabe)}$$

$$(dT)(c\alpha+\beta) = dT(c\alpha+\beta) = d(cT(\alpha)+T(\beta)) = cdT(\alpha)+dT(\beta)$$

$$= c(dT(\alpha)) + (dT)(\beta).$$

Bemerkung 18.5.

 $0 \in L(V, W); L(V, W) \neq \emptyset$. Also $L(V, W) \subseteq \text{Fkt } (V, W)$ (Unterraum). Insbesondere ist L(V, W) ein K-Vektorraum.

Satz 18.6.

V n-dim, W m-dim über K. Dann ist dim L(V, W) = mn.

Beweis

 $\mathcal{B} = (\alpha_1, \dots, \alpha_n)$ ist eine geordnete Basis von V und $\mathcal{B}' = (\beta_1, \dots, \beta_m)$ ist eine geordnete Basis von W. Für jedes (p,q) mit $1 \leq p \leq m$ und $1 \leq q \leq n$ definieren wir [mithilfe von Satz 17.8 und Bemerkung 17.9(2)] $E^{p,q}$ eine lineare Transformation:

 $E^{p,q}:V\to W$ definiert für $j=1,\ldots,n$

$$E^{p,q}(\alpha_j) := \left\{ \begin{array}{ll} 0 & j \neq q \\ \beta_p & j = q \end{array} \right. = \delta_{jq} \beta_p$$

Behauptung

 $\{E^{p,q}: 1 \leq p \leq m \text{ und } 1 \leq q \leq m\}$ bilden eine Basis für L.

Reweis

Sei $T: V \to W$ und $1 \le j \le n$. Schreibe $T(\alpha_j) = \sum_{p=1}^m A_{pj}\beta_p$ in \mathcal{B}' für geeignete $A_{pj} \in K$.

Zwischenbehauptung:
$$T = \underbrace{\sum_{p} \sum_{q} A_{pq} E^{p,q}}_{:=U}$$
,

weil
$$U(\alpha_j) = (\sum_p \sum_q A_{pq} E^{p,q})(\alpha_j)$$

 $= \sum_p \sum_q A_{pq} \delta_{jq} \beta_p$
 $= \sum_{p=1}^m A_{pj} \beta_p$
 $= T(\alpha_j)$

Also $U(\alpha) = T(\alpha)$ für alle $\alpha \in V$ laut Bemerkung 17.9(1). Also U = T.

Also $\{E^{p,q}: 1 \leq p \leq m \text{ und } 1 \leq q \leq m\}$ erzeugen L. Linear unabhängig ?

Sei
$$U=\sum_{p}\sum_{q}A_{pq}E^{p,q}=0$$
 für $A_{pq}\in K$. Also gilt für alle $j=1,\ldots,n$:
$$U(\alpha_{j})=0 \text{ i.e. } \sum_{p=1}^{m}A_{pj}\beta_{p}=0. \text{ Nun ist } \{\beta_{p}:1\leq p\leq m\} \text{ linear }$$
 unabhängig $\Rightarrow A_{pj}=0$ für alle p und j .

Satz 18.7.

Seien V, W, Z Vektorräume über K und T, U lineare Transformationen.

$$V \stackrel{T}{\to} W \quad W \stackrel{U}{\to} Z.$$

Es gilt $V \stackrel{U \circ T}{\to} Z$ ist wieder linear.

Beweis

$$(U \circ T)(c\alpha + \beta) = U(T(c\alpha + \beta)) = U(cT(\alpha) + T(\beta)) = cU(T(\alpha)) + U(T(\beta)) = c(U \circ T)(\alpha) + U(U \circ T)(\beta)$$

Sonderfall

V = W = Z. Also hat L(V, V) eine Vektorenmultiplikation $UT := U \circ T$.

Bezeichnung

Schreibe $T^0 := I$ (Identitätsabbildung)

$$T^2:=T\circ T$$

$$T^n := T \circ \cdots \circ T$$