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Definition 0.1 A first order formula in the language of real closed fields is obtained
as follows recursively:

1. if f (x) = Q[x1, . . . ,xn], n > 1, then f (x) ≥ 0, f (x) > 0, f (x) = 0, f (x) , 0 are
first order formulas (with free variables x = (x1,...,xn));

2. if Φ and Ψ are first order formulas, then Φ ∨ Ψ, Φ ∧ Ψ and ¬Φ are also first
order formulas (with free variables given by the union of the free variables of Φ

and the free variables of Ψ);
3. if Φ is a first order formula then

∃x Φ and ∀x Φ

are first order formulas (with same free variables as Φ minus {x}).
The formulas obtained using just 1. and 2. are called quantifier free.

Let R be a real closed field, n ≥ 1. A subset A ⊂ Rn is said to be definable (with
parameters from R) in R if there is a first order formula Φ(t,x) with parameters t ∈ Rm

and free variables x = (x1,...,xn), such that
A = {x ∈ Rn : Φ(t,x) is true in R}.

Proposition 0.2 For any real closed field R, the class of definable sets (with parame-
ters) in R coincides with the class of semialgebraic sets.

Theorem 0.3 (Tarski’s quantifier elimination theorem for real closed fields) Every
first order formula in the language of real closed fields is equivalent to a quantifier free
formula.

Theorem 0.4 (Tarski-Seidenberg, geometric version) Consider the projection map
Π : Rm+n → Rm

(x,y) 7→ x.
Then, for any semi-algebraic set A ⊂ Rm+n, Π(A) is a semi-algebraic subset of Rm.
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1. We suppose R endowed with the interval topology, which coincides with the
euclidean topology (see Ü.B. 5).
(a) Show that the closure Cl(A), the interior Int(A) and the boundary ∂A of a
semi-algebraic set A (⊂ Rn for some n), are semi-algebraic:

(i) by giving a first order formula defining them;
(Hint: use the formal definition of a point belonging to a closed set ;)

(ii) by a geometrical description.

(b) Describe the closure Cl(A) of the following semi-algebraic set
A = {(x,y) ∈ R2 | x3 − x2 − y2 > 0}.

Note that the closure of a semi-algebraic set is not obtained just by relaxing the
strict inequalities.

2. Let A, B be semi-algebraic sets. Show that:
(a) any polynomial map f : A→ B is semi-algebraic;

(b) any regular rational map (i.e. a map whose coordinates are rational functions
with denominators that vanish nowhere in A) f : A→ B is semi-algebraic;

(c) if f : A → R and g : A → R are semi-algebraic maps, then so are the maps
max( f ,g), min( f ,g) and | f |;

(d) if f : A→ R is semi-algebraic and f ≥ 0, then so is
√

f .

3. Prove the following theorem:
Theorem 0.5 Let R be a real closed field, and A, B, C and D be some nonempty
semi-algebraic sets. Then:
(a) for any semi-algebraic maps f : A→ B and g : B→ C, the map g ◦ f : A→
C is also semi-algebraic;

(b) for any semi-algebraic maps f : A→ B and g : C → D, the map
f × g : A ×C → B × D

(a,c) 7→ ( f (a),g(c))
is also semi-algebraic;

(c) Let f : A→ B be a semi-algebraic map.
(i) For any semi-algebraic subset S ⊂ A, its image f (S ) is also semi-algebraic.
(ii) For any semi-algebraic subset T ⊂ B, its preimage f −1(T ) is also semi-

algebraic.

(d) Define S(A) := { f : A→ R | f is a semi-algebraic map}. Then S(A) endowed
with pointwise addition and pointwise multiplication is a commutative ring.
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