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Blatt 9 - Solution

Definition 0.1 A first order formula in the language of real closed fields is obtained
as follows recursively:

1. if f (x) = Q[x1, . . . ,xn], n > 1, then f (x) ≥ 0, f (x) > 0, f (x) = 0, f (x) , 0 are
first order formulas (with free variables x = (x1,...,xn));

2. if Φ and Ψ are first order formulas, then Φ ∨ Ψ, Φ ∧ Ψ and ¬Φ are also first
order formulas (with free variables given by the union of the free variables of Φ

and the free variables of Ψ);
3. if Φ is a first order formula then

∃x Φ and ∀x Φ

are first order formulas (with same free variables as Φ minus {x}).
The formulas obtained using just 1. and 2. are called quantifier free.

Let R be a real closed field, n ≥ 1. A subset A ⊂ Rn is said to be definable (with
parameters from R) in R if there is a first order formula Φ(t,x) with parameters t ∈ Rm

and free variables x = (x1,...,xn), such that
A = {x ∈ Rn : Φ(t,x) is true in R}.

Proposition 0.2 For any real closed field R, the class of definable sets (with parame-
ters) in R coincides with the class of semialgebraic sets.

Theorem 0.3 (Tarski’s quantifier elimination theorem for real closed fields) Every
first order formula in the language of real closed fields is equivalent to a quantifier free
formula.

Theorem 0.4 (Tarski-Seidenberg, geometric version) Consider the projection map
Π : Rm+n → Rm

(x,y) 7→ x.
Then, for any semi-algebraic set A ⊂ Rm+n, Π(A) is a semi-algebraic subset of Rm.

1. We suppose R endowed with the interval topology, which coincides with the eu-
clidean topology (see Ü.B. 5).

(a) Let A be a semi-algebraic set, A ⊂ Rn for some n ∈ N.
(i) We have

1



Cl(A) =

x ∈ Rn | ∀t ∈ R, ∃y ∈ A,

‖x − y‖2 =

n∑
i=1

(xi − yi)2 < t2 or t = 0


 ;

Int(A) =
{
x ∈ Rn | ∃t ∈ R, ∀y ∈ Rn,

(
‖x − y‖2 < t2 ⇒ y ∈ A and t , 0

)}
;

∂A =
{
x ∈ Rn | ∀t ∈ R, ∃y ∈ A and ∃z < A,[(

‖x − y‖2 < t2 and ‖x − z‖2 < t2
)

or t = 0
]}

;

(ii) Consider the sets

B1 :=
{
(x,y,t) ∈ R2n+1 | y ∈ A and

(
‖x − y‖2 < t2 or t = 0

)}
;

B2 :=
{
(x,y,t) ∈ R2n+1 | y ∈ Rn\A and

(
‖x − y‖2 < t2 or t = 0

)}
;

and the following projections
Π1 : R2n+1 → Rn+1

(x,y,t) 7→ (x,t);

and
Π2 : Rn+1 → Rn

(x,t) 7→ x.
Then we have

Cl(A) = Rn\Π2

[
Rn+1\Π1(B1)

]
;

Int(A) = Π2

[
Rn+1\Π1(B2)

]
;

∂A = Rn\Π2

[
Rn+1\Π1(B1)

]
∩ Π2

[
Rn+1\Π1(B2)

]
.

(b) Consider the following semi-algebraic set
A := {(x,y) ∈ R2 | x3 − x2 − y2 > 0}.

Remark that, for any (x,y) ∈ R2, we have x3 − x2 − y2 > 0⇔ x2(x − 1) > y2. So,
the closure Cl(A) of A is given by

Cl(A){(x,y) ∈ R2 | x3 − x2 − y2 ≥ 0 and x ≥ 1}.
which is equal to B\{(0,0)} where

B := {(x,y) ∈ R2 | x3 − x2 − y2 ≥ 0}.
Note that the closure of a semi-algebraic set is not obtained just by relaxing the
strict inequalities.

2. Let A ⊂ Rn, B ⊂ Rm be semi-algebraic sets, m,n ∈ N∗.

(a) Take a polynomial map
f : A → B

x 7→ ( f1(x), . . . , fm(x)).
where fi ∈ R[X], i = 1, . . . ,m. The graph of f is

Γ( f ) := {(x,y) ∈ A × B | ∀i = 1, . . . ,m, fi(x) = yi}

which is indeed a semi-algebraic subset of Rn+m (and even an algebraic one);

(b) Take a regular rational map
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f : A → B

x 7→

(
f1(x)
g1(x)

, . . . ,
fm(x)
gm(x)

)
.

where fi,gi ∈ R[X], i = 1, . . . ,m. The graph of f is
Γ( f ) := {(x,y) ∈ A × B | ∀i = 1, . . . ,m, fi(x) = yigi(x)}

which is indeed a semi-algebraic subset of Rn+m (and even an algebraic one);

(c) Consider semi-algebraic maps f : A→ R and g : A→ R with corresponding
graphs

Γ( f ) := {(x,y) ∈ A × R | y = f (x)};
Γ(g) := {(x,y) ∈ A × R | y = g(x)}.

This means that y = f (x) and y = g(x) are first order formulas. Then so are
f (x) − g(x) ≥ 0 and its negation g(x) − f (x) > 0. This means that the sets
{(x,y) ∈ Rn+1 | f (x) − g(x) ≥ 0} and {(x,y) ∈ Rn+1 | g(x) − f (x) > 0} are semi-
algebraic. Then we get that the following sets are also semi-algebraic:

Γ(max( f ,g)) =
[
{(x,y) ∈ Rn+1 | f (x) − g(x) ≥ 0} ∩ Γ( f )

]
∪

[
{(x,y) ∈ Rn+1 | g(x) − f (x) > 0} ∩ Γ(g)

]
;

Γ(min( f ,g)) =
[
{(x,y) ∈ Rn+1 | f (x) − g(x) ≥ 0} ∩ Γ(g)

]
∪

[
{(x,y) ∈ Rn+1 | g(x) − f (x) > 0} ∩ Γ( f )

]
;

Γ(| f |)) =
[
Γ(max( f ,0)) ∩ {(x,y) ∈ Rn+1 | y > 0}

]
∪

[
Γ(max(− f ,0)) ∩ {(x,y) ∈ Rn+1 | y > 0}

]
∪

[
Γ( f ) ∩ {(x,0) ∈ Rn+1}

]
;

where 0 denotes the map A→ R with constant value 0.

(d) Consider a semi-algebraic map f : A→ R with f ≥ 0. Thus
Γ( f ) = {(x,y) ∈ A × R | y = f (x) and y ≥ 0}

is semi-algebraic, meaning that (y = f (x) and y ≥ 0) is a first order formula. So
we get that the set

S := {(x,y,z) ∈ A × R | y = z2 and y = f (x) and y ≥ 0}
is also semi-algebraic. Denote

Π : Rn+2 → Rn+1

(x,y,z) 7→ (x,z).

By the geometric version of Tarski-Seidenberg theorem, we get that Γ(
√

f ) =

Π(S ) is semi-algebraic.

3. Let R be a real closed field, and A ⊂ Rm, B ⊂ Rn, C ⊂ Rp and D ⊂ Rq be some
nonempty semi-algebraic sets, m,n,p,q ∈ N∗.

(a) The following sets
Γ( f ) := {(x,y) ∈ Rm+n | x ∈ A and y = f (x)};
Γ(g) := {(y,z) ∈ Rn+p | y ∈ B and z = g(y)};
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are semi-algebraic. So are the following sets
Γ( f ) × Rp := {(x,y,z) ∈ Rm+n+p | x ∈ A and y = f (x)};
Rm × Γ(g) := {(x,y,z) ∈ Rm+n+p | y ∈ B and z = g(y)}.

(They are defined by first order formulas). So, (Γ( f ) × Rp) ∩ (Rm × Γ(g)) is also
semi-algebraic. Denote

Π : Rm+n+p → Rm+p

(x,y,z) 7→ (x,z).

By the geometric version of Tarski-Seidenberg theorem, we get that
Γ(g ◦ f ) = Π

[
(Γ( f ) × Rp) ∩ (Rm × Γ(g))

]
is also semi-algebraic.;

(b) Considering the formulas
Γ( f ) := {(x,y) ∈ Rm+n | x ∈ A and y = f (x)};
Γ(g) := {(z,t) ∈ Rp+q | z ∈ B and t = g(z)};

we deduce that

Γ( f × g) := {(x,z,y,t) ∈ Rm+p+n+q | x ∈ A and y = f (x) and z ∈ B and t = g(z)};
' Γ( f ) × Γ(g);

is also semi-algebraic (it is also defined by first order formulas).

(c) Let f : A→ B be a semi-algebraic map.

(i) Consider a semi-algebraic subset S ⊂ A. Then the set S × B is semi-
algebraic, and therefore is Γ( f ) ∩ (S × B). Denote

Π2 : Rm+n → Rn

(x,y) 7→ y.

From the geometric version of Tarski-Seidenberg theorem we deduce that f (S ) =

Π2
[
Γ( f ) ∩ (S × B)

]
is also semi-algebraic.

(ii) Consider a semi-algebraic subset T ⊂ B. Then the set A × T is semi-
algebraic, and therefore is Γ( f ) ∩ (A × T ). Denote

Π1 : Rm+n → Rm

(x,y) 7→ x.

From the geometric version of Tarski-Seidenberg theorem we deduce that f −1(S ) =

Π1
[
Γ( f ) ∩ (A × T )

]
is also semi-algebraic.

(d) Define S(A) := { f : A→ R2 | f is a semi-algebraic map}. To prove that S(A)
is a commutative ring, it remains to show that S(A) is closed under difference
and multiplication.
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Consider f : A→ R and g : A→ R. The following maps
+ : R2 → R

(x,y) 7→ x + y.
∗ : R2 → R

(x,y) 7→ xy.
− R → R

x 7→ −x.
are semi-algebraic. Following the questions (a) and (b), so is the map

f − g : A → R
x 7→ f (x) − g(x)

as it is the following composition
A → A × A → R × R → R
x 7→ (x,x) 7→ ( f (x), − g(x)) 7→ f (x) − g(x).

Similarly, the multiplication is semi-algebraic as it is the following composition
A → A × A → R × R → R
x 7→ (x,x) 7→ ( f (x),g(x)) 7→ f (x)g(x).
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