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Theorem 0.1 (Tarski-Seidenberg Principle) Let fi(T,X) = hjpm,(DX™ + -+ hio(T)
fori=1,...,s be a sequence of polynomials in n + 1 variables with coefficients in Z,
where T = (Ty,...,T,). Let € be a function from {1, . ..,s} to {—1,0,1}. Then there exists
a boolean combination B(T) (i.e. a finite composition of conjunctions, disjunctions and
negations) of polynomial equations and inequalities in the variables T with coefficients
in Z such that for every real closed field R and for every t € R", the system

SignfitX) = el)

Signfy(t.X) = e(s)
has a solution x in R if and only if B(t) holds true in R.

: fX) =X} +XoX7 + X3X; + X4 =0 (1)
(@) Weput X; =X - % Then 1 is equivalent to
gXYZ) =X +YX+Z=0. )
with
X = X+ %Xz;
Y = -éxg + X3;
Z = %x; - %sz3 + Xy

(b) Put X = U + V. Then 2 becomes

UV+V+Q@UV+YYU+V)+Z=0.
_y3
Then, put Y = —-3UV, which is equivalent to U 33 = 57 So we have



_y3
Ulv3 = —.
27
Thus, by the formulas "coeflicients-roots", U3 and V3 are the two solutions of
the following quadratic equation

{U3+V3 = -Z

3

Y

WT.Y.Z) =T+ ZT - 75 =0. 3)
4 -1+iV3
(c) Write D := Z* + ﬁY‘%, R[ V—1] the algebraic closure of R and j = Tl\/_

the classical third rood of 1. Then we have three cases:
-Z—- D
— if D >0 & 277% + 4Y? > 0, then 3 has two real solutions U> = T\/_

—Z+ VD
and V3 = T\/_ Equivalently,

./_z— i)
Ue {jkz —,k:O,l,Z};
2
3|—Z+ VD
Ve {jk\f+,k=0,l,2}.

Since X = U + V and Y = -3UYV, there is only one combination which
gives a real solution of 2, namely

X_{/—Z—\/B+\/—Z+\/5
a 2 2

-Z
— if D = 0 © 27Z%+4Y? = 0, then 3 has one double solution U> = V3 = >

Equivalently,
[-Z
UV e {]k : 50 k= 0,1,2}.

Since X = U+ V and Y = =3UV, there are two combinations which give a

real solution of 2, namely
512,
24 5(51mple root);

X =
or
- [~z
X — .+ w3 _“
G+ >
- Gl -Z
= U+Dy5
— 3 Z
B 2



— if D < 0 & 277% + 4Y3 < 0, then 3 has two complex conjugated solutions

-3 —Z+iV-D
U3 = V3 = + Equivalently,
Uel{jtp. k=012 and V e {jp, k = 0,1.2}
-Z—-iVD
where p := \ Tl\/_ Since X = U+ Vand Y = -3UYV, there are three
combinations which give a real solution of 2, namely
X = p+p
or
X = jp+jp
or
X = jp+jp

(d) We just showed that we have the corresponding number of roots for X depen-
ding on whether D(Y,Z) = 277 + 4Y? > 0, = 0 or < 0. But we know that
1

X = Xl + §X2;
1
Yy = —§X§ + X,
2 1
Z = =X3-=XoX3+Xs
2772 3T
So we have the corresponding number of roots depending on the sign of
z 1, 2 5 1
f(X2,X3,X4) = 27D(—§X2 + Xmﬁxj - §X2X3 + X4)

= 8X5+ 189X7X2 + 108X3X, + 27X3 — 487X, X3X, + 729X7.
. Consider the polynomials € Z[T,X]
{ ATX) = TX>+(T+DX+1
HTX) = X3 -3T2X +273.
(a) We get that

o fI(T.X)=3X*-3T*=3X-T)X+T);

B3T3+ T2 43T + 1 2T+ T + 1
e g(T.X) = X+ ;
§ 72 T

o (T X)=-2T*X + 273 = 2T>*(X - T).

(b) For fi, we have a discriminant A; = (T + 1)> = 4T = T2 + 2T + 1 — 4T =
(T - 1)*> > 0. The 2 X-roots of f;(T,X) are given by the formulas

X(D@ ¢ {_(T FhE VT - 1)2} & XV e (-1 _—]}.
_ 2T T
The X-roots of f;(T,X) are X'? e {-T,T}.

2T +T*+ T
The X-root of g{(T,X) is X© = .
S X s X = s o 3 o
The X-root of g,(T,X) is X© =T.




(c) As an example, consider ¢ >> 1. Denote by x; < x, < ... < x5 the roots
computed in the preceding question, xy := —o0, xg := +o0, and I; :=]xg,xx+1[ for
k=0,...,5 Then:

20 +12 +1
: 38 +2+3t+1
Moreover, - > —1 > —t. Thus we get that

2
(i) Since t >> 1, XO(r) = behaves like §t2. So X)) > 1.

-1
Ip<xi=-t<Ili<xp=-1 <12<X3=T<13<X4=[<I4<XS=
X0 < Is.
We get the following matrix 4 X 11:

x Iy -t I =1 b — L ot Iy XO0Is

11 1 0 -1 0 1 1 1 1 1
. : 10 -1 -1 =1 -1 =1 0 1 1 1
Signg(ffi18)= | 1 1 1 1 1 1 1 1 1 0 -1
111 1 1 1 1 0 -1 -1 -1

(ii) The polynomials f; and g» have a common root ¢, so it is a double root
for f>. Moreover, with the notation of the lecture, we have

Xi, =—[<X[2=—1<X,‘3=_T<X,'4=l.
Then we use the fact that f>(x;,) = g2(x;) > 0, f5(] — oo, —#[) > O and f; has a
root in the interval ] — oo, —¢[ if and only if Sign(f; (] — oo, —1[)).Sign(g2(x;,)) = 1,
to show that the third root of f, is x® €] — co, — 1[.
Now we write

-1
yO:—oo<y1=x(3)<x,-]=—t<y2=xi2=—1<y3=xi3=7<y4=xi2:

1 <ys = +4oo.

With the notations of the lecture, we have

p(1) =(0,1), p(2) = 2, p(3) = 3 and p(4) = 4.
Thus we apply the various criterions (see Bochnak-Coste-Roy) to get that:
o Sign(f2(y2)) = Sign(f2(ly2.y3D) = Sign(gi(x2)) = 1 and Sign(f2(y3)) = Sign(f2(ly3.ya[)) =
Sign(gi(x3)) = L;
e Sign(f2(y4)) = 0 and Sign(f2(Iys.ys0)) = Sign(f;(Iys.ys0) = 1;
e Sign(f2(y1)) = 0 and Sign(f2(Iyo.y1[)) = =Sign(f5(Iyo.y1D) = —1;

X io x® il -1 1~2 7 I~3 t I~4
) 1 1 1.0 -1 0 1 1 1 )
Signg(f1./2) = ( -1 0 1 1 1 1101 )



(d) We denote

ATX) = (BT +T*+3T+ DX +2T° +T* + T,
ATX) = =2T*X+2T3=2T*(X-T);

ATX) = 3X>-3T*=3X-T)X+T);

fATX) = TX>+((T+ DX+ 1.

We denote P(T) := =3T3 + T> + 3T + 1 and Q(T) := —2T7°% — 3T* - 373 +
3T? + 4T + 1 which are polynomials in Z[T]. Computing the remainders from
the corresponding euclidean divisions we obtain

ATX) = PMX+2T5+T*+T;
ATX) = -2TX+2T3=-2T*X-T);
ATX) = 3X2-3T*=3X-T)X+T);
f(TX) = 2TX+T+1;
2T + T2+ T)O(T
arx = Do,
P(T)
©H(TX) = T°-T*-T+1,
B(TX) = T+DX+T3+1;
T3+T-2
g.(TX) = ——.
84(T.X) T
‘We denote
FNT,X) = (2T° + T2+ T)Q(T) (after multiplication of g, by P(T)%);
FNTX) = T3-T2-T+1;
~3(1)(T,X) = T*+ T? - 2T (after multiplication of g, by 4T?);
FNTX) = P(X+2T5 +T2+T,;
ANTX) = 217X +2T3 = -2T*(X - T);
ANTX) = 2TX+T+1;
6
ANTX) = (T+DX+T3+1;
7
FNTX) = 3X2-3T?2=3(X-T)X +T);

Computing the remainders from the corresponding euclidean divisions (NB:
there is no computation with the first polynomials which are of degree 0 in X),
we obtain



ANTX) = QT +T?+T)QT);

Arxy = TP-T*-T+1;

Arx)y = T*+T1?-2T;

ATX) = PMX+2T5+T?+T;
Arx) = 27X +27% = -2T*(X - T);
ANTX) = 2TX+T+1;

Arx) = T+DX+T+1;

FYTX) = 6X;
3(I° +T? +T)* - 3T*P(T)*

grx = ik :

g(sl)(T,X) = (0 — delete such a trivial equation (see Bochnak-Coste-Roy);
gg”(T,X) _ —-127% - i;i - 6T - 3;

(1) 376 —3T% 4T3 -3T%*+ 1

ghax) = Y ,

ax) = =T

2

Once we obtain a polynomial which do not depend on X, it is not used anymore
for computations. So from now on we do not write such polynomials. But one
may have in mind that they intervene in general for the computations of the
corresponding sign matrices.

FOTX) = P(DX+2T5+T2+T;

ATX) = —2T2X +2T% = -2T*(X - T);
FOTX) = 2TX+T+1;
FATX) = (T+DX+T3+1;

f2ax) = 6x;

Then, computing the remainders from the corresponding euclidean divisions, we
obtain

FOTX) = P(DX+2T5+T2+T;
(T X) = —2T2X+2T3 = -2T*(X - T);
FOTX) = 2TX+T+1;
PTX) = (T+DX+T?+1;
f2yax) = 6 o
—12T5 = 6T% - 6T
2Tx) = 61"~ 6T
P(T)
gATX) = 6T;
i 3T -3
X =
—67% -6
~(2)
TX) = 2 ~°.
g4 ( ’ ) T + 1 )

(There is no Euclidean division with ( fs(z))’ since it does not depend on X any-
more).



It remains

FTX) = P(HX+2T°+T*+T;
F(T,X) —2T2X + 273 = 2TX(X - T);
FTX) = 2TX+T+1;
X)) = T+DX+T3+1;

which give
fOTx) = PMX+2T5+T>+T;
FT,X) —2T2X +27% = -2T*(X - T);
FTX) = 2TX+T+1;
FNTX) = (T+DX+T?+1.

We need 3 steps more to eliminate completely X Thus we reduced the problem
to computing the sign matrix of polynomials fj@(T), j=1,...,23.

(e) For fi, as we computed before, the discriminant is A; = (T + 1)? — 4T =
T? +2T +1—4T = (T - 1)*> > 0 and the 2 X-roots are given by the formulas

X2 ¢ {—(T +1)x (T -1 2

XO® ¢ 2y,
5T IR e{-1.—1

4
For f,, the disciminant is D = AT® + E(—27T6) = 0. So f, has two real roots

given by X;,X, € {-2T,T}. Now we consider the different cases when evaluating
att € R:

if £ = 0, then £1(0,X) = X + 1 and £>(0,X) = X3 which have sign matrix

X b -1 I, 0 b
. 10 1 1 1) .
Signg(f1./2) = ( 1 -1 -1 0 1 )

-1
— if t < —1 then we have t < —1 < - < =2t. So fi(¢,X) and f»(¢,X) have

sign matrix
. =1

X f() t il -1 I T i3 -2t i3
. -1 -1 -1 0 1 0 -1 -1 -1} -
Signg(f1./2) = (—1 0 -1 -1 -1 -1 -1 0 1 )

— if t = —1 (case where fi(—1,X) and f>,(—1,X) have as common root —1),
then 1(0,X) = = X>+ 1= (1 - X)(1 + X) and £>(0,X) = X> — 3X — 2 have
sign matrix

X io -1 il 1 iz 2 73
. -1 0 1 0 -1 -1 -1}) .
Signg(f1./2) = ( -1 0 -1 -1 -1 0 1 )

1 -1
—-if-1<t< ——2, then -1 <t < - < =2t. So fi(t,X) and f>(¢,X) have

sign matrix
-1

X Iy -1 L t b T I~3 -2t I~3
: -1 0 -1 -1 1 0 -1 -1 -1}) -
Signg(/1.f2) = (—1 -1 -1 0 -1 -1 -1 0 1 )



1
ift = —7, then f1(z,X) and f>(¢,X) have V2 as a common root. So they
2
have matrix sign
X io -1 il t iz \/E i3
. -1 0 1 1 1 0 -1
Signg(f1./2) = ( -1 -1 -1 0 -1 0 1 )
1 -1
if —7 <t<0,then-1<t<-2t< - So fi(t,X) and f>(¢,X) have sign
2

matrix

S
X Iy -1 L t L2t Iz e L
’ -1 0 1 1 1 1 1 0 -1 ’
Signg(f1,/2) = ( -1 -1 -1 0 -1 0 1 1 1 )

1 -1
if0<t< E,then - < —1 < =2t < t. Then we have

X Iy T il -1 I~2 -2t I~3 t I~3
. 1 0 -1 0 1 1 1 11
Signg(fi.f2) = (—1 -1 -1 -1 -1 010 1)
1
ift = 7 then f1(¢,X) and f>(¢,X) have —1 as a common root. So they have
matrix sign
- - 1 .
X Iy -2 I -1 Db 5 I
. 1 0 -1 0 1 11 :
Signg(fi.f2) = (—1 “1 -1 0 -1 0 1)'
1 1 -1
if - <t < —,then — < -2t < —1 < t. Then we have
2 \2 t
X Iy — I~1 -2t I~2—1 i3 t I~3
. 1 0 -1 -1 -1 0 1 1 1
Signg(fi.f2) = (—1 1 -1 0 1 1 10 1)

1
ift = —2 we have — V2 common root of fi, f>. So we have

X io—\/zﬂ—liz

. 1 0 -1 0 1
SlgnR(fl’fZ) = ( _1 O 1 1 1

L

)

o ~&l-

1 -1
if — <t <1, then -2t < — < —1 < t. Then we have
V2 t

- - -1 . = =

x Iy =20 I — b 1Lt
. 1 1 1.0 -1 01 1 1 :
Signg(f1./2) = ( -1 011 1 1101 )



— if t = 1 (particular case where f;(1,X) has only one double root xo = —1)
then £1(0,X) = X2 +2X+1 = (X + 1)? and £(0,X) = X> —3X + 2 have sign
matrix

X i() -2 i1—1i21i3
. 1 1.1 0 1 1 1 .
SlgnR(fl,fz) - ( _1 0 1 1 1 0 1 )

-1
—if1 <t ,then -2t < -1< - < t. Then we have

- - = =1 = =
X Iy =2t I —11 T Lt I

. 1 1.1.0 -1 0 1 1 1
Signg(fi,/2) = ( -1 01 1 1 11 0 1 )

(f) For any real closed field R and any ¢ € R, the semi-algebraic system
o { ftX) = tX>+@¢+DX+1 » 0
HAX) = X3 +3°2X+28 > 0.
can be written
o { Sign(/i(t.X)) = e(l)
Sign(f2(2,X)) €(2).
where €(1),e(2) € {—1,0,1}. Thus, the solutions of the system (/) are the x € R

for which
(1)
()
is a column of any of the sign matrices computed in the preceding question.

But the computation of these matrices just rely on finitely many equalities and
inequalities for ¢, i.e. on a semi-algebraic system for 7.



