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Ubungen zur Vorlesung Reelle algebraische Geometrie

Blatt 5 - Solution

1. (a) The intervals cover K: for any x € K, x €]x — L,x + 1[.
For finite intersection of intervals, it suffices to consider 2 of them. Verify the
case if one of them is the empty set. If not, denote them by ]a,b[ and ]c,d[ with
a < band c < din K and for instance b — a > d — ¢, and consider the 4 different
cases and compute the intersection (make a picture).

(b) (i) Consider a point (a,b) € K x K, we use the definition of continuity at
this point. Take any € > 0 in K. Then, for any (x,y) €la — €/2,a + €/2[x]b —
€/2,b + €/2[, we have x +y €la + b — €,a + b + €[. For multiplication, consi-

der 0 < a < min{\/g,ﬁ} and 0 < 8 < min{\/g,ﬁ}. Then for any

(x,y) €la—a,a+a[X]b—-B,b+ B[, we have x.y € la.b — €,a.b + €[ (for the compu-
tations, use inequalities with absolute values so that you don’t need to consider
the different cases).

(ii) Consider @ € K* and any € > 0 in K. We look for some a > 0 such that,

1 1
whenever x €]la| — a,|a| + o[, we have — €] — — €,—¢€].
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Then it remains to show that this condition is sufficient (note that

lal®

1 a since 0 < 1 — €lal < 1 + €lal). We suppposed without loss of generality
— €|d

that e < —.
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(c) We know that the connected subsets of R are exactly the intervals. Then so it

is by isomorphism for K.



Now take any a € K and consider its connected component C,. As a connected
subset of K, C, is a non empty (it contains @) interval. Moreover, since any inter-
val in K is connected, then any interval Ja — x,a + x[ for a positive x is included
in C, since it contains a. Then make x tends to oo.

(d) It suffices to show that the base for the product topology, namely the hyper-
cubes
[T%,]a;.bil for any a;,b; € K,
is equivalent to the base for the euclidean topology, namely the open balls
B((ay,...,an),r) = {(x1,...,x,) € K" | \/(xl —a;)?+ -+ (x, —a,)? < r}for
any a;,r € K with r > 0.

Thus, one has to show that, for any such hypercube, there exist a ball contained

L. a; + by a, + by b,'—(l,'
t (tak yeeey
in it (take 2 2

) as a center and min;{ } as a radius) and a

. b; — a;
ball containing it (take the same center and max;{———

} as a radius).

. By the change of variable X = x — ¢, we reduce to the case of a polynomial
F(x) = apX" + -+ + a,—,,X™ which has 0 as a root with multiplicity m. We
want to show that there exists § > 0 in R such that for any X with |X| < 4,
Sign(F(X)F'(x)) = Sign(X).

We rewrite F(X) = X"G(X) with G(X) = aoX"™"™ + --- + a,_,, and G(0) =
an_m # 0. Then we have XF'(X) = mX"G(X) + X"XG'(X) = and G'(X) =
(n —m)agX"™™ ' + .- + a,_ns1. Then we have

XF'(X) G'(X)
=m+ .
F(X) G(X)
G'(X) G'(0) An—m+1
But the second term X has value 0 =0 = 0 when X = 0.
’ G(X) G(0) An-m
By continuity of X X’ there exists 0 > 0 such that for any |X| < J, we have
G'X XF'(X
(X (X < m. Then for any such X, we have (X) > 0.
G(X) F(X)

. Consider f(x) = x> + 6x> — 16 in R[x].

(a) The Sturm sequence of f(x)is S r(x) = (fo(x),...,f3(x)) with:

fox) = fx);
i)y = 3x2+12x;
Hx) = 8x+16;
frx) = 12,
(b) We have

Vi(-00) = Var((-1)3,(-1)?3,(-1)'8,12)

= Var(-1,3,-18,12)
3

Vi(+o0) = Var(1,3,18,12)

= 0.



So the number of roots of f(x) in Ris Vy(—00) — V¢(+00) = 3.

(c) We compute S ;(=7) = (-65,63, — 40,12) which has 3 sign changes, and
S 7(2) = (16,36,32,12) which has no sign change. Then there are 3 — 0 = 3 roots
between —7 and 2.

We compute § ;(—6) = (—16,36,—32,12) which has 3 sign changes, and § ((-5) =
(9,15, — 24,12) which has 2 sign changes. So there is 3 — 2 = 1 root, say a;
between -6 and -5.

We compute f(-2) =0, so @y = -2.

We compute S ¢(1) = (=9,15,24,12) which has 1 sign change. Since S ((2) has
no sign change, the third root @3 is between 1 and 2.

. We consider Q embedded in R by the inclusion map, say ¢ : Q — R. Then we
consider the algebraic extension Q( V2) of Q, which is a quadratic extension: the
minimum polynomial is f(x) = x> =2 = (x + V2)(x = V2). Then by Corollary
6 of the Lecture, the number of embedding extensions  : Q(V2) — R is equal
to the number of extensions Q of the ordering P = Q5. Here we have only two
possibilities:

ecither V2eQ & Ww( V2) = V2 > 0 in R (in this case, Y is the inclusion as ¢);
eor—V2e Qe y(V2) = -—V2 < 0inR (in this case, ¢ is order reversing for
— V2: it looks like conjugation for complex numbers).

. We consider a series 1 + Z a;X'. We show that 1 + Z aX = 1+ Z Ia,-X")2 for
i=1 i=1 i=1
some b; € R. Indeed,

(1 +Z biX')? = 142b1 X+(2by+b1)X*+2(b3+b15)) X> +(2by +2b1 b3 +b3) X+ - -,
i=1

and so, by induction, one proves that for any n € N*, 2b, = a, + P,(a,-1, . ...a;)

for some quadratic polynomial P, in R[X].

As an example, we compute by = a;/2, by = (a, — a%/4)/2, bz =a3/2 —ai(ax —

af /4)/4.

As a consequence, for any ordering on K extending the one on the reals, we have

o+ X +eX?=co(l + Z a:X") > 0if and only if co > 0. It implies that X
i=1
is infinitesimal compared to the reals. Then the two orderings extending the one
on R are given by either R,o > X > 0orR < X < 0.
(One can verify this looking at an arbitrary non zero Laurent series
cX) = o X"+ o X7 4
Factorizing by c_,, X", we rewrite it
cX) = XA+ a1 X +aX?+ ) witha; := copai/Com
X (1 + Z biX)2)
i=1



