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Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 14 - Lösung

1. Consider a system of valued R-vector spaces S = [Q,{B(q); q ∈ Q}] with B(q) '
R for any q ∈ Q, the corresponding Hahn sum

∐
γ∈Γ

B(γ) and an automorphism

σ : Q→ Q of the ordered set (Q, ≤).
We consider the map

σ̃ :
∐
γ∈Γ

B(γ)→
∐
γ∈Γ

B(γ)

such that σ̃(s)(q) := s(σ(q)) for any s ∈
∐
γ∈Γ

B(γ) and any q ∈ Q.

Given any s1,s2 ∈
∐
γ∈Γ

B(γ), and r1,r2 ∈ R, then for any q ∈ Q, we have:

σ̃(r1s1 + r2s2)(q) := (r1s1 + r2s2)(σ(q))
= r1s1(σ(q)) + r2s2(σ(q))
= r1σ̃(s1)(q) + r2σ̃(s2)(q).

Moreover, the following map is the functional inverse σ̃−1 of σ̃:

σ̃−1 :
∐
γ∈Γ

B(γ)→
∐
γ∈Γ

B(γ)

such that σ̃−1(s)(q) := s(σ−1(q)) for any s ∈
∐
γ∈Γ

B(γ) and any q ∈ Q, where σ−1

is the functional inverse of the automorphism σ. Thus σ̃ is bijective.
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Consider s ∈
∐
γ∈Γ

B(γ). We have

v(σ̃(s)) = min{support σ̃(s)}
= min{q ∈ Q | σ̃(s)(q) , 0}
= σmin{q ∈ Q | s(σ(q)) , 0}
= min{σ−1(q′) ∈ Q | s(q′) , 0}
= σ−1(min{support s})
= σ−1(v(s))

Since σ−1 : Q → Q is an automorphism of the ordered set Q, we get that σ̃ is
value preserving and therefore is an automorphism of valued vector spaces.

2. Definition 0.1 Let (G, + , ≤) be an ordered abelian group. A subgroup C ⊂ G is
said to be convex if for any c1,c2 ∈ C and for any x ∈ G such that c1 ≤ x ≤ c2,
then x ∈ C.

(a) Let (G, + , ≤) be an ordered abelian group, and C1, C2 be two convex sub-
groups. Suppose for instance that there exists c1 ∈ C1 \ C2. Since C2 is convex,
then either c1 < C2 or C2 < c1. Since G is an ordered abelian group, it implies
that c1 < C2 < −c1 or respectively −c1 < C2 < c1. But since C1 is convex, for
any c2 ∈ C2, the inequalities −c1 < c2 < c1 imply that c2 ∈ C1. Thus C2 ⊆ C1.
The group G itself as well as the trivial group {0} are clearly convex subgroups
of G.
Consider two convex subgroups C1, C2 of G. We know that either C1 ⊆ C2, or
C2 ⊆ C1. Suppose for instance that C2 ⊆ C1. Then C1∩C2 = C2 and C1∪C2 = C1
which are convex subgroups of G.

(b) Given a convex subgroup C of an ordered abelian group (G,+ , ≤), we define
on the group (G/C,+) a relation ≤ by

for any x,y ∈ G, x ≤ y⇒ x + C ≤ y + C.
The fact that (G/C,+) is an abelian group follows directly from the fact that the
relation

∀x,y ∈ G, x ∼C y⇔ x − y ∈ C
is a congruence relation, i.e. an equivalence relation compatible with the addition
(if x1 ∼C x2 and y1 ∼C y2, then x1 + x2 ∼C y1 + y2).

We notice that x + C ≤ y + C implies that either x + C = y + C ⇔ x − y ∈ C,
or x + c1 < y + c2 for any c1,c2 ∈ C. The fact that (G/C, ≤) is an ordered set
follows directly from the definition of the ordering and the fact that (G, ≤) is
totally ordered (check the axioms of reflexivity, anti-symmetry and transitivity).

Concerning the fact that (G/C, ≤) is a totally ordered set, consider x + C and
y +C in G/C. Then either x− y ∈ C which implies that x +C = y +C, or we have
x + c1 < y + c2 or x + c1 > y + c2 for any c1,c2 ∈ C (since C is convex). In these
last 2 cases, we have x < y or respectively x > y (since 0 ∈ C as a subgroup of
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G) which implies that x + C < y + C, respectively x + C > y + C.

To show that (G/C,+ , ≤) is an ordered abelian group, take any x+C ≤ y+C and
z + C in G/C. Then x + C ≤ y + C implies that either x + C = y + C ⇔ x− y ∈ C,
or x < y. So we have either (x + z) + C = (y + z) + C, or x + z < y + z in G. But
this last inequality implies that (x + z) + C ≤ (y + z) + C in G/C.

Definition 0.2 Given two ordered groups (G1, ≤) and (G2, ≤), and a group mor-
phism h : (G1, ≤) → (G2, ≤), we say that h is an order preserving morphism if
for any x,y ∈ G1, x ≤ y⇒ h(x) ≤ h(y).

(c) The canonical projection Π : G → G/C is a group morphism. Now, take
x ≤ y in G. This implies by definition of the ordering on G/C that Π(x) =

x + C ≤ y + C = Π(y) in G/C. The canonical projection is order preserving.

3. Definition 0.3 • A sequence s := (aρ)ρ∈Λ (Λ being a well-ordered set) in a va-
lued vector space (V,v) is said to be pseudo-Cauchy if for any ρ < σ < τ, we
have v(aσ − aρ) < v(aτ − aσ).
• For any ρ ∈ Λ, we define γρ := v(aρ+1 − aρ). Then the sequence (γρ)ρ∈Λ is
strictly increasing in Γ.
• If there exists ρ0 ∈ Λ such that for any ρ ≥ ρ0, v(aρ) = v(aρ0 ), then we define
this value to be the ultimate value of s: Ult(s) := v(aρ0 ).
• An element x ∈ V is said to be a pseudo-limit of a pseudo-Cauchy sequence
s := (aρ)ρ∈Λ if v(x − aρ) = γρ for any ρ ∈ Λ.
• The breadth of a pseudo-Cauchy sequence s := (aρ)ρ∈Λ is by definition Br(s) :=
{y ∈ V | v(y) > γρ ∀ρ}.

Consider the ordered set Γ = N.N which has order type ω2 (i.e. the set N × N
endowed with the lexicographic order: see ÜA Blatt 13). Consider the system of
ordered Q-vector spaces S := [Γ,{B(γ); γ ∈ Γ}) where B(γ) = R for any γ, and
the corresponding Hahn sum M :=

∐
γ∈Γ

B(γ) and Hahn product N := Hγ∈ΓB(γ)

endowed as usual with the valuation v := vmin.
We define the following sequences in M:
• s(1) := (a(1)

n )n∈N∗

where for any (k,l) ∈ Γ, a(1)
n (k,l) :=

∣∣∣∣∣∣ lk if k ≤ n, l ≤ n
0 if not

• s(2) := (a(2)
n )n∈N∗

where for any (k,l) ∈ Γ, a(2)
n (k,l) :=

∣∣∣∣∣∣ nk if k ≤ n, l = n
0 if not

• s(3) := (a(3)
n )n∈N∗

where for any (k,l) ∈ Γ, a(3)
n (k,l) :=

∣∣∣∣∣∣ nn if k = l = n
0 if not
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(a) For any p < q ∈ N∗, we have
for any (k,l) ∈ Γ, a(1)

q (k,l) − a(1)
p (k,l) =∣∣∣∣∣∣ lk if (k ≤ p and p + 1 ≤ l ≤ q) or (p + 1 ≤ k ≤ q and l ≤ q)

0 if not.
So, for any n < p < q ∈ N∗, we compute

v(a(1)
p − a(1)

n ) = (1,n + 1) < (1,p + 1) = v(a(1)
q − a(1)

p ).
The sequence s(1) is pseudo-Cauchy.
Moreover, we have γ(1)

n = (1,n + 1).

For any p < q ∈ N∗, we have

for any (k,l) ∈ Γ, a(3)
q (k,l) − a(3)

p (k,l) =

∣∣∣∣∣∣∣∣
−pk if k ≤ p and l = p
qk if k ≤ q and l = q
0 if not.

So, for any n < p < q ∈ N∗, we compute
v(a(2)

p − a(2)
n ) = (1,n) < (1,p) = v(a(2)

q − a(2)
p ).

The sequence s(2) is pseudo-Cauchy.
Moreover, we have γ(2)

n = (1,n).

For any p < q ∈ N∗, we have

for any (k,l) ∈ Γ, a(3)
q (k,l) − a(3)

p (k,l) =

∣∣∣∣∣∣∣∣
−pp si k = l = p
qq si k = l = q
0 sinon.

So, for any n < p < q ∈ N∗, we compute
v(a(3)

p − a(3)
n ) = (n,n) < (p,p) = v(a(3)

q − a(3)
p ).

The sequence s(3) is pseudo-Cauchy.
Moreover, we have γ(1)

n = (n,n).

(b) The value Ult(s(i)) is only defined in the case i = 1, and we have Ult(s(1)) =

v(a(1)
1 ) = (1,1).

We also have in M:
• BrM(s(1)) =

∐
γ∈N∗.N(Γ

B(γ)

• BrM(s(2)) =
∐

γ∈N∗.N(Γ

B(γ)

• BrM(s(3)) = {0}.
and in N:

• BrN(s(1)) = Hγ∈N∗.N(ΓB(γ)
• BrN(s(2)) = Hγ∈N∗.N(ΓB(γ)
• BrN(s(3)) = {0}.

(c) Given a pseudo-Cauchy sequence s := (aρ)ρ∈Λ and two pseudo-limits x and
y, we have x − y ∈ Br(s). So, in order to obtain all the pseudo-limits of a given
pseudo-Cauchy sequence, it suffices to know one particular pseudo-limit x0 and
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the breadth Br(s) of the sequence.

For the sequence s(1), a pseudo-limit x(1)
0 has to contain (1,n) for all n ∈ N in its

support (otherwise we would not have v(x(1)
0 − a(1)

n ) = γn = (1,n + 1)). Thus it
cannot be an element of M. So the set of pseudo-limits of s(1) in M is empty.
A pseudo-limit in N is given for instance by

x(1)
0 (k,l) :=

∣∣∣∣∣∣ l if k = 1, l ∈ N
0 if not

Thus the set of all pseudo-limits of s(1) in N is given by
x(1) + BrN(s(1)) = x(1) + Hγ∈N∗.N(ΓB(γ).

For the sequence s(2), since v(a(2)
n ) = (1,n) is strictly increasing as n increases,

x(2)
0 = 0 is a pseudo-limit of s(2) in M as well as in N. So the set of pseudo-limits

in M is
x(2)

0 + BrM(s(2)) =
∐

γ∈N∗.N(Γ

B(γ).

The set of pseudo-limits in N is
x(2)

0 + BrN(s(2)) = Hγ∈N∗.N(ΓB(γ).

For the sequence s(3), since v(a(3)
n ) = (n,n) is strictly increasing as n increases,

x(3)
0 = 0 is a pseudo-limit of s(3) in M as well as in N. So the set of pseudo-limits

in M as well as in N is
x(3)

0 + BrM(s(3)) = {0} = x(3)
0 + BrN(s(3)).
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