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Blatt 13 - Solution

1. Definition 0.1 Let (M,v) be a valued (=bewerte) module and I' = v(M \ {0})
its value set. Fiir any y € I, we define M” := {x € M | v(x) > y}, M, := {x €
M | v(x) > v} which are submodules of M, and B(M,y) :== M? /M, which is also
a module.

The system of modules S(M) = [T {B(M,y), v € T'}] is called the skeleton of
(M,v).

The aim of this exercise is to prove the following lemma:

Lemma 0.2 The skeleton is an isomorphism invariant, i.e. if two valued modules
(My,v1), (M>,v2) are isomorphic, then so are the corresponding two skeletons

S(My), S (My).

(a) Let h : (My,v)) = (M3,v5) be an isomorphism of valued modules, and I'; :=
vi(M; \ {0}) and I, := vp(M; \ {0}) the corresponding value sets. Consider the
map

h:T - Iy, h(vi(%) = va(h(x)).
Take x,y € My, with vi(x) < v{(y). Since % is an isomorphism of valued modules,
this implies that v,(h(x)) < va(h(y)), so h(vi(x)) < h(vi(y)). Thus, & is order
preserving, which implies that it is injective.
Now, consider v,(z) € I'». Since / is an isomorphism of valued modules, there
exists a unique x = h~!(z) € I'y, such that 2~ (v2(z2)) := vi(x). So & is surjective,
and therefore is an isomorphism of ordered sets.
Note that by definition % preserves the valuation (ist bewertungserhaltend).

(b) For any y € ', we define
hy: BMiy) — B(Mah(y))
I (y,x) - T (h(y),h(x)).



Consider x € My, so that IM'(y,x) = x + M] € B(M,,y). Thus vi(x) >

This implies by the preceding question that vz(h(x)) > h(y) So we can deﬁne
uniquely A4, (x) as h(x) + My = M (h(y),h(x)) € B(Mz,h(y)). The map #h, is
therefore well-defined.

Moreover, take any z € M, so that z + My, = II*2(h(y).2) € B(Ma,h(y)).
Since v(z) > 71(7) we have v (h™! (z)) > v. Then we define uniquely the inverse
' of hy as by (T2 (h(y),2)) := h™'(2) + M} = I (y,h™" (x)) € B(M,.y). Thus
h is bljectlve

Now consider a,b € Z (suppose for simplicity Z is a ring and M, M, are Z-
modules) and x,y € M with v;(x) > y and v{(y) > y. So ax + by € M, with
vi(ax + by) > y (ultrametric triangular inequality). We have

Iy (@l (y,x) + bITM1 (y,y)) hy (I (y,ax + by))

= I™(y,x)(h(y).h(ax + by))

= I (0(().ah(x) + bh(y)

= all™ (y,0)(h(y),h(x)) + BIT*> (y,x)(h(y).h(y))
= ahy (" (y,x)) + bhy, (TT"1 (y.y)).

For any y € I'y, the map A, is an 1somorphlsm of modules.

. Definition 0.3 Consider a system of torsion free modules S = [I',{B(y);y € I'}],
and denote by 1_[ B(y) the corresponding product module. Denote by @ B(y)
yel yell
the submodule of maps s € l_[ B(y) with finite support, and U B(y) the Hahn
yell yell
sum of S, i.e. the valued module (@ B(Y),Vmin) Where vmin(s) := min(support s)
yell
for all s € €5 B(y) \ {0}
yel
Denote by H ,erB(y) the Hahn product of S, i.e. the submodule of maps s €
l_[ B(y) with well-ordered support, also equipped with the valuation vyy,.
yell

(a) Let Z be the coefficient ring of the modules B(y). Check that the Hahn sum
and the Hahn product equipped with vy, are valued Z-modules. We sketch the
case of the Hahn product. Firstly, note that the linear combination of two maps
s1 and s, in l_[ B(y) with well-ordered supports, has itself well-ordered support

yell
(indeed, the support of the linear combination is included into the union of the

supports of s; and s5). So HyerB(y) is a module. Secondly, show that vy, is a
valuation, checking the definition of a valuation:

e v(s) = oo if and only if s = 0: indeed, whenever s # 0, it has a non empty
well-ordered support which has a minimum, and therefore vy, (s) # oo;

e v(rs) = v(s) for any r € Z \ {0}: the multiplication by a scalar does not change
the minimum of the support;



e by definition v(s;—s,) = min(support s;—s,). But support s;—s, C support s;U
support s,. So min{support s; — s} > min{min(support s;), min(support s} =
min{vmin(sl )7Vmin(52)}~

For the Hahn sum note that, since the linear combination of two maps s; and s
in 1_[ B(y) with finite supports, has itself finite support, the Hahn sum is a valued

yell
submodule of the Hahn product.

(b) Denote M := U B(y)and N := H,/erB(y). Clearly, we have v, (M \ {0}) =

yell
Vmin(N \ {0}) =T.
Moreover:
M? = {s e M such that min(support s) > v}
= {se M such that s € ]_[ B©)):
o>y
M, = {s € M such that min(support s) > y}
= {se M such that s € U B(©)}:
o>y
N” = {s € N such that min(support s) > y}
= {s € M such that s € H,B(6)};
N, = {s € N such that min(support s) > y}
{

s € M such that s € Hy., B(6)}.
So B(M,y) = {s+ M, ; s € M} and B(N,y) = {s + N, ; s € N} which are
canonically isomorphic to B(y) as modules.

. Definition 0.4 Let (T, <) be a totally ordered set. We say that T is well-ordered
if any non empty subset A C T has a least element.

Given a well-ordered set (I', <), its order type ot(I) is defined to be a fixed re-
presentative of its equivalence class by ordered set isomorphism, and is called
an ordinal number. In particular, the order type of the set of natural numbers is
denoted by ot(N) := w. It is the smallest infinite ordinal number.

(a) Given 2 ordered sets (A, <) and (B, <), one defines the sum of ordered sets:
(A, <4) +(B,<p) = A+ B:= (AU B, <;) (LU = disjoint union) such that for any
either (cj,co € Aand c; <4 ¢7)
ci,co €AUB,c1 <40 @{ or(ci€A,coeBandc; <4 ) .
or (c1,¢2 € Band ¢; <p ¢3).
Consider a nonempty subset C C A + B. Asaset, C = (C NA) U (C N B) with at
least one of the two C4 = C N A and Cp = C N B which is nonempty. Whenever
it is nonempty, as a subset of a well-ordered set Cy4, respectively Cp, has a least
element, say cu, respectively cg. Then, whenever B, respectively A, is empty,
ca, respectively cp, is the least element of C itself. If A and B are nonempty, we
have c4 < B by definition of the ordering on A+ B. So ¢4 is the least element of C.

(b) Suppose that A and B are well-ordered sets. Denote @ := 0t(A) and 8 := ot(B).



One defines the sum of ordinals as

a+p:=o0t(A+B).
Given any other well-ordered sets A’ and B’ with 0#(A”) = @ and ot(B’) = 3, we
just have to show that ot(A” + B’) = a + 3, i.e. A’ + B’ is order isomorphic to
A + B. Consider some isomorphisms of ordered sets ¢ : A —» A’ and ¢ : B — B'.
We define the map ® : A + B — A’ + B’ such that for any c € A + B, if ¢ € A,
D(c) :=¢(c) € A’,and if ¢ € B, D(c) := Y(c) € B'. Then it is easy to show that ®
is an isomorphism of ordered sets.
Concerning the non commutativity, we consider 1 + w and w + 1. We have
ot(1 + w) = w which has no greatest element, whereas the 1 on the right side
is the greatest element of w + 1: the two sets 1 + w and w + 1 cannot be order
isomorphic.

1 n
(c) Define for any k,l € N*, a3 := k — 7 Then the set Q,, := U U{ak’l} endo-
k=1 IeN*
wed with the retriction of the ordering on Q, is a totally ordered set with order

type w.n.

(d) Given 2 ordered sets (A, <4) and (B, <), one defines the product of ordered
sets:

(B, <p).(A, <4) = B.A := (A X B, <j¢x) such that <. is the lexicographic
ordering, i.e. for any (a;,b),(a2,b;) € A X B,
ap <a az

(a1,b1) <iex (a2,2) & ora, =a,and by <g b, °

Consider a nonempty subset C C B.A. Then it can be written as C = U {a} x
acCy

C,p, With® # C4 c A and forany a € Cy, 0 # C, 5 C B. As nonempty subsets
of well-ordered sets, C4 has a least element ac, and C,,. g has a least element b¢.
Then (ac,bc) is the least element of B.A.

(e) Suppose that A and B are well-ordered sets. Denote a := 0t(A) and 8 := 0#(B),
one defines the product of ordinals:
a.f = ot(A.B).

Given any other well-ordered sets A’ and B’ with 0t(A”) = « and ot(B’) = 3,
we just have to show that o#(B’.A”) = B.a, i.e. B'.A’ is order isomorphic to B.A.
Consider some isomorphisms of ordered sets ¢ : A - A’ and ¢ : B — B'.
We define the map ¥ : B.A — B’.A’ such that for any (a,b) € B.A, ¥Y(a,b) :=
(¢(a),y(b)) € B'.A’. Then ¥ is clearly bijective. Moreover, take any (a;,b;) >
(az,by) € B.A, then either a; > a, which would imply that ¢(a;) > ¢(ay) and so
Y(a,,by) > Y(az,by) € B'.A’, or a; = ap and b; > b, which would imply that
¢(ay) = ¢(ay) and ¥(by) > Y(by), and also Y(a;,by) > Y(az,by) € B’ .A’.

For the non commutativity, consider 2.w and w.2. Consider the set N x {0,1}
endowed with the lexicographic ordering. It is clearly order isomorphic to 2.w.
Then the map f : N x {0,1} — N such that f(n,€) := 2n + € (where € € {0,1}),



is an isomorphism of orderings. Thus ot(2.w) = w. But w.2 = w + w cannot be
order isomorphic to w (it contains w + 1 as an initial segment).

(f) Consider the map
f: N*xQ* - Q
1

(k,l) - k- 7 .

and we define by induction on n € N*,
for any n € N*, for any tuple (ky, ... ,k,) € [N = X(IN* \ {1)"2 x N*]

A(ky) = kl

Athyky) = f(kn,a(k,,..l.,k,,_,))
= k,—-—.
Aky,...knot)

Then for any n € N*, we define Q,, :
(K1 5eneskin ) €[N X AT\ {1})772XIN* ]

endowed with the ordering of Q is order isomorphic to w".



