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The goal of this lecture is to describe the real closure of a Hardy field.
In particular, we want to prove the following theorem:

Theorem 0.1. (Main Theorem)
The real closure of a Hardy field is again a Hardy field.

1. PRELIMINARIES

Notation 1.1.

o If f is a differentiable function from some half-line (a,c0) to C, we
will denote by d(f) the derivative of f.

o If k is a field and P € k[X], let P’ denote the derivative of P and
Z(P) the set of roots of P.

o F:={f:(a,00) > C|aecR}
e G:={f:(a,00) > R|aecR} CF.

e For f,g € F define
f~g:s JaeRVr >a: f(x) =g(x).

Then ~ is an equivalence relation on F. Denote by f the equivalence
class of f.

e Denote F := F/~ and G := G/ ~. Then F and G are rings with
operations defined by:

f+g=Ff+gand fg=fg.
e We say that f is differentiable if there exists a € R such that f is
differentiable on (a, 00), and in that case we define the derivative of

fasdo(f):=0a(f)



2 SALMA KUHLMANN

Definition 1.2.
(i) A Hardy field is a subring K of G which is a field and such that for

every f € K, f is differentiable and §(f) € K.

(4i) A complex Hardy field is a subring K of F which is a field and
such that for every f € K, f is differentiable and §(f) € K.

Definition 1.3. Let K be a Hardy field and P € K[X] of degree n, say
P=3%"_fnX™ If a €Rissuch that fi,...,f, are all defined and C!
on (a,00) and f,(x) # 0 for all z > a, we say that P is defined on (a, o).
Note that such an a always exists.

Notation 1.4. If P is defined on (a,00), then for any x > a we define
Py =31 fm(x)X™ € RIX].

Remark 1.5. Note that P, also has degree n and that (P,)" = (P’);, which
we will just denote by P.. Of course, the definition of P, depends on the
choice of representatives for fq,..., f,,. However, whenever a polynomial is
introduced, we will always assume we have fixed the representatives of its
coefficients, so that P, is well-defined.

Remark 1.6. Note that if g € F, then P(g) is the germ of the function
> fig', so P(g) = 0 if and only if there exists some a such that P,(g(z)) =0
for all x > a.

Recall 1.7. Let K be a field and P € K[X].

(i) P has only simple roots in its splitting field iff ged(P, P’) = 1 iff there
exist A, B € K[X] such that AP + BP' = 1.

(i7) If char(K) = 0 and P is irreducible, then ged(P, P’) = 1.

The keystone of the proof of the main theorem is a well-known theorem
from analysis, namely the implicit function theorem, which we recall
here.

Theorem 1.8. (IFT)

Let U CR™ V C R™ be open, u: U x V — R™ a C* function for some
ke N and (zo,y0) € U x V such that u(xo,yo) = 0 and det(%(wo,yo)) # 0.
Then there exists an open ball Uy containing xg, an open ball Vi containing
yo and a C* function ¢ : Uy — Vi such that for any (z,y) € Uy x Vj :

u(@,y) =0y = o(x).

We will actually need a particular form of the implicit function theorem,
namely:
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Theorem 1.9. (IFT’)
Let K be a Hardy field, P € K[X] defined on (a,00), xg > a and yo a
complex root of Py, which is not a root of P, . Then there exists an open

interval I containing xg, an open ball U containing yo and a C' function
¢ : I — U such that:

(x) Y(z,y) €IxU:P(y) =0 y=d()
Proof. Set
u:(a,0) x C— C, (z,y) = Pr(y).
Then v is C' on (a,00) x C. By assumption, we have u(zo, o) = 0 and
g—;(:co, Yo) = P, (yo) # 0, so we can apply the IFT to the function u at the
point (zg, o). O

2. PROOF OF THE MAIN THEOREM

Lemma 2.1. Let K be a Hardy field and P € K[X] defined on (a,
gcd(P, P') = 1, then there exists some b > a such that gcd(Py, PL) =
all x > b.

Proof. Since ged(P, P') = 1, there are A, B € K|[X| such that AP+ BP' = 1.
Now let b > a such that A, B are defined on (b,c0); for z > b we have
A, P, + ByP. =1, hence ged(P,, P,) = 1. O

) If
1 for

Lemma 2.2. Let K be a Hardy field, P € K[X| non-zero defined on (a, c0)
and f a continuous function from (a,o0) to C such that Py(f(z)) = 0 and
Pl(f(z)) #0 for all x > a. Then [ is differentiable on (a, o).

Proof. Let xg > a, yo := f(zo). By hypothesis, yo is a root of P,, but not of
Py, . Thus, we may apply IFT’, and obtain I, U and ¢ as in IFT’ such that
(*) holds.

Set J := I N f~YU). U is a neighborhood of yy and f is continuous, so
f~1(U) is a neighborhood of zg, so J is also a neighborhood of zg. Let
x € J; by assumption we have P,(f(x)) = 0 and (z, f(z)) € I x U, which
by () implies that f(x) = ¢(x).

Therefore f; = ¢, which, since ¢ is C', implies that f is differentiable
at xg. Since xg was chosen arbitrarily, we obtain that f is differentiable on
(a,0). O

Proposition 2.3. Let K be a Hardy field and f € F a continuous function

such that there exists P € K[X] non-zero such that P(f) = 0. Then the ring

K[f] is a complex Hardy field. If f happens to be in G, then K[f] is a Hardy
field.

Proof. Without loss of generality we can assume that P is irreducible. This

implies that K[f] is isomorphic to K[X]/(PK[X]), so it is a field. We now

have to show that every element of K[f] is differentiable and that K[f] is
stable under derivation. It is sufficient to show that f is differentiable and

that 6(f) € K[f].
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Since P(f) = 0, there exists some a € R such that P.(f(z)) = 0 for all
x > a. As P is irreducible and char(K) = 0, ged(P, P') = 1, so by Lemma
2.1 there exists some b > a such that ged(Py, P.) = 1 for all > b. Hence,
P, and P, have no root in common. Thus, P,(f(x)) =0 # P.L(f(x)) for any
x > b. Now apply Lemma 2.2 and obtain that f is differentiable on (b, c0).
Set P=> " _,GnX"™. Then

= §(q0) + Z GG +mg,, " 5(F))

= Q) +(HP'(f)

with Q € K[X], hence §(f) = Q<f) e K(f) = K[f). O

Lemma 2.4. Let K be a Hardy field, n € N and P € K[X] of degree n
defined on (a,0), such that P, has n distinct roots in C for all x > a.

For any pair (xo,y0) € (a,00) x C such that yg is a root of Py,, there exists
a O function ¢ : (a,00) — C such that yo = ¢(z0) and

Vo >a: Pp(p(x) =0 (1)

Proof. Let zg > a and Yo a complex root of P,,. Since P,, has simple roots,
Yo is not a root of P, , so we can apply IFT’ and we get an open interval I
containing g, an open ball U containing yo and a C! function ¢ : I — U
such that (%) is satisfied, which in particular implies that ¢(z¢) = yo and
P.(¢(z)) =0 for all x € I. Define £ to be the set

{(J,%) | I C J open interval, ¢p C'*-extension of ¢ to J satisfying (1) on J}.

Note that £ is non-empty since (I,¢) € €. We can partially order £ by
saying that (J,¢) < (J',x) if J C J’ and x extends 1.

Let (Jn,¥n)hen be a chain in €. Set J := |J,cp Jn and define ¢ on J by
Y(x) = Yp(z) if © € Jp; this is well-defined because vy, is an extension of ¥y
for any h,h’ € H such that Jy,s C J,. If x € J, then x € J, for some h € H,
and since (Jp, 1) € € we have Py (¢ (z)) = 0, hence P(¢(z)) = 0. Thus,
1 satisfies () on J, so (J,¢) € €. Moreover, we have (Jp,¥n) < (J,1) for
any h € H, so (J,%) is an upper bound of (Jp, ¥p)hen-

We just proved that any chain of £ has an upper bound. By Zorn’s lemma,
it follows that £ has a maximal element (., 1)

To conclude the proof, we have to show that J = (a,00). Set b := sup J.
Towards a contradiciton, assume that b # oo. By hypothesis, P, has n
distinct roots y1, ..., yn, none of which is a root of P]. We apply IFT’ at
each of the points (b,y1), ..., (b, yn), and we obtain open intervals Iy, ..., I,
containing b, open balls Uy, ..., U, containing yi,...,y, and C' functions
¢1: 0L = Uy, ¢n i Iy — Uy, such that for each m € {1,...,n}, for any
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(z,y) € Iy, X Upy, Pr(y) = 0 < y = ¢p(x). Since yi,...,y, are pairwise

distinct,we can choose the sets Uy,...,U, so small that they are pairwise
disjoint.

Let I' := () _y I,. For any x € I', we have ¢1(z) € Uy,...,¢n(x) € Up;
since Uy, ..., U, are pairwise disjoint, ¢1(x), ..., ¢n(x) are pairwise distinct.

By (*), each ¢,(x) is a root of Py; since P, has n roots, it follows that
Z(Py) = {on(2). .+ bu(2)} € Uy U

Let J' := I’ N J; note that J' is an interval. For any x € J', (1) implies
that () is a root of Py, hence () € U _; Up. Thus, ¥(J') C U, U,
Since 1) is continuous, ¥(J’) is connected. Since Uq,...,U, are pairwise
disjoint, this implies that there exists m € {1,...,n} such that ¢(J') C Up,.

Let x € J'; we have (z,9(x)) € I, x Uy, and Py(¢(x)) = 0. Since ¢,
satisfies (%) on I, X Uy, it follows that ¢ (z) = ¢, (x). This proves that

¢\J’ = ¢m|J"
- - if J
Define the function ¢ on J U I’ by ¢(z) := V() 1 re ;-
Om(z) ifzel

This definition makes sense because 1) and ¢, agree on I'. ! 1[1 is a strict
extension of 1. Since 1 and ¢,, are C', w is also C''. Since 1 satisfies (f) on
J and ¢, satisfies () on I’, it follows that ¢ satisfies (1) on J U I’, which
contradicts the maximality of (J,1). Thus, b = co (note that we could prove
the same way that inf J = a). O

Lemma 2.5. Let K be a Hardy field and P € K[X] of degree n such that
ged(P, P') = 1. Then there exists some a € R and n C* functions ¢1, ... ¢y, :
(a,00) = C such that Z(Py) = {¢1(x), ..., ¢n(x)} for each x > a.

Proof. By Lemma 2.1, there exists some ag € R such that ged(P, P,) = 1
for all x > ag, which means that P, has n distinct roots in C. Let a > ag,
and let y1,...,y, be the n distinct roots of P,. By the previous lemma, we
obtain n C! functions ¢1,..., ¢, : (ag,00) — C such that ¢,(a) = y, for
any m € {1,...,n}, and {¢1(x)...,¢n(z)} C Z(P,) for any x > a. To show
equality, we just have to show that ¢;(z) # ¢ (x) for any £ > a and any
m,l € {1,...,n}.

Now let m,l € {1...n} and E := [a,o0] N (¢ — ¢) 1({0}). Assume
E # &. By continuity of ¢,, and ¢;, E is a closed subset of R and has a
lower bound a, so it has a minimum b. Since ¢,,(a) # ¢i(a), b > a. Set
¢ = ¢m(b). cis aroot of Py, so we can apply IFT’ at the point (b, ¢) and
we get an open neighborhood I x U of (b, ¢) and a map ¢ : I — U satisfying
(*). Since U is a neighborhood of ¢, and since ¢ = ¢y, (b) = ¢y(b), ¢, (U)
and ¢,1(U) are neighborhoods of b, so

J =10 (a,00)N¢; (U)N ¢, (U)

is a neighborhood of b. Let « € J such that z < b; (z, ¢;(z)) and (z, pm(x))
both belong to I x U and we have Py(¢m(x)) = Py(¢i(x)) = 0; since ¢
satisfies () on I x U, this implies ¢;(x) = ¢(x) = ¢m(x), so x € E, which
contradicts the minimality of b. Thus, £ = &. O
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Proposition 2.6. Let k be a Hardy field,

K :={f €G| fcontinuous and IP € k[X] with P # 0 A P(f) = 0}
and

L:={f e F| fcontinuous and 3P € k[X] with P #0A P(f) =0}.

Then K is a Hardy field, L is a complex Hardy field, L is the algebraic closure
of k and K is the real closure of k.

Proof. Obviously, k C K C L. Now let f,g € K. By Proposition 2.3, k[f]
is a Hardy field. Since g is continuous and g is canceled by a polynomial in

E[f][X], we can once again use Proposition 2.3 and we obtain that k[f,g] is
a Hardy field, and since it is algebraic over k, it is contained in K. Since

k[f,q] is a Hardy field, we have

Ovlvf_

Q[

,0(f),0(g) € k[f, 9],

<

hence

07 17?_§7 gvé(f)vd(g) € K.

This proves that K is Hardy field. The same proof shows that L is a complex
Hardy field.

Now let us show that L is algebraically closed. Let P € k[x] irreducible
of degree n > 1. Since char(k) = 0, ged(P,P") = 1. By Lemma 2.5 there

exists some a € R and C! functions ¢1,...,¢, : (a,00) — C, such that for
any x > a, Z(Py) = {¢1(x),...,¢n(z)}. This means that ¢,,..., ¢, are n
distinct roots of P. Since ¢1, ..., ¢, are continuous functions from (a,) to

C and ¢y, ..., ¢, are canceled by P € k[X], we have ¢y,...¢, € L.

Thus, any polynomial with coefficients in k splits in L. Since L/k is an
algebraic extension, this proves that L is algebraically closed, and thus L
is the algebraic closure of k. Finally note that L = K(i). Since K(i) is
algebraically closed, K is real closed, and it is the real closure of k. O

Corollary 2.7. The real closure of a Hardy field is again a Hardy field.



