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PLAN OF THE TALK:
Part I: Historical. Hausdorff’s 1908 paper.

Part II: Introductory.

e Arithmetic operations: finite sums and products. General lexico-
graphic products and powers.

e Anti-lexicographic products. Proposition. Warning.
e Relation to Ordinal Arithmetic.

e Dependence on the chosen base points. Brief discussion. See [Gr]
for more.

e Examples.

Part III: Focus on Results of [HKM] and [K].

(a) 2-transitivity: when is Aut (Al) 2-transitive ?

e Hausdorft’s interest. Definitions and field example. 2-transitive
implies n-transitive.

e General Proposition. Hausdorff’s theorem proved in [W]. Converse
proved today.

e State main result of [HKM].

(b) Isomorphism Invariants: Does R' ~R" imply T ~T" 2

e State main result of [K]. State main result of [HKM]. Converse to
Hausdorff’s theorem [W].

e Two powerful tools: Cyy chains and Arithmetic Rules.

e Proofs and examples.

Part IV: Algebraic motivation and applications in
[K-K-S1], [K-K-S2] and [K-S].

(if time permits).



PART I.!

In [H1]?> Hausdorff:

e Introduces operations on chains: sums, products, lexicographic pro-
ducts, lexicographic exponentiation of chains.

e Develops the basic arithmetic of these operations.

e Generalizes Cantor’s ordinal arithmetic.

e Uses lexicographic chain constructions for constructing models with
given species and genera.

e Formulates the GCH and defines inaccessible cardinals.

He resumes this study in [H2] and investigates (among other problems):

e 2-transitivity of lexicographic products.

The theory offers a variety of open problems that I have been studying
in the last decade. Some have been solved, many are still open.

Kokokokskoskk

L Througout this talk, chain means totally ordered set.
2A translation into English of this paper appears as an appendix in [Gr].
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PART II

Arithmetic operations on chains.

Let I' and [ be chains.

The sum I' + " is the chain formed by concatenation, with I' < I".
e Note that our definition coincides with ordinal addition in case I'

and I are ordinals.

More generally, if {T';;i € I} is a collection of chains indexed by a
chain I, we define the sum ;7 ['; analogously.

We denote by I 1T the lexicographic product of I' and I. That
is, ' IT " is the chain obtained by ordering the Cartesian product I' x I
lexicographically from the left. Note that

o 'Ol ~ “yer I (see figure)
e if o and ( are ordinals then « I 3 is the ordinal product Sa (!)

Lexicographic exponentiation of chains:

Now let {A,; v € I'} be chains, with index chain I', and for each
v €T, fix a base point 0, € A, .
We define a chain in the Cartesian product I er A,: the lexico-
graphic product is the subset

H A, :={se Il A,; support(s) is wellordered},
vel vel

totally ordered lexicographically from the left (also known as “order by
first differences”). Here, support (s) := {y € I'; s(y) # 0,}.

If all A,’s are the same chain A, and all base points 0, are the same
element 0 € A, then H,cr A, is the lexicographic power AL
A .= {s:T — A; support (s) is wellordered}

= {s € II A; support(s) is wellordered}.
~vel



Dual Theory: Anti-lexicographic exponentiation of chains.
e In the literature, many authors prefer to work with the anti-lexicographic
ordering.
The anti-lexicographic power ' A is the set
A= {s:T — A; support(s) is anti-wellordered in '},

ordered anti-lexicographically from the right (also known as “ordered
by last differences”).

How to translate from lex to anti-lex 7

Let ['* denote ' with its order reversed. We note:
Proposition 1

Let I' be a chain, and A a chain with a base point 0. Then the anti-
lexicographic power TA coincides with the lexicographic power AL

e But note that in general Al ~ A" does not imply A~ A,
Example later.

Relation to Ordinal Arithmetic.

When « and 3 are ordinals, our lexicographic power o, with chosen
base point the least element 0 € «, is the ordinal .

That is, our anti-lexicographic power "o, with chosen base point the
least element 0 € «, is the ordinal o”.

e In order to recover Cantor’s notation, Hausdorff writes Al whenever
he actually works with the lexicographic power A"

e [t is important that here, the chosen base point is the least element
0 € a. For example, if « is the ordinal 2 = {0, 1}, then the lexico-
graphic power 27" if computed with base point 1 € {0,1} instead of
0, is the reverse of the ordinal 2°.



Dependence on the chosen base points.

The lexicographic chain Al depends in general on the choice of the
base point 0 of A.?> Below is a brief discussion of this issue.

A uniform way of defining lexicographic products:
In [H1] Hausdorff introduces lexicographic products as follows.

Given {A, ; v € I'} with index chain I', define a partial order on
the Cartesian product Il,cr A, by comparing two sequences s and
t lexicographically from the left just in case

dif(s, t) := {y € T'; s(v) # t(7)}

has a least element.

Now define an equivalence relation on the Cartesian product
Hryef A'Y:
s ~ t if dif(s, t) is wellordered.

e The equivalence classes are maximal chains in this partial order.

e Furthermore, if [s] denotes the equivalence class of s € Tyer A,
then each [s] is a lexicographic product defined by s, that is, with base
points 0, = s(y) € A, .

e Soift ~ sthen the lexicographic product with base points 0, = ¢(7)
coincides with the lexicographic product defined by s, and conversely.

FEach equivalence class is possibly a new chain ....

3In [Gr], a¥” is computed, for every possible choice of the base point!
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Cases where it does not matter:

e If I' is wellordered, then there is a single equivalence class, and the
lexicographic product of {A, ; v € I'} with index chain I' is uniquely
determined (independently from the chosen base points). It is just
yer A, totally ordered lexicographically.

o Ift L s, sandt may still define isomorphic lexicographic products.
This is the case, for example, if each of the A, ’s is a transitive chain.?

e In particular, if A is a totally ordered Abelian group, then the
lexicographic chain Al is uniquely determined, up to isomorphism,
independently of the chosen base point.

“for each v € T fix an automorphism ., of A, satisfying 7, (s(y)) = t(v); the m,’s induce the required
isomorphism in the obvious way. Moreover, this induced isomorphism maps base points to base points.

8



Examples.

e 7 is the order type of the irrationals.

o NV (with any base point) is the order type of the non-negative reals.
o 2N (with any base point) is the order type of Cantor’s ternary set.
e The underlying order of Hahn groups is a lexicographic product.

e The underlying order of a field of power series k((G)) (with coeffi-
cients in an ordered field £ and exponents in an ordered Abelian group
G) is the lexicographic power £“. Similarly for the rings of power series

k((G=")) and k((G7)).

e The underlying order of Conway’s “field of surreal numbers” No is
a lexicographic power.

Lexicographic orderings appear naturally in:
Descriptive Set Theory, Real Algebra, Valuation Theory, Grobner
Bases (monomial orders), ...

Kokokokkskk



PART 111

(a) 2-transitivity.

Let A be a chain containing more than 2 elements. A is 2-transitive
if given aq, as, by, by € A such that a; < by and as < by, there exists
an automorphism o of A such that o(a;) = as and o(by) = bs.

e Example: the underlying chain of a totally ordered field F'is always
2-transitive.’

e If A is 2-transitive then it is n-transitive for all natural numbers
n > 2 (defined analogously).

e In [H2| Hausdorff’s major interest in lexicographic powers is in their

2-transitivity:

when is Aut (AL) 2-transitive?

Proposition 2

A lexicographic power Al is 2-transitive if I' is transitive and A is
2-transitive.

5Given ay, as, b1, bz as above, define o(a) = (a — a1) Egj:gj; + as.
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However, this proposition does not cover the interesting cases, for
example, the case of an ordinal exponent or base.

Theorem [H2]|, [W]

Let o be an additive principal ordinal. Then R® is 2-transitive.

(o is additive principal® if it is an ordinal power of w, or equiva-
lently, if « is isomorphic to any of its nonempty final segments, i.e., «
is self-final).

Today, we shall prove the converse:
Theorem 1 [HKM]

Let o be an ordinal. If R* is 2-transitive, then « is additive principal.

The other main result concerning 2-transitivity is:
Theorem 2 [HKM]

Let A be a countable ordinal > 2, with its least element O as base
point. Then AR (with its least element deleted) is 2-transitive.

The proof is quite involved, we shall omit it in today’s talk.

6That is, « is a monomial in the Cantor normal form.
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(b) Isomorphism Invariants.

We studied the question
Does RN ~ R imply T' >~ 1" ¢

Theorem [K]

Let a be an ordinal, and J a chain in which the chain R does not

embed. Assume that R® embeds in R?. Then a embeds in J. In
particular, if & and 3 are distinct ordinals, then R® 2% R? .

What about non-wellordered exponents?

Sometimes, Theorem [K] provides a test:
Example 1

RN « RC.

(Indeed, every countable ordinal embeds in Q ...)

At other times, the test is not informative, and we have to work harder:
Theorem 4 [HKM] ’
RR « RC,

Theorem 3 [HKM] ®
Let o be any countably infinite ordinal. Then R® 7@ ~ R®.

We now want to provide the main ideas in the proofs of Theorem 1
and Theorem 3 of [HKM]. For this we need ...

"The proof is quite involved, we shall omit it in today’s talk.
8We prove a more general result: Let o and 3 be ordinals, with o countable and 3 infinite. Then R 8~ RA,
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ARITHMETIC RULES:

(1) The operations + and II are both associative, but in general not

commutative.
(2) (C+[)OD" ~ (D) + (I'ILTY).
(3) (T +Ty)* ~ %+ Tt and (0 I Ty)* ~ THII TS
(1) (A7) = (A%

(5)
(6) If {I';;7 € I} is a collection of chains indexed by a chain I, then

AZzEIFz ~ H AF
1€l

(where the base point of Al is 0, the sequence with empty support).
(7) In particular AT~ (AT, (Recall that PTIT ~ £.cp [).

(8) At~ Al2 and A ~ A2 = AT1HTT & A2
(

9) ATt~ A2 = AT o AT

We also need ...
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A powerful tool.

A chain A is Cyy or has countable coterminalities if both the
cofinality and the coinitiality of A are equal to Ny. That is, there is a
coterminal (both coinitial and cofinal) subset of A isomorphic to Z.

Our mawn tool is the following:

Proposition 3

Let A be a 2-transitive Cy, chain. Then A is isomorphic to any of its
convex Cyy subsets.

To apply this proposition to 2-transitive Cy lexicographic powers and
their convex subsets, the following easy observations are very useful:

Remark

Let T be a chain and F # () a final segment of I". Then A is (isomor-
phic to) a convex subset of Al

Proposition 4

Let I' be a chain, and A a chain with base point 0 € A. Then the
lexicographic power Al is Cyy if either I" has a least element and A is
Coo, or I' has countable coinitiality and 0 is not an endpoint of A.

We can now work with these facts to establish ...

14



Proposition 5

* . . . . .
R " and RY are isomorphic and these chains are 2-transitive.

Proof

R” is convex in R¥ ™ by the Remark. Both are Cy chains by Propo-

sition 4. R“™ admits an ordered field structure; in fact, it is the
underlying chain of the Laurent series field R((Z)). Therefore, R¥
is a 2-transitive chain. Now apply Proposition 3.

Example 2

RY Y ~ RY. However, the corresponding anti-lexicographic pow-
ers are not. If they were, then we would have by Proposition 1 that
RY % ~ R So R ~ R¥". But this is impossible by Theorem [K]
since w does not embed in w*.

The proof of Theorem 3 now basically follows by an induction argu-
ment. This theorem is not true without the assumption of countability:
Example 3

Let x be an uncountable regular cardinal. Then R* ** and R” are not
isomorphic. Indeed, R” is Cyy by Proposition 4, whereas R® ** has
cofinality k.
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We can now also establish Theorem 1:

Proof:  Assume that a £ 1. Let ¢ be a nonempty final segment of
a. Both R* and R¥ are Cy, by Proposition 4, and R? is convex by the
Remark. So by Proposition 3, R* ~ R¥. So o ~ ¢ by Theorem [K].
This shows that « is self-final, as required. O

An example of a slightly different flavour:

Example 4

RE and R®™R are isomorphic and these chains are 2-transitive.
Proof:

RER ~ RETTRR (by AR(6)).

Also, RR ~ RE (since the exponents are isomorphic).
Further, R ~ RE*.

>0 .

RR®™ is convex in RX by the Remark. Both are Cy chains by Prop. 4.

RR is 2-transitive (since it is the underlying chain of the power series
field R((R))).
Now apply Proposition 3.

Thus RFR ~ REVTTREY ~ RR (by AR(9)).

Kokokoskoskosksk
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Part IV.

Algebraic motivation and applications in [K-K-S1] and
[K-K-S2].

While trying to define an exponential function on a power series field,
we encountered the question

When does T' embed convezly in Al ?

Theorem [K-K-S2]

Let I and A, v € I', be nonempty chains. For every v € T', fix a
base point 0, which is not the last element in A, . Suppose that I' has
no last element and that I" is a cofinal subset of I'. Then there is no
convex embedding

R = HA,.
vel’

Corollary 1

Let I' and A be nonempty chains without last element, and fix a base
point 0 in A. Then there is no embedding

v I = Al
for which ¢(T") is convex in AL,

Corollary 2

Let G be a nontrivial ordered abelian group and K = R((G)). Then
(K, <) admits no exponential.

Proof

If K admits an exponential, then G ~ R((G<?)), as ordered groups.
This gives rise to an embedding of G<Y in R((G<")) with convex image.
Contradiction.

Kokokokokkk

17



