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The Invariant Moment Problem.

As all roads lead to Rome so I find in my own case at
least that all algebraic inquiries, sooner or later, end
at the Capitol of modern algebra over whose shining
portal is inscribed the Theory of Invariants.

- J. J. Sylvester 185

The slides of this talk are available at:
http://math.usask.ca/“skuhlman /slideimp.pdf
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Abstract.

Let group G together with ¢ : G — GL,(R) a linear repre-
sentation. Assume that ( is such that the ring R[X7, - - -, X,,]¢
of G-invariant polynomials is a finitely generated subalge-
bra of the polynomial ring R[Xy, -, X,]. We analyze
the preorderings of R[X7,---, X,,]¢ associated to a G-
invariant semi-algebraic set. We formulate a G-invariant
version of Haviland’s theorem concerning the represen-
tation of linear functinals by integrals. We exploit the
correspondence between (G-invariant semi-algebraic sets,
and semi-algebraic sets in the orbit space, to solve the
G-invartant moment problem. We produce many exam-
ples of closed unbounded G-invariant subsets K of R" for
which the K-moment problem is not finitely solvable, but
the G-invariant moment problem is finitely solvable. For
these examples, G- invariant linear functionals are rep-
resentable by an invariant measure supported on K, even
though such a representation fails for arbitrary functionals.
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Plan of the talk.

1. Positive Polynomials and Invariant Theory.

2. Preorderings of the ring of invariant polynomials.
3. Semi-Algebraic Geometry in the Orbit Space.

4. Saturation.

5. G-Invariant Moment Problem.

6. The averaged Moment Problem.
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Positive Polynomaials and Invariant
Theory.

Let RX] := R[Xy,---,X,], the polynomial ring in n
variables. T' C R[X] is a preordering if f> € T, Vf €
R[X] and T is closed under addition and multiplication.

Given a subset S of A, there is a smallest preordering T
containing .S; the preordering generated by S:

TS:{ > o fir>0,0.€ ZR[X]Q,fl,"',fr < S}
ecf{0,1}"

where f¢ := fit.-- fo if e = (e1, -+, € ), and TR[X]?

T

denotes the sums of squares of R X].

Let S ={f1, -, fn} CR[X], S defines a basic closed
semialgebraic subset of R":

K=Ks={zeR": fi(z) 20,..., fs(z) > 0}.



We define the saturation of Tk:
Psd(Kgs) :={f € RIX]: f > 0on Kg},

Psd(Kg) is a preordering in R[X]. Tg is saturated if
PSd(KS) = TS.

While considering the moment problem, we are interested
in linear functinals L defined on the algebra R[X], and
non-negative on Tg. In particular, we work with the fol-
lowing corresponding preordering of R[X]:

c(Ts) :={f; L(f) > 0 for all L # 0 such that L(Ts) > 0}.

cl(Ts) is the closure of Ts in R[X]|. We say that Ty is
closed if cl(Ts) = Ts. We have the inclusions

TS g Cl(Tg) g PSd(KS) .

Note that the sets T and cl(Ts) depend in general on the
choice of S, whereas the set Psd(Kjg) is uniquely deter-
mined by K = Kg, independently of the chosen descrip-
tion S.



We fix a group G together with
¢ G — GL,(R)

a linear representation. We say that a subset K C R"
is G-invariant if ¢(g)(K) C K for every g € G. We
can use ¢ to define an action of GG on the polynomial ring
R[X]:

given p(X) € R[X], define /p(X) := p(¢(g9)X) .

Every g € G acts as an R-algebra automorphism of R[.X].
In particular, if p(X) € £ R[ X |* (i.e. is asum of squares),
then for all g € G, 9p(X) € =R[ X %. Similarly, if Kg
is G-invariant and p(X) € Psd(Kg), then for all g € G,
Ip(X) € Psd(Ky).

p(X) is said to be G-invariant if for all g € G: 9p(X) =
p(X). Note that if Kg is defined by invariant polynomials,
then K¢ and Psd(Kg) are necessarily G-invariant. For the
converse, we cite the following result from [[1]; Cor. 5.4].

Theorem 0.1 Suppose that K = Kg 1s a G-invariant
basic closed semi-algebraic set. Then there exists a

finite set S" of G-invariant polynomials such that Kg =
K.
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Preorderings of the ring of invariant
polynomials.

Write R[ X ]¢ for the ring of all G-invariant polynomials.
We shall always assume that G is a reductive group.
So G admits a Reynolds operator. For such groups,
Hilbert’s Finiteness Theorem is valid; namely R[ X ]¢ is
a finitely generated R-algebra, and the generators may be
chosen to be homogeneous polynomials.([12]).

In this talk, for simplicity, we consider the case when G
is a finite group. Here, the Reynolds operator is just the
average map:

« RIX] 2> R X% fw f* S 9f.
G| gea
From the considerations above, we see that if G finite, then
R[X]C is a finitely generated R-algebra. Moreover it has
transcendence degree n over R | so is generated by at least
n homogeneous invariant polynomials (see [12]).

Note that the Reynolds operator is an R-linear map, which
is the identity on R[ X ] and is a R[ X ]“-module ho-
momorphism.



If A C R[ X ] we shall denote by A* its image in R[ X ]¢
under the Reynolds operator. We note the following im-
portant property:

Lemma 0.2 let A CR[ X |. Assume that A is closed
under addition and is (setwise) invariant. then A* =

ANR[ X ¢

For any A C R[ X ], let us denote A® .= ANR[ X ]°.
In particular

(ER[X ) =(ER[X )NR[ X |

denotes the preordering of R[ X |¢ of invariant sums

of squares.

We now study images of preorderings under the Reynolds
operator.

Lemma 0.3 (SR[ X ]?)* = (=R[ X ]?)°.

Proof: ~ We noted already that if 0 € S R[ X ]?, then for
allg € G,% € s R[ X ]?. Therefore * € s R[ X ]?. This
shows that T R[ X ]? is setwise invariant. The assertion
now follows from Lemma 0.2. O



Let S ={fi,..., fi} CR[X]% and Ks C R" the invari-
ant basic closed semialgebraic set defined by S.

We are particularly interested in the following three pre-
orderings of R[X ] associated to S:

e The preordering of G-invariant psd polynomials
Psd“(K) .= Psd(Ks) NR[ X ¢

e The preordering

TE[X] G

in R[X]“ which is finitely generated by S.

e The closure cl(Tg X ]G) of a preordering in R[ X ]¢:

(feR[XCF(f)>0,F#01Lf on RIX 1% s.t. F(TRX1%) > 0},

As before, we have the inclusions

TRIXE ¢ B2 ¢ ped(Kg)C .
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Observe that if T" is any preordering in R[ X ], then

T¢ =TNR[ X |°

is a preordering of R[ X ]¢.

Of course .
T ¢ TG € Psd®(Ky).

Note that since S is invariant, Kg, Ts and Psd(Kg) are
all invariant. Therefore, by Lemma 0.2 we have that

TS =T: and Psd®(Kg) = (Psd(Ks))*.

The preordering T§ is easy to describe:

Lemma 0.4 T§ is the preordering of R[ X |9 gener-
ated by (SR[ X )% and S.

Proof:  Let h € T§. Write

h= Y o.f¢ with o, € Y R[X]?
e€f{0,1}5

for some {f1,..., fr} € S. Applying the Reynolds oper-
ator we get

h=h"=( Y o f)= ¥ off

ec{0,1}5 ec{0,1}5

(since f1,---, fs € R[ X ]%). This is of the required form
since oF € (ER[ X ]?)Y for each e. O
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Remark 0.5 From the Lemma, we see that a set of gen-

erators of T§ as a preordering of R[ X ]¢ is of the form

S U S where S generates the preordering (SR[ X ]2)¢
over 2(R[ X ]9)* (:=sums of squares of invariant
polynomials) . That is

¢ = TR with TERT = (SR X P)C.
In particular,
TS = TéR[X]G if and only if S, C TéR[X]G :

In general (SR X ]2)° may properly contain the preorder-
ing Z(R[ X ]%)* That is

S(R[ X ]9 C (SRIX JP)”

but the inclusion may be proper. This was observed in
[[2]; Example 5.1], where G-invariant sums of squares have
been analyzed.
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Example 0.6 Let n = 1 and G = {—1,1}. We claim
that Sp = X? generates the preordering (> R[ X ]?)“ over
S(R[ X 9.

Indeed if 0 € (SR[ X ]*)¢, then

o =o0*=Y(n?)* with n;(X) € R[X].

Now (n?)*(X) = n?(X) + n?(—X), so it suffices to prove
the claim for n?(X) + n?(—X).
By separating terms of even and odd degree, we can write
n(X) = u(X7) + X0(X7),
with appropriately chosen p(X), 8(X) € R[X]. Therefore
7 (X) 47 (= X) = (X)+X (X)) +(u(X7)—X0(X?))* =
2u(X?)? +2X70(X?)?

G
which is an element of the preordering T’ {HA{;?;]} as required.
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But in general, the preordering (SR X %) need not be
finitely generated as we shall now show.
We consider the dyhedral group
G = Dy = (a,bla* = bv* = (ab)* = 1)
acting on Rz, y] in the standard way:
“(f@y) = fly,—2), " (flzy) = fly, ).

(We note for future reference that R[z, y]“ is generated by
Pi(z,y) == 2° + y* and Py(x,y) := 2z°y*. Note that P
and P, are algebraically independent.)

)¢

Example 0.7 The preordering (2 R[z, y]*)~ is not finitely

generated over (R[z, y]9)?.

KKkR Kk K

14



Semi-Algebraic Geometry in the
Orbit Space.

Let p1,- -+, pr € R[X] be generators of R[X]¢.
Consider the polynomial map

TR =R a=(ay, -,a,) — (pi(a)---,pi(a)) .

By the Tarski-Seidenberg theorem, the image (under this
map) of a semi-algebraic set is semi-algebraic. Moreover,
since R" is a basic closed semi-algebraic set, so is m(R")
[[1]; Proposition 5.1].

Let R[U]:= the polynomial ring R[Uy, - - - , Ug] in k-variables.
We fix a finite description vy, - - -, v, € R[U] of w(R").

Lemma 0.8 The defining polynomials vy, - - -, v, € R{U]
of 7(R"™) may be chosen so that # (vy), -+, 7 (v,) are
all € (z(R] X 12)Y. In this case, for any S C R[ X ]9
we have

TS(’; — Tsc;u{ﬁ—_l(vl)f"aﬁ_l(vT)}
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For the remaining of the talk, we assume that the finite
group G is a generalized reflection group. In this case,
R[X]“ is generated by k = n algebraically independent
elements (see [12]). In the sequel, we shall fix a set
of generators pq,---,p,. We let

7 R[X]® = R[U] =R[Uy, - -, U]

be the induced R-algebra isomorphism mapping p; to U;.
We have

7 (f)(a) = f(pi(a) -, pr(a)) foralla € R".

We gather useful properties of the maps 7 and 7.
Lemma 0.9 Let S C R[X]Y. We have:

(1) m(Ks) = Kz(s)0for, 00}
(2) (PSd(KS) )= PSd( (Ks)) C R[U,

(3) #TEET) = Ths C R,
(4) weTE XV >—c1< +(s)) € R[]

Kkokkkkk
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Saturation.

Recall that for S ¢ R] X 1%, T [X1% is saturated means
TR XTI _ ped(Kg)©
Similarly T is saturated (or Ts is G-saturated) means
TS = Psd(Ks)©

Note that T G-saturated means that every polynomial
which is positive semi-definite and invariantis represented
in the preordering. Finally, T;sy C R[U] is saturated
means

T (s) = Psd(K3(s))

Theorem 0.10 The following are equivalent:

(1) Ta(syui(S,)ufvy,—v,} 18 Saturated,

(2) Tg{égu{rl(m) i-1(y)) U8 saturated,

(3) TSU{ﬁ_l(vl),---,fr—l(v,«)} is saturated.

Remark 0.11 By Lemma 0.8, we may assume that
), 7o) € (SR X P)°.

In this case, condition (3) of Theorem 0.10 reads:

(3") T§ is saturated.
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Applications: We want to apply [4, Theorem 2.2]. We
need to define some notions.

If K C R is a non-empty closed semi-algebraic set then
K = Ky, for N the set of polynomials defined as follows:
olf a € K and (—oo0,a) N K =(), then X —a € N.
olf ¢ € K and (a,00) N K =), thena — X € N.
olfa,b € K, (a,b) N K =0, then (X —a)(X —b) € N.
e N has no other elements except these.

We call N the natural set of generators for K. We
recall [4, Theorem 2.2]:

Theorem 0.12 Assume that K = K¢ C R is not com-
pact. Then Tg is closed, for any finite set of generators
S. Moreover the following are equivalent:

(i) Ts is saturated.

(i1) Tg contains the natural set of generators for Kg.
(iii) S contains the natural set of generators of Kg
(up to scalings by positive reals).
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Combining Theorem 0.10 with [4, Theorem 2.2] we obtain
the following variant of [4, Theorem 2.2]:

Theorem 0.13 Let n = 1 and G as in example 0.6.
Let S C R[ X |9. Assume that Kg is non-compact.
The following are equivalent:

1. Ts 1s G-saturated,

2. if (a,b),0 < a < b is a connected component of R\
K then Ts contains (x> —a?)(z*—b%), if (—a,a) is
a connected component of R\ Kg, then Ts contains

z? —a?,

3. if (a,b),0 < a < b is a connected component of R\
Kg then S contains (up to a scalar multiple) (z* —
a®)(z? —b%), if (—a,a) is a connected component of
R\ Kg, then S contains (up to a scalar multiple)

xQ——a2.

KkkoR Kok >k
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-Invariant Moment Problem.

The general Moment Problem is the following: For a lin-
ear functional L on R[X], when is there a positive Borel
measure g or R” such that Vf € R[X] L(f) = fgn fdu?
The following result is due to Haviland.

Theorem 0.14 Given a linear functional L # 0 on
R[X] and a closed subset K of R", one can find a pos-
itive Borel measure p on K such that L(f) = Jx fdp
(for all f € R[X]) if and only if L(Psd(K)) > 0.

Since Psd(K) is not finitely generated in general([9]), we
are interested in approximating it by T's. Therefore, given
K a basic closed semi-algebraic subset of R”, we are inter-
ested in finding a finite description S C R[X] of K such
that for every L # 0 we have:

L(Ts) > 0 implies that L(Psd(K)) > 0.

If this holds, we say that S solves the K-moment
problem. Given K, we say that the K-moment prob-
lem is finitely solvable if such an .S can be found.

So we are searching for a finite description S of K such
that every L # 0 which satisfies L(Ts) > 0 comes from a
positive Borel measure on K = Kg. By Theorem 0.14, this
is equivalent to finding S such that the following property
called (SMP) holds: Psd(Kg) = cl(Ts).

20



A linear functional L defined on R[X] is invariant if L
is constant on the orbits of the action of G on R[X], that
is, if

L(f*) = L(f) for all f € R[X].

We are interested in the following question:

Let K be an invariant closed subset of R" and Let L #
0 an invariant linear functional defined on the algebra
R[ X |. When is there an (invariant) positive Borel
measure supported by K such that L(f) = Ix fdu for
adl feR X ] %

We first note the following:

Lemma 0.15 There is a bijective correspondence be-

tween invariant linear functionals on R[ X | and linear
functionals on R[ X ]°.

Proof:  Given L invariant take L | R[ X ]“. Conversely,
given a linear functional F on R| X %, define F*(f) =
F(f*). Then F* is invariant linear functionals on R| X |.
Note that the two maps are inverses of each other. O
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From this lemma, we see that we can consider linear
functionals on R[ X ]¢ instead of invariant linear function-
als on R[ X |. We have a G-invariant version of Haviland’s
theorem:

Theorem 0.16 Given a linear functional ' # 0 on
R[X]Y and a closed invariant subset K of R", one can
find an invariant positive Borel measure . on K such
that F(f) = Ix fdu (for all f € R[X]%) if and only if
F(Psd(K)“) > 0.

Proof: If such a measure exists, then clearly F(Psd(K)¢) >
0. Now assume that F'(Psd(K)® > 0. We claim that
F*(Psd(K)) > 0. Indeed if f € Psd(K) then f* €
Psd(K)® soF*(f) = F(f*) > 0. By Theorem 0.14 , F* is
represented by a measure p supported on K. O
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Arguing exactly as before, since Psd“(K) is not finitely
generated in general([9]), we are interested in approximat-
.. R[ X |©
ing it by Tg
closed semi-algebraic subset of R", we are interested in
finding a finite description S C R[X]¢ of K such that for
every I # 0 defined on R[ X ] we have:

. Therefore, given K an invariant basic

F(TE X ]G) > 0 implies that F(Psd®(K)) > 0.

If this holds, we say that S solves the invariant K-
moment problem. Given an invariant K, we say that

the invariant K-moment problem is finitely solv-
able if such an S C R[ X ]¢ can be found.

In other words, given K invariant, we are searching for a

finite description S C R[ X ] of K such that every F

G
which satisfies F(Tg 2 ) > 0 comes from an invariant

positive Borel measure on K = K.

By Theorem 0.16, this is equivalent to finding .S such that
the following property called (ISMP) holds: PsdG(K s) =

A(TRXT,
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Theorem 0.17 Let K C R" be an invariant basic
closed semialgebraic set. Assume that S C R[ X ¢
1 a finite description of K, i.e. K = Kg. Then

SU{aY(v), -, 7 Y(v,)} CR[ X |°
solves the invariant K-moment problem if and only if
7(S) U vy, -, v} CRU]

solves the w(K)-moment problem.

Remark 0.18 (i) In general, we cannot do without {vy,-- -, v, }
in Theorem 0.17.
(ii) If however {vy, - -, v, } can be chosen so that {vy,- -, v,} C

cl (7(5)), then indeed S solves the invariant K-moment
problem if and only if 7 (S) solves the 7( K )-moment prob-
lem.
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Example 0.19 Let G = {—1,1} act on R" by

(5131,"',513n) = <—$1,"’,$n>.

An argument similar to that given in 0.6 shows that R[ X |¢
is generated by

p1:X127p2:X2"'pn:Xn-

Let n = 2,50 R[ X | = R[X?, Y] and R[U] = R[U},Y],
v1 = U;. Consider in the XY-plane the invariant subset
K of a cylinder defined by

S={(X*-1D(X*—-4),1-Y?}.

Note that m(Kg) is again a subset of a cylinder in the
U,Y -plane defined by

7(S) ={{U - D0 -2),1-Y*)}.

By [5], 7#(S)Uvy = {Uy, (U1 —1)(U1 —2), (1—Y?)} solves
the m(K) moment problem. Therefore, by Theorem 0.17,
S solves the invariant K-moment problem.

25



This provides an example of S C R[] X ]“ solving the in-
variant K-moment problem, but notsolving the K-moment
problem. (Indeed, since the defining inequalities for the
boundary of this cylinder are not given by the natural
generators, it follows by [5] that S does not solve the K-
moment problem.) In the next Section, we will do better:
we provide an example where the K-moment problem is
not finitely solvable at all, but the invariant K-moment
problem is (see Example 0.22).

Kkokok kKK
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The Averaged Moment Problem.

We now want to analyze the following version of the mo-
ment problem concerning representation an invariant lin-
ear functionals.

Given K an invariant basic closed semi-algebraic subset of
R", we are interested in finding a finite description S C
R[X]“ of K such that for every F' # 0 defined on R[ X |¢

we have:
F(TS)) > 0 implies that F(Psd®(K)) > 0.

If this holds, we say that S solves the averaged K-
moment problem.

Given an invariant K, we say that the averaged K-
moment problem is finitely solvable if such an S C
R[ X ]¢ can be found. In other words, given K invariant,
we are searching for a finite description S C R[ X |¢ of K
such that every F' # 0 which satisfies F(TS) > 0 comes
from an invariant positive Borel measure on K = Kg.

By Theorem 0.16, this is equivalent to finding S such that
the following property called (ASMP) holds: PsdG(K s) =
(TS).
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Theorem 0.20 The following are equivalent:

(1) 7(S)UT(S,)U{vy,- -+ v} solves the m(K) moment
problem,

(2) SUS,U{7 Y (v1),---, 7 (v,)} solves the invariant
K-moment problem

(3) SU{rt(v1), -, 7 ' (v,)} solves the averaged K -
moment problem.

Remark 0.21 (i) By Lemma 0.8, we may assume that
77 (v1), -+, 77 H(vy) € (S(R[ X J?)Y. In this case, condi-
tion (3) of Theorem 0.20 reads:

(3") S solves the averaged K-moment problem.

(i) S, U {7 (), 7 0)} © d(TRELY then S
solves the averaged K-moment problem if and only if S

solves the invariant K-moment problem if and only if 7(.5)
solves the 7(K) moment problem,.
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Example 0.22 We reconsider the action of the dyhedral
group on the plane R? and on R[z,y]. Let

T :R* = R* (z,9) — (2* +y°, 2%%), and let
ﬁ:R[K]G — Rluy, ug] p1 > ug and py +— us .

Consider the invariant basic closed semialgebraic set K =
K defined by the inequalities

1< (@ = 1)(y*—1) <0
ie. by SC R[ X %
S = {(#? — (2~ 1)+ 1, (2~ (g — 1)}
Then 7(R?) is defined by
vi=u1 > 0,0 :=uy > 0,03 ::u%—4u220.
Computing 7(Ks) C R* we find

T(Ks) = Kfr(S)U{vl,vz,vs} .

29



Now
(x> = 1)y = 1) =up —u; + 1
so m(Kg) is defined by the inequalities
U —2<wu <wu —1.

We see that m(Kg) is a cylinder with compact cross-section
(actually, a convex polyhedron defined by linear inequali-
ties). So

77'(;9) U {’Ul, V9, U3}
solves the m(K)-moment problem, by [4]. By Theorem
0.17, we get that

S U {77('_1(’01), 77'_1(’02), 77'_1<’U3)}
solves the invariant K g-moment problem. Computing, we

get

ﬁ_l(vl) = 2249 ,7?_1(1)2) = 2%y? , and 7?_1(1)3) = (:z:2—y2)2,

which are all invariant sums of squares. We conclude that
S solves the averaged Kg- moment problem .

We now claim that the moment problem for K is not fi-
nitely solvable. This can be established by applying [[6];Corollary
3.10].

The End
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