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Moment problem in infinitely many variables
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THE UNIVARIATE MOMENT PROBLEM

Is an old problem with origins tracing back to work of Stieltjes.
Given a sequence (sk)k≥0 of real numbers one wants to know
when there exists a Radon measure µ on R such that

sk =
∫

xkdµ ∀ k ≥ 0.1

Since the monomials xk, k ≥ 0 form a basis for the polynomial
algebra R[x], this problem is equivalent to the following one:
Given a linear functional L : R[x]→ R, when does there exist a
Radon measure µ on R such that L(f ) =

∫
fdµ ∀ f ∈ R[x].One

also wants to know to what extent the measure is unique,
assuming it exists. Akhiezer 1965 and Shohat-Tamarkin 1943
are standard references.

1All Radon measures considered are assumed to be positive.
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THE MULTIVARIATE MOMENT PROBLEM

Has been considered more recently. For n ≥ 1,
R[x] := R[x1, . . . , xn] denotes the polynomial ring in n variables
x1, . . . , xn. Given a linear functional L : R[x]→ R and a closed
subset Y of Rn one wants to know when there exists a Radon
measure µ on Rn supported on Y such that L(f ) =

∫
fdµ ∀

f ∈ R[x].

Haviland, 1936
Such a measure exists if and only if L(Pos(Y)) ⊆ [0,∞), where
Pos(Y) := {f ∈ R[x] : f (x) ≥ 0 ∀x ∈ Y}.

Again, one also wants to know to what extent the measure is
unique, assuming it exists. Berg 1987, Fuglede 1983 are general
references. A major motivation here is the close connection
between the multivariate moment problem and real algebraic
geometry; see e.g. Schmüdgen 1999, Marshall 2008, Lasserre
2013.
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THE INFINITE-VARIATE MOMENT PROBLEM
There is work dealing with the moment problem in infinitely
many variables, mainly where the linear functional in question
is continuous for a certain topology.

Albeverio-Herzberg 2008
applies Schmüdgen’s 1999 solution of the moment problem to
represent L1-continuous linear functionals on the vector space
of polynomials of Brownian motion as integration with respect
to probability measures on the Wiener space of R.
Berezansky-Kondratiev 1995, Berezansky-Sifrin 1971,
Borchers-Yngvason 1975, Hegerfeldt 1975, Infusino-Kuna-Rota
2014, Infusino 2015 consider continuous linear functionals on
the symmetric algebra of a nuclear space.
Ghasemi-Infusino-Kuhlmann-Marshall (in preparation) deals
with linear functionals on the symmetric algebra of a locally
convex space (V, τ) which are continuous with respect to the
finest locally multiplicatively convex topology extending τ . The
present paper seems to be the first to deal with the general case
systematically.Today, I want to focus on the following result
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EXTENSION OF HAVILAND’S THEOREM
Let A = AΩ := R[xi | i ∈ Ω], the ring of polynomials in an
arbitrary number of variables xi, i ∈ Ω with coefficients in R.

Extension of Haviland
Suppose L : AΩ → R is linear and L(PosAΩ

(Y)) ⊆ [0,∞) where
Y is a closed subset of RΩ satisfying condition (i) below. Then
there exists a constructibly Radon measure ν on RΩ supported
by Y such that L(f ) =

∫
f̂ dν ∀ f ∈ AΩ.

Condition (i): Y is described by countably many inequalities
i.e., there exists a countable S ⊂ AΩ such that
Y = {α ∈ RΩ | ĝ(α) ≥ 0 ∀ g ∈ S}. We note that Condition (i) is
always satisfied for countable Ω.

Extension of Haviland in the countable case
Suppose Ω is countable, L : AΩ → R is linear and
L(PosAΩ

(Y)) ⊆ [0,∞) where Y is a closed subset of RΩ. Then
there exists a Radon measure ν on RΩ supported by Y such that
L(f ) =

∫
f̂ dν ∀ f ∈ AΩ.
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Y = {α ∈ RΩ | ĝ(α) ≥ 0 ∀ g ∈ S}. We note that Condition (i) is
always satisfied for countable Ω.

Extension of Haviland in the countable case
Suppose Ω is countable, L : AΩ → R is linear and
L(PosAΩ

(Y)) ⊆ [0,∞) where Y is a closed subset of RΩ. Then
there exists a Radon measure ν on RΩ supported by Y such that
L(f ) =

∫
f̂ dν ∀ f ∈ AΩ.

5 / 19



TERMINOLOGY, NOTATIONS, GENERAL SETTING

I All rings considered are commutative with 1.

I All ring homomorphisms considered send 1 to 1.
I All rings we are interested in are R-algebras.
I For a commutative ring A, X(A) the character space of A is

the set of all ring homomorphisms α : A→ R, .
I For a ∈ A, â = âA : X(A)→ R is defined by âA(α) = α(a).
I X(A) is given the weakest topology such that the functions

âA, a ∈ A are continuous.
I The only ring homomorphism from R to itself is Id.
I Ring homomorphisms from R[x] to R correspond to point

evaluations f 7→ f (α), α ∈ Rn. X(R[x]) is identified as a
topological space with Rn.
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âA, a ∈ A are continuous.
I The only ring homomorphism from R to itself is Id.
I Ring homomorphisms from R[x] to R correspond to point

evaluations f 7→ f (α), α ∈ Rn. X(R[x]) is identified as a
topological space with Rn.

6 / 19



TERMINOLOGY, NOTATIONS, GENERAL SETTING

I All rings considered are commutative with 1.
I All ring homomorphisms considered send 1 to 1.
I All rings we are interested in are R-algebras.
I For a commutative ring A, X(A) the character space of A is

the set of all ring homomorphisms α : A→ R, .
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I A quadratic module of A is a subset M of A satisfying

1 ∈M, M + M ⊆M and a2M ⊆M for each a ∈ A.

I A quadratic preordering of A is a quadratic module of A
which is also closed under multiplication.

I For a subset X of X(A),

PosA(X) := {a ∈ A | âA ≥ 0 on X}

is a preordering of A.
I

∑
A2 the set of all finite sums

∑
a2

i , ai ∈ A. It is the unique
smallest quadratic module (preordering) of A.

I For a subset S ⊆ A,

XS := {α ∈ X(A) | âA(α) ≥ 0 ∀a ∈ S}.
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I A quadratic module M in A is archimedean if for each
a ∈ A there exists an integer k such that k± a ∈M.

I If M is a quadratic module of A which is archimedean then
XM is compact.

Archimedean Positivstellensatz
Suppose M is an archimedean quadratic module of A. Then, for
any a ∈ A, the following are equivalent:
(1) âA ≥ 0 on XM.
(2) a + ε ∈M for all real ε > 0.
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CONSTRUCTIBLY BOREL SETS

I The open sets

UA(a) := {α ∈ X(A) | âA(α) > 0}, a ∈ A

form a basis for the topology on X(A)

I If A is generated as an R-algebra by xi, i ∈ Ω, the
embedding X(A) ↪→ RΩ defined by α 7→ (α(xi))i∈Ω

identifies X(A) with a subspace of RΩ.
I Sets of the form

{b ∈ RΩ |
∑
i∈I

(bi − pi)2 < r},

where r, pi ∈ Q and I is a finite subset of Ω, form a basis for
the product topology on RΩ.
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I It follows that sets of the form

UA(r−
∑
i∈I

(xi − pi)2), r, pi ∈ Q, I a finite subset of Ω, (1)

form a basis for X(A).

I A subset E of X(A) is called Borel if E is an element of the
σ-algebra of subsets of X(A) generated by the open sets.

I A subset E of X(A) is said to be constructible (resp.,
constructibly Borel) if E is an element of the algebra (resp.,
σ-algebra) of subsets of X(A) generated by UA(a), a ∈ A.

I Clearly Constructible⇒ constructibly Borel⇒ Borel.

Countably generated algebras
If A is generated as an R-algebra by a countable set {xi | i ∈ Ω}
then every Borel set of X(A) is constructibly Borel.

Proof.
Sets of the form (1) form a countable basis for the topology on
X(A).
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SUPPORT

I The support of a measure is not defined in general. For a
measure space (X,Σ, µ) and a subset Y of X, we say µ is
supported by Y if E ∩ Y = ∅ ⇒ µ(E) = 0 ∀ E ∈ Σ.

I In this situation, if Σ′ := {E ∩ Y | E ∈ Σ}, and
µ′(E ∩ Y) := µ(E) ∀ E ∈ Σ, then Σ′ is a σ-algebra of subsets
of Y, µ′ is a well-defined measure on (Y,Σ′), the inclusion
map i : Y→ X is a measurable function, and µ is the
pushforward of µ′ to X.

I If (Y,Σ′, µ′) is a measure space, (X,Σ) is a σ-algebra,
i : Y→ X is any measurable function, and µ is the
pushforward of µ′ to (X,Σ), then for each measurable
function f : X→ R,

∫
fdµ =

∫
(f ◦ i)dµ′ (change in variables

theorem).
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CONSTRUCTIBLY RADON MEASURES

I A Radon measure on X(A) is a positive measure µ on the
σ-algebra of Borel sets of X(A) which is locally finite (every
point has a neighbourhood of finite measure) and inner
regular (each Borel set can be approximated from within
using a compact set).

I A constructibly Radon measure on X(A) is a positive
measure µ on the σ-algebra of constructibly Borel sets of
X(A) such that for, each countably generated subalgebra A′

of A, the pushforward of µ to X(A′) via the restriction map
α 7→ α|A′ is a Radon measure on X(A′).

From now on we consider only Radon and constructibly Radon
measures having the additional property that âA is µ-integrable
(i.e.,

∫
âAdµ is well-defined and finite) for all a ∈ A.
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THE MOMENT PROBLEM IN THIS GENERAL SETTING

I For a linear functional L : A→ R, one can consider the set
of Radon or constructibly Radon measures µ on X(A) such
that L(a) =

∫
âAdµ ∀ a ∈ A. The moment problem is to

understand this set of measures, for a given linear
functional L : A→ R. In particular, one wants to know: (i)
When is this set non-empty? (ii) In case it is non-empty,
when is it a singleton set?

I A linear functional L : A→ R is said to be positive if
L(

∑
A2) ⊆ [0,∞) and M-positive for some quadratic

module M of A, if L(M) ⊆ [0,∞).
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TWO SPECIAL ALGEBRAS; TOWARDS THE PROOF OF

THE MAIN RESULT

Let Ω is an arbitrary index set.
I As above, A = AΩ := R[xi | i ∈ Ω], we further define

I B = BΩ := R[xi,
1

1+x2
i
| i ∈ Ω], the localization of A at the

multiplicative set generated by the 1 + x2
i , i ∈ Ω, and

I C = CΩ := R[ 1
1+x2

i
, xi

1+x2
i
| i ∈ Ω], the R-subalgebra of B

generated by the elements 1
1+x2

i
, xi

1+x2
i
, i ∈ Ω.

I Elements of X(A) and X(B) are naturally identified with
point evaluations f 7→ f (α), α ∈ RΩ.

I X(A) = X(B) = RΩ, not just as sets, but also as topological
spaces, giving RΩ the product topology.
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We show how the moment problem for AΩ reduces to
understanding the extensions of a linear functional L : AΩ → R
to a positive linear functional on BΩ and prove that positive
linear functionals L : BΩ → R correspond bijectively to
constructibly Radon measures on RΩ.

Results in Marshall 2003
By definition, A (resp., B, resp., C) is the direct limit of the
R-algebras AI (resp., BI, resp., CI), I running through all finite
subsets of Ω. Because of this, many questions about A, B and C
reduce immediately to the case where Ω is finite.

These algebras were studied extensively in Marshall 2003 for
finite Ω.
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THE ARCHITECTURE OF THE PROOF

The following is a simple modification of the argument in
Marshall 2003 for arbitrary Ω

Extendibility from A to B
Suppose L : A→ R is an PosA(Y)-positive linear functional for
some closed set Y ⊆ RΩ. Then L extends to an PosB(Y)-positive
linear functional L : B→ R.

Positive functionals on C; Marshall 2003
Positive linear functionals L : B→ R restrict to positive linear
functionals on C. The cone of sums of squares of C is
archimedean. Positive linear functionals L : C→ R are in
natural one-to-one correspondence with Radon measures µ on
the compact space X(C) via L↔ µ iff L(f ) =

∫
f̂Cdµ ∀ f ∈ C.
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Main Lemma
For each positive linear functional L : B→ R there exists a
unique Radon measure µ on X(C) such that L(f ) =

∫
f̂Cdµ ∀

f ∈ C. This satisfies µ(∆i) = 0 ∀ i ∈ Ω and L(f ) =
∫

f̃ dµ ∀ f ∈ B.

Positive functionals on B
There is a canonical one-to-one correspondence L↔ ν given by
L(f ) =

∫
f̂Bdν ∀ f ∈ B between positive linear functionals L on B

and constructibly Radon measures ν on X(B).
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The proof of the main theorem then proceeds as follows: Given
L, there exists an extension of L to a linear functional L on BΩ

such that L(PosBΩ
(Y)) ⊆ [0,∞). Denote by ν the constructibly

Radon measure on RΩ corresponding to this extension. Fix a
countable set S in AΩ such that Y = XS. For each g ∈ S, choose
g′ ∈ CΩ of the form g′ = g/pg for some suitably chosen element
pg = (1 + x2

j1
)e1 . . . (1 + x2

jk
)ek . Let S′ = {g′ | g ∈ S}. Let Q′ = the

quadratic module of CΩ generated by S′, Q = the quadratic
module of BΩ generated by S. Note that Q is also the quadratic
module in BΩ generated by S′, and Q′ ⊆ Q ⊆ PosBΩ

(Y), so
L′(Q′) ⊆ [0,∞) where L′ := L|CΩ

. By Marshall 2003 there exists
a Radon measure µ on X(CΩ) supported by XQ′ such that
L′(f ) =

∫
f̂ dµ ∀ f ∈ CΩ. Uniqueness implies that µ is the Radon

measure on X(CΩ) defined in Main Lemma. One checks that ν
is supported by XQ′ ∩ X(BΩ) = XQ = XS = Y
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