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Moment problem in infinitely many variables



THE UNIVARIATE MOMENT PROBLEM

Is an old problem with origins tracing back to work of Stieltjes.
Given a sequence (si)x>0 of real numbers one wants to know
when there exists a Radon measure 1 on R such that
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sk:/xkdquZO.l

Since the monomials x¥, k > 0 form a basis for the polynomial
algebra R[x], this problem is equivalent to the following one:
Given a linear functional L : R[x] — R, when does there exist a
Radon measure p on R such that L(f) = [ fdp V f € R[x].One
also wants to know to what extent the measure is unique,
assuming it exists. Akhiezer 1965 and Shohat-Tamarkin 1943
are standard references.

! All Radon measures considered are assumed to be positive.



THE MULTIVARIATE MOMENT PROBLEM

Has been considered more recently. For n > 1,

R[x] := R[xy, ..., x,] denotes the polynomial ring in #n variables
X1,...,X,. Given a linear functional L : R[x] — R and a closed
subset Y of R"” one wants to know when there exists a Radon
measure p on R” supported on Y such that L(f) = [ fdp vV

f € RI.

Haviland, 1936
Such a measure exists if and only if L(Pos(Y)) C [0, c0), where
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Has been considered more recently. For n > 1,

R[x] := R[xy, ..., x,] denotes the polynomial ring in #n variables
X1,...,X,. Given a linear functional L : R[x] — R and a closed
subset Y of R"” one wants to know when there exists a Radon
measure p on R” supported on Y such that L(f) = [ fdp vV

f € RI.

Haviland, 1936

Such a measure exists if and only if L(Pos(Y)) C [0, c0), where
Pos(Y) :={f e Rlx] : f(x) >0 Vxe Y}

Again, one also wants to know to what extent the measure is
unique, assuming it exists. Berg 1987, Fuglede 1983 are general
references. A major motivation here is the close connection
between the multivariate moment problem and real algebraic

geometry; see e.g. Schmiidgen 1999, Marshall 2008, Lasserre
2013.
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There is work dealing with the moment problem in infinitely
many variables, mainly where the linear functional in question
is continuous for a certain topology. Albeverio-Herzberg 2008
applies Schmiidgen’s 1999 solution of the moment problem to
represent L!-continuous linear functionals on the vector space
of polynomials of Brownian motion as integration with respect
to probability measures on the Wiener space of R.
Berezansky-Kondratiev 1995, Berezansky-Sifrin 1971,
Borchers-Yngvason 1975, Hegerfeldt 1975, Infusino-Kuna-Rota
2014, Infusino 2015 consider continuous linear functionals on
the symmetric algebra of a nuclear space.
Ghasemi-Infusino-Kuhlmann-Marshall (in preparation) deals
with linear functionals on the symmetric algebra of a locally
convex space (V, 7) which are continuous with respect to the
finest locally multiplicatively convex topology extending 7. The
present paper seems to be the first to deal with the general case
systematically. Today, I want to focus on the following result o
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arbitrary number of variables x;, i € 2 with coefficients in R.
Extension of Haviland
Suppose L : Aqg — Ris linear and L(Posg4,,(Y)) C [0, c0) where
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EXTENSION OF HAVILAND’S THEOREM
Let A = Aq :=R[x; | i € Q], the ring of polynomials in an
arbitrary number of variables x;, i € {2 with coefficients in R.
Extension of Haviland
Suppose L : Aqg — Ris linear and L(Posg4,,(Y)) C [0, c0) where
Y is a closed subset of R®! satisfying condition (i) below. Then
there exists a constructibly Radon measure v on R supported
by Y such that L(f) = [ fdv V f € Aq.
Condition (i): Y is described by countably many inequalities
i.e., there exists a countable S C Ag such that
Y = {a € R% | g(a) >0V g € S}. We note that Condition (i) is
always satisfied for countable 2.
Extension of Haviland in the countable case
Suppose (2 is countable, L : Aq — R s linear and
L(Posa,(Y)) C [0,00) where Y is a closed subset of R®. Then
there exists a Radon measure v on R supported by Y such that

L(f) = [fdv V[ € Aq.
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TERMINOLOGY, NOTATIONS, GENERAL SETTING

vV v v Vv

All rings considered are commutative with 1.
All ring homomorphisms considered send 1 to 1.
All rings we are interested in are R-algebras.

For a commutative ring A, X(A) the character space of A is
the set of all ring homomorphisms o : A — R, .

» Fora € A,a =a, : X(A) — Ris defined by a4 (o) = «(a).
> X(A) is given the weakest topology such that the functions

aa,a € A are continuous.

The only ring homomorphism from R to itself is Id.

» Ring homomorphisms from R[x| to R correspond to point

evaluations f — f(«a), a € R". X(R[x]) is identified as a
topological space with R".
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A quadratic module of A is a subset M of A satisfying
1eM, M+M C Mand a*M C M for eacha € A.

A quadratic preordering of A is a quadratic module of A
which is also closed under multiplication.

For a subset X of X(A),
Poss(X):={ae€Alas >0on X}

is a preordering of A.

> A? the set of all finite sums Y a?, a; € A. It is the unique
smallest quadratic module (preordering) of A.

For a subset S C A,

Xs = {a € X(A) | da(a) > 0Va € S}.

~
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» A quadratic module M in A is archimedean if for each
a € A there exists an integer k such thatk £a € M.

» If M is a quadratic module of A which is archimedean then
X is compact.

Archimedean Positivstellensatz
Suppose M is an archimedean quadratic module of A. Then, for
any a € A, the following are equivalent:

(1) aa > 0on Xp.
(2) a+ e € M for all real € > 0.
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CONSTRUCTIBLY BOREL SETS

» The open sets
Up(a) :=={a € X(A) |aa(a) >0}, a€ A

form a basis for the topology on X(A)

» If A is generated as an R-algebra by x;, i € (2, the
embedding X(A) — R defined by o — (a(x;))icq
identifies X(A) with a subspace of R®.

» Sets of the form

{beR > (bi—pi)* <r},

i€l

where 7, p; € Q and [ is a finite subset of 2, form a basis for
the product topology on R®.



» It follows that sets of the form

Uy (r — Z(xi - pi)z), r,p; € Q, I a finite subset of 2, (1)
i€l
form a basis for X(A).
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» It follows that sets of the form

Uy (r — Z(xl- - pi)z), r,p; € Q, I a finite subset of 2, (1)
i€l
form a basis for X(A).

» A subset E of X(A) is called Borel if E is an element of the
o-algebra of subsets of X(A) generated by the open sets.

» A subset E of X(A) is said to be constructible (resp.,
constructibly Borel) if E is an element of the algebra (resp.,
o-algebra) of subsets of X(A) generated by Ux(a), a € A.

> Clearly Constructible = constructibly Borel = Borel.

Countably generated algebras
If A is generated as an R-algebra by a countable set {x; | i € Q}
then every Borel set of X(A) is constructibly Borel.

Proof.
Sets of the form (1) form a countable basis for the topology on
X(A). )

10 /19
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SUPPORT

» The support of a measure is not defined in general. For a
measure space (X, X, 1) and a subset Y of X, we say p is
supported by YIfENY =0 = pu(E) =0VE € X.

» In this situation, if ¥’ := {ENY | E € ¥}, and
W(ENY) :=u(E)VE € X, then ¥’ is a o-algebra of subsets
of Y, 1/ is a well-defined measure on (Y, Y’), the inclusion
map i: Y — X is a measurable function, and p is the
pushforward of x' to X.

» If (Y,Y, 1) is a measure space, (X, X) is a o-algebra,

i:Y — Xis any measurable function, and  is the
pushforward of // to (X, X), then for each measurable
functionf : X — R, [fdu = [(f oi)dy’ (change in variables
theorem).
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CONSTRUCTIBLY RADON MEASURES

» A Radon measure on X(A) is a positive measure  on the
o-algebra of Borel sets of X(A) which is locally finite (every
point has a neighbourhood of finite measure) and inner
regular (each Borel set can be approximated from within
using a compact set).

» A constructibly Radon measure on X(A) is a positive
measure p on the o-algebra of constructibly Borel sets of
X(A) such that for, each countably generated subalgebra A’
of A, the pushforward of u to X(A’) via the restriction map
a — a|a is a Radon measure on X(A').

From now on we consider only Radon and constructibly Radon
measures having the additional property that a4 is p-integrable
(ie., [aadp is well-defined and finite) for all a € A.
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THE MOMENT PROBLEM IN THIS GENERAL SETTING

» For a linear functional L : A — R, one can consider the set
of Radon or constructibly Radon measures ;2 on X(A) such
that L(a) = [ aadu Va € A. The moment problem is to
understand this set of measures, for a given linear
functional L : A — R. In particular, one wants to know: (i)
When is this set non-empty? (ii) In case it is non-empty,
when is it a singleton set?

» A linear functional L : A — R is said to be positive if
L(>_ A%) C [0,0) and M-positive for some quadratic
module M of A, if L(M) C [0, c0).
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TWO SPECIAL ALGEBRAS; TOWARDS THE PROOF OF
THE MAIN RESULT

Let 2 is an arbitrary index set.
» Asabove, A = Aq := R[x; | i € 2], we further define
» B = Bq :=Rlx;, ﬁ | i € €], the localization of A at the
multiplicative set g,enerated by the 1 +x7,i € 2, and
» C=Cq:= R[sz, sz |ie Q] the R-subalgebra of B

generated by the elements i€

+ 2/ 1+x2/

» Elements of X(A) and X(B) are naturally identified with
point evaluations f + f(a), a € R%.

» X(A) = X(B) = R?, not just as sets, but also as topological
spaces, giving R the product topology.



We show how the moment problem for Ag reduces to
understanding the extensions of a linear functional L : Ag — R
to a positive linear functional on Bg, and prove that positive
linear functionals L : B — R correspond bijectively to
constructibly Radon measures on RS,

Results in Marshall 2003

By definition, A (resp., B, resp., C) is the direct limit of the
R-algebras Aj (resp., By, resp., Cr), I running through all finite
subsets of (). Because of this, many questions about A, B and C
reduce immediately to the case where (2 is finite.
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to a positive linear functional on Bg, and prove that positive
linear functionals L : B — R correspond bijectively to
constructibly Radon measures on RS,

Results in Marshall 2003

By definition, A (resp., B, resp., C) is the direct limit of the
R-algebras Aj (resp., By, resp., Cr), I running through all finite
subsets of €. Because of this, many questions about A, B and C
reduce immediately to the case where (2 is finite.

These algebras were studied extensively in Marshall 2003 for
finite ).
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THE ARCHITECTURE OF THE PROOF

The following is a simple modification of the argument in
Marshall 2003 for arbitrary (2

Extendibility from A to B

Suppose L : A — R is an Pos (Y)-positive linear functional for
some closed set Y C R®. Then L extends to an Posg(Y)-positive
linear functional L : B — R.

Positive functionals on C; Marshall 2003

Positive linear functionals L : B — R restrict to positive linear
functionals on C. The cone of sums of squares of C is
archimedean. Positive linear functionals L : C — R are in
natural one-to-one correspondence with Radon measures p on
the compact space X(C) via L < piff L(f) = ffcdu vVfeC.
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unique Radon measure p on X(C) such that L(f) = [ fedu V
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Main Lemma

For each positive linear functional L : B — R there exists a
unique Radon measure p on X(C) such that L(f) = [ fcd,u v

f € C. This satisfies (A;) =0Vie Qand L(f) = [fdu ¥ f € B.

Positive functionals on B

There is a canonical one-to-one correspondence L < v given by
L(f) = [ fgdv ¥ f € B between positive linear functionals L on B
and constructibly Radon measures v on X(B).
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The proof of the main theorem then proceeds as follows: Given
L, there exists an extension of L to a linear functional L on Bg,
such that L(Posg,, (Y)) C [0, c0). Denote by v the constructibly
Radon measure on R corresponding to this extension. Fix a
countable set S in A such that Y = Xs. For each g € S, choose
g’ € Cq of the form ¢’ = g/p, for some suitably chosen element
pe = (1+x]21)‘31 ...(1+x]2k)ek. LetS = {¢' | g €S}. Let Q@ = the
quadratic module of Cg, generated by S’, Q = the quadratic
module of B, generated by S. Note that Q is also the quadratic
module in Bg, generated by S/, and Q' C Q C Posg,,(Y), so
L'(Q") € [0,00) where L' := L|c,. By Marshall 2003 there exists
a Radon measure p on X(Cq) supported by X such that
L'(f)y=J fdu Y f € Co. Uniqueness implies that 1 is the Radon
measure on X(Cq) defined in Main Lemma. One checks that v
is supported by Xor N X(Bo) = Xg = Xs =Y

18 /19



