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Ubungen zur Vorlesung Reelle algebraische Geometrie

Blatt 12 - Losung

Definition 0.1 Let R be a real closed field. Let A C R" be a semi-algbraic set.
(i) A semialgebraic path in A is a continuous semialgebraic map « : (0,1) - A.
(ii) The set A is semialgebraically compact if for every path a : (0,1) — A,
lim;_,g+ a(?) exists and is in A.

1. Theorem 0.2 (semialgebraic choice = Semi-algebraische Auswahl) Let A and
B be semialgebraic sets and f : A — B be a surjective semialgebraic map. Then
f has a semialgebraic inverse, i.e. there is a semialgebraic map g : B — A with
f(g(y) =yforanyy e B.
Proof. We can suppose A C R™ and B C R" semialgebraic subsets. Decompose f
as

A->YT(f)cR™ "B
where y(x) = (x,f(x)) for any x € A and n(x,y) = y for any (x,y) € R™*".
Since vy is bijective, it suffices to find a ser;lialg_ebraic section for 7. In other
words, we consider a semialgebraic set A C R"*" and the semialgebraic map .

Then proceed by induction on n: the case n = 1 is given by the exercise 4 of
Blatt 11.

2. Corollary 0.3 (Curve Selection Lemma: unbounded case) Let A C R" be an
unbounded semialgebraic set. Then there exists a semialgebraic path « :10,1[—
A with lim,_q ||a(?)|| = +oo.
Proof. Consider the stereographic projection p : §,(0,1) \ {oo} — R", whichis a
homeomorphism, and its inverse p~!' : R" — §,(0,1)\ {co}. From Exercise 4 Part
(b) of Blatt 10, since A is unbounded, we know that co € p~1(A). Now, applying
the Curve Selection Lemma to p~!(A), there exists a semi-algebraic continuous
map 3 : [0,1[— S" with 5(]0,1[) € p~'(A) and B(0) = co. Then consider the path
a:=poB:]0,1[— A.



3. (a)

Lemma 0.4 Ler A and B be semialgebraic sets and f : A — B be a semialge-
braic map. Let B :10,1[— B be a semialgebraic path in B with 5(]0,1]) € f(A).
Then there exists c € R with 0 < ¢ < 1 and there exists a semialgebraic path
a :]0,c[— A such that 5(t) = f(a(?)) for any t €]0,cl.

Proof. From the Theorem of Semialgebraic Choice here above, there exists a se-
mialgebraic « :]0,1[— A such that f o @ = 8. Now, from Exercise 2.(b) of Blatt
11, the map « is continuous for all but finitely many points of ]0,1[. Then consi-
der ¢ €]0,1[ the smallest point for which « is not continuous. So it is continuous
on ]0,c|.

(b) Let A be a semialgebraically compact set and /' : A — R a semialgebraic
function. Using the cited result, f(A) is sa compact in R. So, by the Theorem on
the characterisation of sa compact sets, f(A) is closed and bounded in R. But any
semialgebraic set of R is a finite union of points and intervals. So f(A) is of the

k

form U[ai,bi] for some k € N with a;,b; € R foralli = 1,...,k. Thus it has a
i=0

least element and a greatest element.

4. (a) Let A C R" be a semialgebraic set, x € A. For any non negative integer k, the

open ball B,(x,1/2¥) is a semialgebraic neighborhood of x in R". So for any k,
Uy := B,(x,1/25N A is semi-algebraic and non empty since it contains x. Thus
it has dimension dj.
Underline that for any semialgebraic sets A and B, if A C B then dimA < dim B
(follows directly from the definition of the semialgebraic dimension). Thus, since
Ui+1 C Uy for any k, we have di,; < di. But such a decreasing sequence of non
negative integers needs to stabilize: Jko, Yk > ko, di = di,. Then put U := Uy,
and d := dy,.

The integer d is called the dimension of A at x and denoted by dim, A.

(b) Consider a cell decomposition A = Ui_l C; (disjoint union) of A, i.e. for each
i, C; is isomorphic to (0,1)% for some non negative integer d;. Then d := dim A =
max;=1,.n(d;) by definition. Say d = d; for instance.

For any x € Cj, there exist an open neighborhood U of x in R" and a nonnegative
integer d such that, for every semialgebraic neighborhood V' C U of x in R",
dim(V NA) = d|. We want to show that d| = d;. First, we note that dim(VNA) =
d; <dy =dimA, since VNA C A.

Consider U; := U N C; which is an open neighborhood of x in C; c A. Since
C, is homeomorphic to (0,1)%, U, must contain some open ball By, (x,r). Then,
up to a restriction of U to B,(x,r), we obtain that for any semi-algebraic neigh-
borhood V C U, dimV N A = d;, which means that d] = d;.

(c) Denote D := {x € A;dim, A = dim A} and consider x € D the closure of D.



For any open neighborhood V € R" of x, it contains a point y € D. But, there
exists an open neighborhood Uy, of y such that, for any semi-algebraic neighbo-
thood V, C U, of y, dim(V, N A) = d. So, fix an open neighborhood U of x.
For any open semi-algebraic neighborhood V C U of x, we have dim(V N A) =
dim(Vy N A) =d. Thus x € D.



