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Ubungen zur Vorlesung Reelle algebraische Geometrie

Blatt 10 - Solution

Theorem 0.1 (Cell Decomposition = Zell Zerlegung) Let R be a real closed field.
Any semi-algebraic subset A C R" is the disjoint union of a finite number of semi-
algebraic sets, each of them semi-algebraically homeomorphic to an open hypercube
10,1[¢c R4, for some d € N (with 10,1[° being a point).

1. This exercise concerns the proof of this Cell Decomposition Theorem, which
is done by induction on n € N. Concerning the induction step, one considers
a semi-algebraic subset A ¢ R™*! and the polynomials fi(X.Y),...,f,(X,Y) of
R[X,Y] which define A. The proof is done showing that there exists a slicing
(Aidéij, 7 = 1,...li)iz1,..m of the family fi(X,Y),...,f;(X,Y) with respect to
the variable Y. Our purpose here is to clarify:
— the role in this proof of adding the derivatives with respect to Y to the family
fl (X’Y)’ oo Jcs(X?Y);
— how we can remove the roots &; ;(X) coming from these new polynomials
and obtain the right slicing for the initial family.

Consider the following two-variables polynomial
JXY) =X+ = D)X = (¥ +1)°)°
of R[X,Y] and the corresponding semi-algebraic subset of R?
A= {(xy) € R*| f(xy) = 0}
(a)
— If x > 0, the two roots of f(x,Y) are
yi(x) == vx+ land yr(x) = Vx+ 1.
— If x = 0, the two roots of f(x,Y) are
y1(0) = -l and y>(x) = L.
— If x < 0, the two roots of f(x,Y) are
yi(x) = —V=x—-Tand y,(x) = V-x - 1.
Note that for any x, we have y;(x) < y»(x), and for any x,y € R, f(x,y) > 0. So,
for any x € R, the sign matrix of f(x,y) is
y Iy y1(x) Iy y2(x) I
Signg(fxyn= (1 0 1 0 1).°



Since the sign matrix is constant with respect to x, we may a priori have a slicing
(A1 = R{&1(x) < &(0))) of f where £(x) := y;(x) for j = 1,2.

(b) The picture of A := {(x,y) € R* | f(x,y) = 0} is
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The functions y; and y, are discontinuous at 0. So (R,{&1(x) < &(x)}) with
&i(x) :==yj(x) for j = 1,2 is not a slicing of f.

The semi-algebraic subset

A= {(xy) €R?| fxy) =0 = f'(x.y)}
of R? can be represented as
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(c) The derivative with respect to Y of f(X,Y) is
FXY)==8X+ Y -DHX =Y + DY -Y +X).
For any x € R, the discriminant of the cubic polynomial ¥ — Y + x is A :=

4
x2 — —13. We have 3 cases:
27

4 4
-ifA<O0e& _‘,ﬁ <x< W,ﬁ’ the cubic polynomial ¥ — Y + x has 3
roots y3(x) < y4(x) < ys(x) and 2 sign changes.

[ 4
—ifA=0& x==+ 77 the cubic polynomial Y3 — ¥ + x has 2 roots

[4
y3(x) < y4(x) and 1 sign change. For x = — 77 the sign change is at

[4
y1(x), and for x = 4/ —, the sign change is at y,(x)

27
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—ifA>0e x< - ﬁorx> ﬁ,thecublcpolynomlalY —Y + x has

4
2 roots y3(x) < y4(x) and no sign change. It is > 0 whenever x < — 7

d < 0 wh > 1 ==.
an whenever x 77

We obtain the following cases:

[4
—ifx<-— 7 then y;(x) = —V—x+ 1 < y3(x) < y2(x) = Y—-x+ 1 and we



have
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S‘gnR(f’f):(—l 010 -10 1)

4 2 -1 2
—ifx = 55 = ——=.then y3(0) = — <) = - [+ 1<
27 33 T TN \3v3
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y4(x) = — < y2(x) = ,|——= + 1 and we have
! V3o \3v3

, , 1 1.1 011 1 01
SlgnR(f,f)=(_1 0 -1 01 0 -1 0 1)

[4
—if — > < x < 0, then y3(x) < y4(x) < yi(x) = —vV=x+1 < y5(x) <

y2(x) = V=x + 1 and we have
. N 1 111 1 O 1 1 1 O 1
Slg“R(f’f)‘(—l 01010120 ~10 1)
— if x = 0, then y3(0) = y1(0) = —1 < y4(0) = 0 < y2(0) = y5(0) = 1 and we
have
. N 1 01 1 1 01
SlgﬂR(f?f)_( _1 0 1 O _1 O 1 )

[4
—if0 < x < ﬁ,thenyl(x)z—\/}—l<y3(x)<y2(x)=\/}—1<
y4(x) < ys(x) and we have

. L (1 01 1 1 011 1 11
Slgnk(f’f)‘(—lo 0—1010—101)

4 2 2 -2
—ifx=4/—==—=,theny|(x) = - [—= -1 <y3(x) = — < y(x) =
2 e
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-1 <y4(x) = and we have
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[4
—ifx> E,thenyl(x) = —4/x—1 < y3(x) < y2(x) = Vx— 1 and we have

. (1 011 1 01
S‘g“R(f’f)z(—l 010 -1 0 1)

(d) The slicing of Alis:
- [ 4 -
— the interval A = }—oo, - ﬁ[ and the maps {£1,1(x) = y1(x) = —V—x+
1 <&2(x) = y3(x) <& 3(x) = y2(x) = V=x+1};

. [ 4 . -1
— the singleton A, = {— ﬁ} and the maps {&1(x) = y3(x) = % <

4



Ba(d) = (0 = - /% £1<Ba() = () = % < E4(0 = y2(0) =

i+1}'
3v3

- [ 4 - -
— the interval Az = }— ﬁ,O[ and the maps {&31(x) = y3(x) < &2(x) =

ya(x) < &3(x) = y1(x) = —V=x + 1 < &4(x0) = ys(x) < &5(x) = ya(x) =
V=x+1}%

— the singleton As = {0} and the maps {€21(0) = y1(0) = y3(0) = -1 <
£12(x) = 4(0) = 0 < £13(0) = ya(x) = y5(0) = 1};

— the interval A5 = ]O, w/%[ and the maps {&5,1(x) = y;(x) = —Vx -1 <
Es2(x) = y3(x0) < &53(0) = ya(x) = VX =1 < &4(x) = ya(x) < &55(x) =
ys(0h
the singleton Ag = { 1/~ ! and th Eor (0 = (1) = — 1| ———1 <

— the singleton Ag = 7 and the maps {&6,1(x) = y1(x) = 33
Esa() = () = —2 < Baa() = 12(0) = 1| —= — 1 < &) = () =

62 Y3 e y2 5 6.4 V4
1
$},

— the interval A; =

\/;,oo[ and the maps {&7(x) = yi(x) = —Vx -1 <
&12(x) = y3(x) < &3(x) = y2(x) = Vx - 1}

(e) Note that, for each A;, we have either I'(§; ;) € A or I'(§; ;) N A = 0. We can
only remove the &; ;’s coming properly from f’(x,y), i.e. the parts for which A
and A do not coincide. Thus we can remove the functions & 5, & 1, &3, &.1, &3,
53,4, 34,2, 55,2, 55,4, 55,5, 56,2, 56,4, 57,2, which correspond to the following curve
{(x,y) € R*|y? — y + x = 0} minus the 2 indicated points for x = 0:
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(f) The slicing of A is given by:
— the interval A; =]-c0,0[ and the maps {¢11(x) = y1(x) = = V=x + 1 < £15(x) = yo(x) = V=x + 1};
— the singleton A, = {0} and the maps {&,1(0) = y1(0) = —1 < &,(0) = y2(0) = 1};
— the interval A3 =]0,00[ and the maps {53,,(x) =y1(x) = —Vx = 1 < &a(x) = ya(x) = Vx - 1}.

. Let d € N. Consider the following semi-algebraic homeomorphisms:
oF : R4 - 10,114
(x1,..0xa) > (f(x), ... f(xa)

where
S R - 10,11
X+ V1+2x2
> —_—.
2VI1 + x2
G: 101[¢ > 10, + oo[
(X1, xa) 0 (g(x1), .. ..8(xa))
where
g: 10,1[ — 10, + oof
X
X - T
oH : R¢ — B4(0,1)
1 1
X1,....%0) & (1+”£”X1,---,1+”£”Xd)
where

Il = 1Cxrs o)l = Af2T + -+ x5



3. Let A C R" be semi-algebraic.:

(a) for any x € R", the set {|[x—y|| | y € A} is the image of A by the semi-algebraic
function y - ||x — y||. So it is semi-algebraic in R, which implies that it is a finite
union of points and open intervals of R. Moreover it is bounded from below by
0. So the infimum is well-defined in R.

(b) The graph of the function dist is
[(dist) = {(x,t) € R"' | (t 2 0) and (Vy € A, > < ||x — y||*) and (Ve € R, € >
0= TyeA P+e>llx—yP)
which is semi-algebraic. Moreover the function dist is continuous as composition
of continuous functions. It clearly vanishes on Clos(A) and is positive elsewhere.

4. Letn € N, S,(0,1) := {x € R™1 | x| = 1} be the n-hypersphere, and oo :=
(1,0,...,0) its north pole. Show that:

(a) the stereographic projection is the following application

p: Sa0.D\feo} — R
2 2

’Z—X()

(XO’“ .,)C,,) = ( X1yenn xn)

2- X0
which is clearly a semi-algebraic homeomorphism;

(b) A subset of § c R”" is unbounded if and only if it contains a sequence of
points (3% = (fc(lk), ..., ¥0y, o with at least one component )?Ek) which tend to oo
as k tends to infinity. Use the inverse of the preceding homeomorphism to show
that this correspond to a sequence of points x* = p~!(#*) which tends to the

north pole oco.



