Inhaltsverzeichnis zur Vorlesung: Reelle algebraische Geometrie 1

Prof. Dr. Salma Kuhlmann, Dr. Mickael Matusinski

WS 2009/2010!

Vorlesung (20. Oktober 2009)
Orderings

Ordering fields

Archimedean Fields

Vorlesung (22. Oktober 2009)
The field R(x)

Dedekind cuts

The orderings on R(z)

Order preserving embeddings

Vorlesung (27. Oktober 2009)
Preorderings an dpositive cones
A crucial Lemma

Several consequences

Vorlesung (29. Oktober 2009)
Ordering extensions

Quadratic extensions

Odd degree field extensions

Real closed fields

Vorlesung (3. November 2009)

Real closed fields

The algebraic closure of a real closed field
Factorization in R(x)

Vorlesung (5. November 2009)
Counting roots in an interval
Bounding the roots

Changes of sign

Vorlesung (10. November 2009)
Sturm’s Theorem

Vorlesung (12. November 2009)
Real closure
Order preserving extensions

Seite
Seite
Seite

Seite
Seite
Seite
Seite

Seite
Seite
Setie

Seite
Seite
Seite
Seite

Seite
Seite
Seite

Seite
Seite
Seite

Seite

Seite
Seite

w

o0 3 O Ot

11
11

13
13
14
15

17
18
19

21
22
24

25

28
29

!Die Seitenzahlen in Klammern geben die Seitenzahl fr die Suche mit Adobe Acrobat Reader an
(unter dem Men ANZEIGE — GEHE ZU - SEITE).

o~~~
— — N N



10.

11.

12.

13.

14.

15.

16.

17.

18.

Vorlesung (17. November 2009)
Basic version of Tarski-Seidenberg
Tarski Transfer Principle I

Tarski Transfer Principle 11

Tarski Transfer Principle 111

Tarski Transfer Principle IV

Lang’s homomorphism theorem

Vorlesung (20. November 2009)
Homomorphism Theorem
Hilbert’s 17th problem

Vorlesung (24. November 2009)

Normal form of semialgebraic sets
Geometric version of Tarski-Seidenberg
Formulas in the language of real closed fields

Vorlesung (26. November 2009)

Quantifier elimination for the theory of real closed fields
Definable sets

The Tarski-Seidenberg Principle

Vorlesung (1. Dezember 2009)
The Tarski-Seidenberg Principle

Vorlesung (3. Dezember 2009)
The Tarski-Seidenberg Principle (Fortsetzung)
Appendix 1: Order on the set of tuples of integers

Vorlesung (8. Dezember 2009)
Algebraic seits and constructible sets
Topology

Semialgebraic functions
Semialgebraic homeomorphisms

Vorlesung (10. Dezember 2009)
Cyclindical algebraic decomposition

Vorlesung (15. Dezember 2009)
Decomosition of semialgebraic sets

Vorlesung (17. Dezember 2009)
Semialgebraic connectedness
Semialgebraic connected components

Seite
Seite
Seite
Seite
Seite
Seite

Seite
Seite

Seite
Seite
Seite

Seite
Seite
Seite

Seite

Seite
Seite

Seite
Seite
Seite
Seite

Seite

Seite

Seite
Seite

32
33
34
34
35
35

37
39

41
43
44

46
48
49

52

26
o8

62
63
64
65

66

69

72
74

W w0 w0 w w W
\_/\_/\_/\Z“i\_/\_/



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Vorlesung (22. Dezember 2009)
Motivation
Closed and bounded semialgebraic sets

Vorlesung (7. Januar 2010)
Recall and plan
Proof of the Curve Selection Lemma

Vorlesung (12. Januar 2010)
Thom’s Lemma

Semialgebraic path connectedness
Semialgebraic compactness

Vorlesung (14. Januar 2010)
Semialgebraic dimension
Algebraic dimension

Vorlesung (19. Januar 2010)

Valued Z-modules and valued Q-vector spaces
Hahn valued modules

Hahn Sandwich Proposition

Vorlesung (21. Januar 2010)

Hahn Sandwich Proposition (Fortsetzung)
Immediate extensions

Valuation independence

Maximal valuation independence
Valuation basis

Vorlesung (26. Januar 2010)
Introduction

Pseudo-convergence and mayimality
Pseudo-limits

Cofinal subsets

Vorlesung (28. Januar 2010)
Pseudo-completeness

Vorlesung (2. Februar 2010)
Ordered abelian groups
Archimedean groups
Archimedean equivalence

Vorlesung (4. Februar 2010)
Examples

Valued fields

The natural valuation of an ordered field
The field of power series

Seite
Seite

Seite
Seite

Seite
Seite
Seite

Seite
Seite

Seite
Seite
Seite

Seite
Seite
Seite
Seite
Seite

Seite
Seite
Seite
Seite

Seite

Seite
Seite
Seite

Seite
Seite
Seite
Seite

5
75

79
80

85
36
38

91
94

95
97
98

99
99
100
101
102

104
104
106
107

108

112
113
113

115
115
116
117



29.

30.

Vorlesung (9. Februar 2010)
Hardy fields
The natural valuation of a Hardy field

Vorlesung (11. Februar 2010)
Convex valuations

Comparison of convex valuations

The rank of ordered fields

Convex valuations and convex subgroups

Seite
Seite

Seite
Seite
Seite
Seite

118
119

121
122
123
123



Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010

REAL ALGEBRAIC GEOMETRY LECTURE NOTES
(01: 20/10/09)

SALMA KUHLMANN

CONTENTS
1. Orderings 1
2. Ordered fields 2
3. Archimedean fields 3

Convention: When a new definition is given, the German name appears
between brackets.
1. ORDERINGS

Definition 1.1. (partielle Anordnung) Let T' be a non-empty set and let <
be a relation on I' such that:

(i) y<v Vyel,
(W) m<y2,2< = =72 YVy,rel,

(iti) <72, 2<13 =N <13 Yy, el

Then < is a partial order on I" and (T, <) is said to be a partially ordered
set.

Example 1.2. Let X be a non-empty set. For every A, B C X, the relation
A< B < ACDB,

is a partial order on the power set P(X) ={A: A C X}.

Definition 1.3. (totale Anordung) A partial order < on a set I' is said to
be total if

Vy,2€e€l’ v <y ory <.

Notation 1.4. If (T, <) is a partially ordered set and 71,72 € T', then we
write:

11 <72 € 7 <y and 1 # Vo,
272 S Y2 <M,
Y1 >72 € 2 <71 and 1 # V0.
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Examples 1.5. Let ' = R x R = {(a,b) : a,b € R}.

(1) For every (a1,b1), (az,b2) € R x R we can define
(a1,b1) < (a2,b2) <= a1 <az and by < bo.

Then (R x R, <) is a partially ordered set.
(2) For every (ai,b1), (az,b2) € R x R we can define
(al,bl) < (ag,bg) < [a1 < CLQ] or [a1 = a2 and bl < bg]
Then (R x R, <) is a totally ordered set. (Remark: the "1" stands

for "lexicographic").

2. ORDERED FIELDS
Definition 2.1. (angeordneter Korper) Let K be a field. Let < be a total
order on K such that:

(i) z<y = z+z2<y+z Va,y,z € K,

(i) 0<z, 0<y = 0< 2y Va,y e K.
Then the pair (K, <) is said to be an ordered field.

Examples 2.2. The field of the rational numbers (Q, <) and the field of the
real numbers (R, <) are ordered fields, where < denotes the usual order.

Definition 2.3. (formal reell Korper) A field K is said to be (formal) real
if there is an order < on K such that (K, <) is an ordered field.

Proposition 2.4. Let (K,<) be an ordered field. The following hold:

ea<b & 0<b—a Va,be K

o 0<a? Vae K

e a<b0<c = ac<be Va,b,c € K
e0<a<b=0<1/b<1/a Va,be K

e 0<n VneN

Remark 2.5. If K is a real field then char(K) = 0 and K contains a copy
of Q.
Notation 2.6. Let (K, <) be an ordered field and let a € K.

1 if a >0,
sign(a) :=¢ 0 ifa=0,
—1 if a < 0.
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la| := sign(a)a.
Fact 2.7. Let (K, <) be an ordered field and let a,b € K. Then

(1) sign(ab) = sign(a) sign(b),
(@) [ab| = [al|b],

(iii) |a+b|<|a|+]|b].

3. ARCHIMEDEAN FIELDS
Definition 3.1. (archimedischer Korper) Let (K, <) be a field. We say that
K is Archimedean if

Vae K dn €N such that a < n.

Definition 3.2. Let (I <) be an ordered set and let A CT'. Then

e A is cofinal (kofinal) in T if
Vyel 3§ € A such that v <.

e A is coinitial (koinitial) in T if
Vyel 3§ € A such that § <~.

e A is coterminal (koterminal) in I" if A is cofinal and coinitial in I'.

Example 3.3. Let (K <) be an Archimedean field. Then N is cofinal in K,
—N is coinitial in K and Z = —N U N is coterminal in K.

Remark 3.4.

- If (K,<) is an Archimedean field and Q C K is a subfield, then
(Q, <) is an Archimedean field.

- (R, <) is an Archimedean field and therefore also (Q, <) is.
Remark 3.5. Let (K,<) be an ordered field. Then K is Archimedean if
and only if Va,b € K* 4n € N such that

la| < n|b| and |b| < nlal.

Example 3.6. Let R[x| be the ring of the polynomials with coefficients in
R. We denote by ff(R[x]) the field of the rational functions of R[x], i.e.

FF(RI) = R(x) := {ggg - £(x), 9(x) € R[x] and g(x) # o} .
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Let f(x) = apx"+an,_1x" "1+ -+ar1x+ap € R[x] and let k¥ € N the smallest
index such that aj # 0 (and therefore actually f(x) = apx™ + - -+ + apx").
We define

f(x)>0 < a,>0

and then for every f(x),g(x) € R[x] with g(x) # 0 we define
o) 20 < flx)g(x)=0.

This is a total order on K = ff(R[x]) which makes (K, <) an ordered field.
We claim that (K, <) contains

(7) an infinite positive element, i.e.

JdA € K suchthat A>n VneN,
(74) an infinitesimal positive element, i.e.

Ja € K suchthat 0 <a<1/n VneNlN.

For instance the element x € K is infinitesimal and the element 1/x € K is
infinite. Therefore (K, <) is not Archimedean.
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1. THE FIELD R(X)
Let us consider again the field R(x) of the rational functions on R[x]:

Example 1.1. Let f(xX) = a,x" + ap_1x" 1+ + a1x+ap € R[x] and let
kE € N the smallest index such that a; # 0 (and therefore actually f(x) =
anX"™ + -+ apx”®). We define

fx) >0 < a; >0
and then for every f(x),g(x) € R[x] with g(x) # 0 we define
fx)

WX) 20 < f(x)g(x)>0.

This is a total order on

= @ X X X| an X
R = { £ 5 100,900 € Rl and g0 20

which makes (R(x), <) an ordered field.
Remark 1.2. By the definition above

fx)=x—-r<0 VreR, r>0.
Therefore the element x € R(x) is such that
O<x<r VreR, r>0.
We can see that there is no other ordering on R(x) which satisfies the above

property:
1
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Proposition 1.3. Let < be the ordering on R(x) defined in 1.1. Then < is
the unique ordering on R(x) such that

O<x<r VreR, r>0.

Proof. Assume that < is an ordering on R(x) such that

O<x<r VreR, r>0.

Then (see Proposition 2.4 of last lecture)
0<x™<r Ym=>=1 meN, Vr>0, reR.

Let f(x) = apx" + ap—1x"" 1 + -+ + apx* € R[x] with k& € N the smallest
index such that ag # 0. We want to prove that sign(f) = sign(ag).

Let g(x) = ap,x" % + - + app1x + ag. Then f(x) = xFg(x).

If £ =0, then f(x) = g(x). Otherwise f(x) # g(x), and since sign(f) =
sign(x*) sign(g) and sign(x*) = 1, it follows that sign(f) = sign(g). We want
sign(g) = sign(ax).

If g(x) = ax we are done. Otherwise let h(x) = a,x" 1 4. + ap ox +
ag+1. Then g(x) = ar+xh(x) and h(x) # 0. Since |x™| < 1 for every m € N,
we get

|h(x)| < |an| + - + |ag41] == ¢ >0, ceR.

Then

xh(x)| < elx| < |ax],

lak]

otherwise [x| > =X, contradiction.

Therefore sign(g) = sign(ay + xh) = sign(ay), as required (Note that one
needs to verify that |a| > |b| = sign(a + b) = sign(a)).
U

We now want to classify all orderings on R(x) which make it into an
ordered field. For this we need the notion of Dedekind cuts.

2. DEDEKIND CUTS

Notation 2.1. Let (I', <) be a totally ordered set and let L,U C T'. If we
write
L<U
we mean that
r<y Vexel Vyel.

(Similarly for L < U)

Definition 2.2. (Dedekindschnitt) Let (I', <) be a totally ordered set. A
Dedekind cut of (I', <) is a pair (L,U) such that L,U CT', LUU =T and
L<U.
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Remark 2.3. Since L < U it follows that LNU = &. Therefore the subsets
L,U form a partition of I' (The letter "L" stands for "lower cut" and the
letter "U" for "upper cut").

Example 2.4. Let (T, <) be a totally ordered set. For every v € T we can
consider the following two Dedekind cuts:

V- = (] - OO?’Y[? [7700[)
T+ = (] - OO?’Y]? ]7700[)

Moreover if we take L,U € {@,I'}, then we have two more cuts:

—0:=(2,I'), 4o0:=(I,9)
Example 2.5. Consider the Dedekind cut (L,U) of (Q, <) given by

L={zecQ:2<Vv2} and U={zeR:z>V2}.

Then there is no v € Q such that (L,U) =~ or (L,U) = 4.

Definition 2.6. (trivialen und freie Schnitte) Let (L,U) be a Dedekind cut
of a totally ordered set (I',<). If (L,U) = +oo or there is some v € I' such
that (L,U) = ~4 or (L,U) = v— (as defined in 2.4), then (L,U) is said to
be a trivial (or realized) Dedekind cut. Otherwise it is said to be a free
Dedekind cut (or gap).

Remark 2.7. A Dedekind cut (L,U) of a totally ordered set (I', <) is free
if L # @,U # &, L has no maximum element and U has no least element.

Definition 2.8. (Dedekindvollstinding) A totally ordered set (T, <) is said
to be Dedekind complete if for every pair (L,U) of subsets of I" with
L+# @,U # @ and L < U, there exists v € I' such that

L<y<U

Exercise 2.9. Show that a totally ordered set (I, <) is Dedekind complete
if and only if (', <) has no free Dedekind cut.
Examples 2.10.
- The ordered set of the reals (R, <) is Dedekind complete, i.e. the set
of Dedekind cuts of (R, <) is {a4 : a € R} U {—00, +00}.

- We have already seen in 2.5 that (Q, <) is not Dedekind complete.
We can generalize 2.5: for every a € R — QQ we have the gap given

bY(]_OO’O‘[mQa }moo[ﬂ@).

3. THE ORDERINGS ON R(X)
Theorem 3.1. There is a canonical bijection between the set of the orderings
on R(x) and the set of the Dedekind cuts of R.

Proof. Let < be an ordering on R(x). Consider the sets L = {v € R: v < x}
and U = {w € R: x < w}. Then C§ := (L, U) is a Dedekind cut of R. (Note
that if < is the order defined in 1.1 then C§ = 04+). So we can define a map
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{<:< is an ordering on R(x)} 7, {(L,U) : (L,U) is a Dedekind cut of R}

< — Cx

We now want to find a map

{(L,U) : (L,U) is a Dedekind cut of R} — {<:< is an ordering on R(x)}

which is the inverse of f. Every Dedekind cut of (R, <) is of the form —oo,
a—, at, +0o, with a € R. With a change of variable, respectively, y := —1/x,
y:=a—X,y:=X—a,y:=1/x, we obtain an ordering on R(y) such that

O<y<r VreR, r>0.

We have seen in 1.3 that there is only one ordering with such a property, so
we have a well-defined map from the set of the Dedekind cuts of (R, <) into
the set of orderings of R(x). It is precisely the inverse of f.

O

4. ORDER PRESERVING EMBEDDINGS

Definition 4.1. (ordungstreue Einbettung) Let (K, <) and (F, <) be ordered
fields. An injective homomorphism of fields

p: K — F

is said to be an order preserving embedding if
a<b = ¢(a) <o) Va,be K.

Theorem 4.2 (Holder). Let (K, <) be an Archimedean ordered field. Then
there is an order preserving embedding

p: K — R
Proof. Let a € K. Consider the sets
I, =] —o00,alxk N Q and F, :=[a,00[x N Q.

Then I, < F, and I, U F, = Q. So we can define

¢(a) := supl, =inf F, € R.
Since K is Archimedean, ¢ is well-defined. Note that

In+Ly={c+y:xe€l,ycl} Cly
and
Fa+FbgFa+b7

then ¢(a) + ¢(b) < p(a +b) and p(a) + ¢(b) = ¢(a +b). This proves that
¢ is additive. Similarly one gets p(ab) = ¢(a)p(b).
O
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1. PREORDERINGS AND POSITIVE CONES

Definition 1.1. (Prdordnung) Let K be a field and let T'C K such that
(i) TH+TCT,
(5) TT C T,
(i7i) a® € T for every a € K.

(Where T+T:= {Ifl + 191,10 € T} and TT := {tltg 11,1l € T})
Then T is said to be a preordering (or cone) of K.

Definition 1.2. (echte Priordnung) A preordering T of a field K is said to
be proper if —1 ¢ T.

Definition 1.3. (Positivkegel) A proper preordering T' of a field K is said

to be a positive cone if -T'UT = K, where —T :={—-t:t e T}.

Proposition 1.4. Let (K,<) be an ordered field. Then the set
P={xeK:x >0}

is a positive cone of K. Conversely, if P is a positive cone of a field K, then

Vz,y e K
<y & y—xrx <P

defines an ordering on K such that (K,<) is an ordered field.
Therefore for every field K there is a bijection between the set of the or-
derings on K and the set of the positive cones of K.

Notation 1.5. Let K be a field. We denote by >~ K? the set
{a3 4 +d2:neN g cK,i=1,...,n}.
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Exercise 1.6. Let K be a field. Then

(1) 3. K? is a preordering of K.

(2) 3> K? is the smallest preordering of K, i.e. if T is a preordering of
K, then S K2 CT.

(3) If K is real then —1 ¢ 3" K? (i.e. Y K? is a proper preordering).
(4) If K is algebraically closed then it is not real.

(5) Let (K, P) be an ordered real field, F' a field and

p:F — K

an homomorphism of fields. Then Q := ¢~!(P) is an ordering of F'
(Q is said to be the pullback of P).

(6) If P, @ are positive cones of K with P C @, then P = Q.

(7) In particular, if Y K? is a positive cone (or ordering: see 1.4) of K,
then it is the unique ordering of K.

Remark 1.7. Let K be a field with char(K) # 2. If T' C K is a preordering
which is not proper (i.e. —1 € T'), then T' = K.

Proof. For every x € K,
z+1\2 z—1\?
= -1 T.
= (5) +on (7))

Remark 1.8. Let 7 = {T; : i € I} be a family of preorderings of a field K.
Then

(4)

O

7T

el
is a preordering of K.

(i1) if Vi,j € I 3k € I such that T; UT; C T, then
Um
el

is a preordering of K.

10
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2. A CRUCIAL LEMMA

Lemma 2.1. Let K be a field and T a proper preordering of K. If a € K
and a ¢ T, then
T—al = {tl —atg : 11,12 € T}

is a proper preordering of K.

Proof. Since K2 C T, also K2 C T — aT. Clearly (T —aT) + (T — aT) C
T — aT. Moreover Vi, tg,t3,t4 €T,

(t1 — ato)(t3 — aty) = tit3 + a’toty — a(tity +tot3) € T —aT,

therefore (T'— aT)(T — aT) C (T — aT) and T — aT is a preordering of K.
If (T'— aT) is not proper, then —1 = ¢; — aty for some t1,ty € T with
to # 0, since T is proper. Therefore

1
a=t3(1+t1)t2 €T,
2

contradiction. O

3. SEVERAL CONSEQUENCES

Corollary 3.1. FEvery mazimal proper preordering of a field K is an ordering
(positive cone: see 1.4) of K.

Corollary 3.2. FEvery proper preordering of a field K is contained in an
ordering of K.

Proof. Let T be a proper preordering. Let

T={T :T'DT, T is a proper preordering of K }.

T is non-empty and for every ascending chain of T

T, CT, C...CTy C ...

by 1.8(i7) |JT;, is a proper preordering containing 7" and Zorn’s Lemma
applies.
Let P be a maximal element of 7. Then P is a maximal preordering of
K containing T', and by 3.1 P is an ordering.
O

Corollary 3.3. Let T be a proper preordering of a field K. Then

T= ﬂ {P:T C P, P positive cone of K}.

(C) It is obvious.

(D) Let a € K such that a is contained in every positive cone containing
T. If a ¢ T, then by Lemma 2.1 T'— aT is a proper preordering of
K. By Corollary 3.2, T'— aT is contained in a positive cone P of K.
Then —a € P and a ¢ P.

1"
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Corollary 3.4. (Characterization of real fields) Let K be a field. The fol-
lowing are equivalent:

(1) K is real (i.e. K has an ordering).
(2) K has a proper preordering.
(3) 3. K? is a proper preordering (i.e. —1 ¢ > K?2).

(4) VneN, Vay,...,a, € K

n
Za?:@ = a1=--+ =a, =0.
i=1

Proof. (1) = (2) = (3) obvious. We show now (3) < (4).
(=) Let Y1 , a? = 0 and suppose a; # 0 for some 1 < i < n. Say a,, # 0.

i=1"1
Then

n

al 2 Ap—1 2
<> +---+<") +1=0.
ap, p,

Therefore —1 € Y K?, contradiction.

and

(<) Suppose —1 € 3" K2, so
—1 = b4+,

for some s € N and by,...,bs € K. Then

L+bi+--+b2=0

and 1 = 0, contradiction.

To complete the proof note that if —1 ¢ > K? then > K? is a proper
preordering, and by Corollary 3.2 K has an ordering. This proves (3) = (1).
U

Corollary 3.5. (Artin) Let K be a real field. Then
ZK2 = ﬂ{P : P is an ordering of K}.
In other words, if K is a real field and a € K, then

a>2p0 for every ordering P < a € ZKQ.
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1. ORDERING EXTENSIONS

Definition 1.1. Let L/K be a field extension and P an ordering on K.
An ordering @ of L is said to be an extension (Fortsetzung) of Pif P C @
(equivalently Q N K = P).

Definition 1.2. Let L/K be a field extension and P an ordering on K. We
define

n
T(P) := {szy? :neN,p, e Py, € L}.
i=1

Remark 1.3. Let L/K be a field extension and P an ordering on K.
Then Ty (P) is the smallest preordering of L containing P.

Corollary 1.4. Let L/K be a field extension and P an ordering on K.
Then P has an extension to an ordering Q of L if and only if Tr(P) is a
proper preordering (i.e. if and only if —1 ¢ Tr(P)).

2. QUADRATIC EXTENSIONS

Theorem 2.1. Let K be a field, a € K and define L := K(\/a). Then an
ordering P of K extends to an ordering Q) of L if and only if a € P.

Proof.
(=) Assume Q is an extension of P, then a = (va)? € QN K = P.

(<) Let a € P (without loss of generality we can assume L # K and
Va ¢ K). We show that T7,(P) is a proper preordering (and then

the thesis follows by Corollary 1.4).
If not, there is n € N and there are x1,...,Zn,Y1,...,%n € K,

Pi,-..,Pn € P such that
1

13
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n
1= Zpi(ﬂﬁi +yiv/a)?
i1

n
= sz(xf + ay? + 2xyiv/a).
i=1

On the other hand —1 € K, and since every = € K(y/a) can be
written in a unique way as x = ky + ka+y/a with k1, kg € K, it follows
that

n
-1= sz(x? +ay?) € P,
i=1

contradiction.

3. ODD DEGREE FIELD EXTENSIONS

Theorem 3.1. Let L/K be a field extension such that [L : K] is finite and
odd. Then every ordering of K extends to an ordering of L.

Proof. Otherwise, let n € N the minimal odd degree of a field extension for
which the theorem fails.

Let L/K be a finite field extension such that [L : K] = n and let P be an
ordering of K not extending to an ordering of L.

Since char(K) = 0 Primitive Element Theorem applies and there is some
a € L'\ K such that

where f is the minimal polynomial of a over K. Therefore deg(f) = n,
f(a) =0 and for every g(x) € K|x] such that deg(g) < n, we have g(a) # 0.
By Corollary 1.4, —1 € T1(P), so

S
1+ piyi =0,
i=1
whereVi=1,...,s p, € P, p; #0, y; € L, y; # 0. Define
yi = gi(a),
where Vi=1,...,s 0% gi(x) € K[x] and deg(g) < n. Since
S
1+ Zpigi(a)Q =0,
i=1
it follows that

1+ pigi(x)? = f(0h(x),  h(x) € K[x].
=1

14
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Define d := max{deg(g;) : i = 1,...,s}. Then d < n and the polynomial
f(X)h(x) has degree 2d. The coefficient of x>? is of the form

r
1=1

with p; € P and b; € K, b; # 0, so

T
Zpibg >p 0.
1=1

Note that deg(h) = 2d —n < n (because d < n) and 2d — n is odd.
Let hi(x) be an irreducible factor of h(x) of odd degree and suppose 3 is
a root of hi(x). Then

deg(h1) = [K(8) : K] < [L: K] = n.

Since hi(8) = 0, also

FBRB) =1+ pigi(B)* = 0.
=1

Therefore Y5, pigi(8)? = -1 € Tk (g)(P) and by Corollary 1.4 P does not
extend to an ordering of K (/). This is in contradiction with the minimality
of n. (]

4. REAL CLOSED FIELDS

Definition 4.1. (reell abgeschlofier Korper) A field K is said to be real
closed if

(1) K is real,

(2) K has no proper real algebraic extension.

Proposition 4.2. (Artin-Schreier, 1926) Let K be a field. The following
are equivalent:

(1) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic
extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K? U —(K?).
Proof. (i) = (ii). Trivial.

(ii) = (¢ii). Let P be an ordering which does not extend to any proper
algebraic extension. By Theorem 3.1, it follows that K has no proper alge-
braic extension of odd degree.

Let b € P. Then b = a? for some a € K, otherwise by Theorem 2.1 P
extends to an ordering of K (\/l;), which is a proper algebraic extension of
K.

15
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Since K = PU(—P) and P = {a? : a € K}, we get (iii).

(i1i) = (i). Note char(K) = 0 and /=1 ¢ K since K is real.

Then K (y/—1) is the only proper quadratic extension of K: if b € K but
Vb ¢ K (i.e. bis not a square), then b = —a? for some a # 0,a € K, and
K(Vb) = K(v=1Va?) = K(v/-1).

Claim. Every proper algebraic extension of K contains a proper qua-
dratic subextension.

Note that if Claim is established we are done: indeed it follows that no
proper extension can be real since —1 is a square in it.

Let L/K a proper algebraic extension. Without loss of generality assume
that [L : K] is finite and so even. By Primitive Element Theorem we can
further assume that L’ is a Galois extension.

Let G = Gal(L/K), |G| = [L : K] = 2°m, a > 1, m odd. Let S be
a 2-Sylow subgroup of G (i.e. |S| = 2%) and let F := Fix(S). By Galois
correspondence we get:

[E:K]=[G:S]=m odd.

Therefore by assumption (iii) we must have [F: K] =[G : S]=1,s0 G =S5
is a 2-group (|G| = 2%) and it has a subgroup G; of index 2. By Galois
correspondence, defining F} := Fix(G1) we get a quadratic subextension of
L/K. 0

16
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1. REAL CLOSED FIELDS

We first recall Artin-Schreier characterization of real closed fields:
Proposition 1.1. (Artin-Schreier, 1926) Let K be a field. The following
are equivalent:

(1) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic
extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K? U —(K?).
Corollary 1.2. If K is a real closed field then
K?={d®:a € K}

is the unique ordering of K.

Proof. Since K is a real closed field, by (i7) it has an ordering P which does
not extend to any proper algebraic extension.
Let b € P. Then b = a? for some a € K, otherwise P extends to an

ordering of K (v/b), which is a proper algebraic extension of K.
Therefore P = K?2. (]

Remark 1.3. We denote by >_ K? the unique ordering of a real closed field
K, even though we know that >~ K2 = K2, to avoid any confusion with the
cartesian product K x K.
Corollary 1.4. Let (K,<) be an ordered field. Then K is real closed if and
only if

(a) every positive element in K has a square root in K, and

(b) every polynomial of odd degree has a root in K.

Examples 1.5. R is real closed and Q is not.

1

17
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2. THE ALGEBRAIC CLOSURE OF A REAL CLOSED FIELD

Lemma 2.1. (Hilfslemma) If K is a field such that K? is an ordering of K,
then every element of K(\/—1) is a square.

Proof. Let x = a++/—1b€ K(v/—1):=L, a,b € K, b+# 0. We can suppose
b> 0. We want to find y € L such that x = y2.

K? is an ordering = a® +b% € K2. Let c € K, ¢ > 0 such that
a’ 4 b* =2

Since a? < a2+ b2 =c? |a]<c¢,s0c+a>0,c—a>0(—c<a<c).
Therefore 3(c £ a) € K% Let d,e € K, d,e > 0 such that

%(c—l—a):d2
§(c—a):e2.
So
d_\/c+a 0 — c—a
V2 V2

Now set y := d + ev/—1. Then

y' = (d+ev-1)’

=d*> + (ev/—1)? + 2dev/—1
:%(c+a)—%(c—a)+2%\/m\/jl
:%a+%a+\/m\/—7

=a+V2y—1

=a+bv/-1

O

Theorem 2.2. (Fundamental Theorem of Algebra) If K is a real closed field
then K(v/—1) is algebraically closed.

Proof. Let L O K(y/—1) be an algebraic extension of K(y/—1). We show
L=K(/-1).

Set G := Gal(L/K). Then [L: K| = |G| =2%m, a > 1, m odd.

Let S < G be a 2-Sylow subgroup (|S| = 2%), and F' := Fix(S). We have

[F:K]=[G:S]=m odd.

Since K is real closed, it follows that m =1, so G = S and |G| = 2%. Now

[L:K(-1]K(-1):K]=|[L:K]=2"
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Therefore [L : K(y/—1)] = 2¢71. We claim that a = 1.
If not, set G1 := Gal(L/K(v/—1)), let S be a subgroup of G of index 2,
and F1 = FlX(Sl> So

[Fl : K(\/jl)] - [Gl : Sl] - 2,

and Fj is a quadratic extension of K (y/—1). But every element of K(v/—1)
is a square by Lemma 2.1, contradiction. O

Notation. We denote by K the algebraic closure of a field K, i.e. the
smallest algebraically closed field containing K. -
We have just proved that if K is real closed then K = K(v/—1).

3. FACTORIZATION IN R[X]

Corollary 3.1. (Irreducible elements in R[x] and prime factorizaction in
R[x]). Let R be a real closed field, f(x) € R[x|. Then

(1) if f(x) is monic and irreducible then
fx)=x—a or f(x)=(x—a)>+b* b#0;
(2)

n

) = d][x— a)

=1 7
Proof. Let f(x) € R[x] be monic and irreducible. Then deg(f) < 2.
Suppose not, and let & € R a root of f(x). Then

[R(a) : R] = deg(f) > 2.

—

(x—dj)*+b7, by #0.

1

On the other hand, by 2.2
[R(a) : R < [R: R] =2,

contradiction.
If deg(f) =1, then f(x) = x — a, for some a € R.

If deg(f) = 2, then f(x) = x% — 2ax + ¢ = (x — a)? + (¢ — a?), for some
a,c € R.
We claim that ¢ — a? > 0. If not,

c—a’<0 = —(c—a2)20 = a?—-¢c>0,

the discriminant 4(a? — ¢) > 0, f(x) has a root in R and factors, contra-
diction.
Therefore (¢ — a?) € R? and there is b € R such that (c — a?) = b% # 0.
O

19



Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 20

4 SALMA KUHLMANN

Corollary 3.2. (Zwischenwertsatz : Intermediate value Theorem) Let R be

a real closed field, f(x) € R[x]. Assume a < b € R with f(a) < 0 < f(b).
Then 3¢ € R, a < ¢ < b such that f(c) =0

Proof. By previous Corollary,

f)=d]J(x—a) [J(x—dj)*+03
i=1 j=1
=d][ 1)),
=1

where [;(x) :=x —a;, Vi=1,...,n and q(x) == [[}2, (x - dj)? + 3.

We claim that there is some k € {1,...,n} such that ly(a)l;(b) < 0. Since

sign(f) = sign(d H51gn sign(q) and sign(q) =1,
if we had that

sign(l;(a)) = sign(l;(b)) Vie {l,...,n},
we would have

sign(f(a)) = sign(f(b)),
in contradiction with f(a)f(b) < 0.

For such a k,
lk(a) <0 <Ii(b),
i.e.
a—ap<0<b—ag

and ¢ := ay, € ]a, b is a root of f(x). O

Corollary 3.3. (Rolle) Let R be a real closed field, f(x) € R[x], Assume

that a,b € R, a < b and f(a) = f(b) =0. Then Ic € R, a < ¢ < b such that
fe)=0
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Let R be a real closed field (for all this lecture).

1. COUNTING ROOTS IN AN INTERVAL

Definition 1.1. Let f(x) € R[x], a € R,

f(x) = (x=a)"h(x)

with m € N, m > 1 and h(a) # 0 (i.e. (x —a) is not a factor of h(x)).
We say that m is the multiplicity (Vielfachheit) of f at a.

Corollary 1.2. (Generalized Intermediate Value Theorem: Verstirkung Zwis-
chenwertsatz). Let f(x) € R[x]; a,b € R, a < b, f(a)f(b) < 0 (i.e.
fla) <0 < f(b) or f(b) < 0 < f(a)). Then the number of roots of f(x)
counting multiplicities in the interval |a,b] C R is odd (in particular, f has
a root in la,b).

Proof. By Corollary 3.1 of 5th lecture (3/11/09), we can write

with g(x) = dg(x), where d € R is the leading coefficient of f(x) and ¢(x) is
the product of the irreducible quadratic factors of f(x).
Note that g(x) has constant sign on R (i.e. g(r) > 0Vr € Ror g(r) <
0 Vr € R). Without loss of generality, we can suppose d = 1 (and so g(x) is
positive everywhere).
Set Vi=1,...,n
{Li(x) = (x—¢)™

li(x) :==x — ¢

If I;(x) changes sign in ]a, b[ we must have /;(a) < 0 < [;(b). Note that L;(x)
changes sign in ]a, b[ if and only if /;(x) does and m; is odd.
In particular if L;(x) changes sign we must have L;(a) < 0 < L;(b) as well.
1
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Let us count the number of distinct ¢ € {1,...,n} for which L;(a) < 0 <
Li(b). We claim that this number must be odd. If not, we get an even
number of ¢ such that L;(a)L;(b) < 0, so their product would be positive, in
contradiction with the fact that f(a)f(b) < 0.

Set

Hie{l,...,n}: Li(a) <0< Ly(b)}| =M > 1 odd.
Say these are Ly, ..., Ly. So the total number of roots of f in ]a, b[ counting
multiplicity is
Z::ml—l-'“—i-mM.
Since m; is odd Vi = 1,..., M and M is odd, it follows that ) is odd as

well.

O

2. BOUNDING THE ROOTS
Corollary 2.1. Let f(x) € R[x], f(x) = dX™ + dp1x™ "1 + -+ +dp. Set
0
D:=1+ Z
1=m—1

d;
7 € R.

Then

(i) a€ R, f(a) =0 = |a| < D;
(i.e. f has no root in | — 0o, —D]U [D + o0 )

(i) y € [D, +oo[ = sign(f(y)) = sign(d);

(iii) y € | — 00, ~D[ = sign(f(y)) = (—1)™ sign(d).
Proof.
(1) For every i =0,...,m — 1 set b; := % and compute for |y| > D:
Fly) = dy™ (L + by~ + -+ boy™™).
Now
bm—1y™" o+ boy ™" < (Ibmoa] + -+ [b) DT < 1.

(ii) If y > D then f(y) = d[][(y — a;)"™q(y) where deg(q) is even and
y—a; > 0.

(797) If y < —D then (y —a;)™ < 0 if and only if m; is odd. Moreover m

is odd if and only if > m; is odd.
(]

Corollary 2.2. (Rolle’s Satz) Let f(x) € R[x], a < b € R such that f(a) =
f(b). Then there is c € R, a < ¢ < b such that f'(c) = 0.

22
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Proof. We can suppose f(a) = f(b) = 0 (otherwise if f(a) = f(b) =k # 0,
we can consider the polynomial (f — k)(x)).
We can also assume that f(x) has no root in Ja, b[. So

fx) = (x=a)™(x = b)"g(x),

where g(x) has no root in [a, b], and by Corollary 1.2 (IVT) g(x) has constant
sign in [a,b]. Compute

where

Therefore

Since g1(a)g1(b) < 0, by the Intermediate Value Theorem (1.2) ¢1(x) has
a root in Ja, b and so does f'(x). O

Corollary 2.3. (Mittelwertsatz: Mean Value Theorem) Let f(x) € R[x],
a <be R. Then there is c € R, a < ¢ < b such that

since F'(a) = F(b). O

Corollary 2.4. (Monotonicity Theorem). Let f(x) € R[x], a < b € R. If
1! is positive (respectively negative) on la,b|, then f is strictly increasing
(respectively strictly decreasing) on [a, b].

Proof. If a < a1 < by < b, by the Mean Value Theorem there is some ¢ € R,
a1 < ¢ < by such that

f(b1) = fla1)

b1 — a1

file) =
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3. CHANGES OF SIGN

Definition 3.1.
(1) Let (c1,...,¢p) a finite sequence in R. An index i € {1,...,n} is a
change of sign (Vorzeichenwechsel) if ¢;c;y1 < 0.

(73) Let (c1,...,cn) a finite sequence in R. After we have removed all
zero’s by the sequence, we define

Var(ci,...,cn) = [{i € {1,...,n} : i is a change of sign}|
=|{ie{l,...,n}:cicit1 <O}
Theorem 3.2. (Lemma von Descartes) Let f(x) = apx™ + -+ + ag € R[],
an # 0. Then
{a€ R:a>0and f(a) =0} < Var(ay,...,a1,ao).
Proof. By induction on n = deg(f). The case n = 1 is obvious, so suppose

n > 1.
Let r be the smallest index such that a, # 0. By induction applied to

f/(X) = nanxn—l 4+t T(ITXT_I’

we know that there are Var(nan,...,ra,) = Var(ap,...,a,) many positive
roots of f/. Set ¢ := the smallest such positive root of f’ (by convention
¢ := +oo if none exists)

Apply Rolle’s Theorem: f has at most 1+ Var(ay,...,a,) positive roots.

Case 1. If the number of positive roots of f is strictly less than 1 +
Var(ay, ..., a,), then the number of positive roots of f is < Var(ay,...,a,) <
Var(ay, ...,ar,a9) and we are done.

Case 2. Assume f has exactly 1 + Var(ay,...,a,) positive roots. We
claim that in this case

1+ Var(ay,...,a,) = Var(ay, ..., ar,ap).

We observe that f has a root a in 0, ¢[.
For 0 < = < ¢ we have that sign(f/(z)) = sign(a,) # 0, so f is strictly
monotone in the interval [0, ¢] (Monotonicity Theorem). So

ar >0 = ap=f(0) < f(a) =0 = ap <0,
ar <0 = ap=f(0)> f(a) =0 = ap > 0.

In both cases aga, < 0 and the claim is established. O

Corollary 3.3. Let f(x) € R[x] a polynomial with m monomials. Then f
has at most 2m — 1 roots in R.

Proof. Consider f(x) and f(—x). By previous Theorem they have both at
most m — 1 strictly positive roots in R. So f(x) has at most 2m — 2 non-zero
roots and therefore at most 2m — 1 roots in R. (]
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Let R be a real closed field.

1. STURM’S THEOREM

Definition 1.1.

(1) Let f € R[x] be a non-constant polynomial, deg(f) > 1. The Sturm
sequence of f is defined recursevely as a sequence (fo,..., f,) of
polynomials in R[x] such that:

fo:=Ff, fi=1Ff and
fo= figx — f2
J1=feq2 — f3

fi-1 = figi — fit1
fr—2 = fr—IQ'r—l - fr
fr—1 = frar,

where f;,q; € R[x], fi # 0 and deg(f;) < deg(fi-1).
(73) Let z € R. Set

Vf(m) = Var(fo(z),..., fr(2)).

We recall that after we have removed all zero’s by the sequence
(c1,...,¢n), we defined Var(eq,...,c,) as the number of changes of
sign in (c1,...,¢p), ie.

Var(ci,...,cn) = [{i € {1,...,n} : ¢icit1 < 0}
Theorem 1.2. (Sturm 1829). Let a,b€ R, a <b, f(a)f(b) #0. Then

{era<e<b, fle) =0} = Vi(a) = Vi(b).
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Proof. For the proof we study the function V(x), x € R, locally constant

except around finitely many roots for fy,..., f,.
(1) Suppose ged(fo, f1) = 1.
(2) Hilfslemma = 3§ such that
-1 ifzx<ec
|x —c] < = sign(fo(z)fi(z)) =sign(zx —c)=¢ 0 ifz=c
1 ifzx>ec

(3) Vie{l,...,r—1}: ged(fi—1, fi) =1 and

fi-1=qifi — fi+1,
So if fi(c) = 0 then
fi—i(c) fix1(c) < 0.

with fi1

£0.

(4) Let fi(c) =0fori € {0,...,r—1}. Then f;11(c) # 0 (sosign(fi+1(c)) = *1).

We shall now compare for f;(c) =0, i € {0,.

sign(/fi(x))

for |x — ¢| < § and count.

sign(fir1(x))

We first examine the case 7 = 0.

c,r—1}

Observe that sign(fi(z)) # 0 VY such that |z — ¢| < § because of
Hilfslemma. So in particular sign(fi(z)) is constant for |z —¢| < §

and it is equal to sign(fi(c):

r—c r=c T — cy
Jo(z) —sign(fi(c)) 0 sign(f1(c))
f1(z) sign(f1(c)) | sign(f1(c)) | sign(fi(c))
contribution to Vy(x) 1 0
Now consider i € {1,...,r — 1} and use (2), i.e.
fl(d) =0 —= fifl(d)fi+1(d) <0:
x—d_ x=d x—dy
fia(x) —sign(fi+1(d)) | —sign(fi+1(d)) | —sign(fit1(d))
fi(z) 0
fir1(z) sign(fiy1(d)) | sign(fir1(d)) | sign(fir1(d))
contribution to Vy(x) 1 1 1

Therefore for a < b, V(a)—V;(b) is the number of roots of f in ]a, b|.

Let us consider now the general case. Set

gi ‘= fz/f'r

1=0,...,7r




Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010

REAL ALGEBRAIC GEOMETRY LECTURE NOTES (07: 10/11/09) 3

The sequence of polynomials (go, . . ., gr) satisfies the previous con-
ditions (1) — (4). We can conclude by noticing that:

(1) Var(go(x),...,gr(x)) = Var(fo(x),..., fr(z)) (because fi(z) =
fr(@)gi(2)),

(#1) f = fo and go = f/f- have the same zeros (f, = ged(f, f'),
so g = f/fr has only simple roots, whereas f has roots with

multiplicities.)
(]

For i =0,...,r set d; := deg(f;) and ¢; := the leading coefficient of f;.
Set

Vi(—o00) := Var((=1)% o, (=1)% 1, ..., (=1)"¢,)

Vi(+00) := Var(po, 1, .., ¢r).
Then we have:

Corollary 1.3. The number of distinct roots of f is Vy(—o0) — Vi(400).
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1. REAL CLOSURE

Definition 1.1. Let (K, P) be an ordered field. R is a real closure of (K, P)
if
(1) R is real closed,
(2) RO K, R| K is algebraic,
(3) P=Y_R?’NK (i.e. the order on K is the restriction of the unique
order R to K).

Theorem 1.2. Every ordered field (K, P) has a real closure.

Proof. Apply Zorn’s Lemma to

L:={(L,Q): L|K algebraic, QN K = P}.
U

Proposition 1.3. (Corollary to Sturm’s Theorem) Let K be a field. Let Ry,
Ry be two real closed fields such that

KCR; and K CRy
with

P=Kn> R=Kn> R

(i.e. Ry and Ry induce the same ordering P on K ).
Let f(x) € KIx]|; then the number of roots of f(x) in Ry is equal to the
number of roots of f(x) in Rs.
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2. ORDER PRESERVING EXTENSIONS

Proposition 2.1. Let (K, P) be an ordered field. Let R be a real closed field
containing (K, P). Let K C L C R be such that [L : K| < co. Let S be a
real closed field with

p: (K,P) — (S, 252)

an order preserving embedding. Then ¢ extends to an order preserving em-

bedding

Y (L, Y RPNL) < (S,) 5%

Proof. We recall that if (K, P) and (L, Q) are ordered fields, a field homo-
morphism ¢: K — L is called order preserving with respect to P and
if p(P) C Q (equivalently P = ¢~ 1(Q)).

By the Theorem of the Primitive Element L = K («).

Consider f = MinPol(a| K). Since a € R, ¢(f) has at least one root 3
in S,

Li=K() <& oE)B),

so there is at least one extension of ¢ from K to L.

Let 1,...,%, all such extensions of ¢ to L = K(«), and for a con-
tradiction assume that none of them is order preserving with respect to
Q=L N> R2 Then 3by,...,b. € L, b; >0 (in R) and 9;(b;) < 0 (in 9)
Vi=1,...,r.

Consider L' := L(v/b1,...,/b.) C R. Since [L : K] < 00, also [/, K] < oo.

So let 7 be an extension of ¢ from K to L’. In particular 7|, is one of the

’(ﬁfS. Say 7‘|L = 1[)1.
Now compute for by € L,

Y1(br) = 7(b1) = T((V0r)*) = (r(V/b))* € Y 52,

in contradiction with the fact that 1 (b1) < 0.
O

Theorem 2.2. Let (K, P) be an ordered field and (R, Y R?) be a real closure
of (K, P). Let (S, >.5?%) be a real closed field and assume that

e (K.P) = (5,357
1s an order preserving embeding. Then ¢ has a uniquely determined extension
P (R, Y RY) = (S, ) 8Y).
Proof. Consider
L:={(L,¥): KCLCR;¥: LS8, ¢, =¢}

Let (L,%) be a maximal element. Then by Proposition 2.1 we must have
L =R.
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Therefore we have an order preserving embedding ¢ of R extending ¢

Pv: R — S.

We want to prove that v is unique. We show that ¢(a) € S is uniquely
determined for every a € R.

Let f = PolMin(a| K) and let oy < --- < @, all the real roots of f in R.
Let B1 < --- < B, be all the real roots of f in S. Since ¢): R — S is order
preserving, we must have ¥ («;) = f; for every ¢ = 1,...,r. In particular
a = q; for some 1 < j <7 and ¢(a) =35 € S. O

Corollary 2.3. Let (K, P) be an ordered field, Ry, Ry two real closures of
(K, P). Then exists a unique

p: Rl — Ry

K-isomorphism (i.e. with o), = id).

Corollary 2.4. Let R be a real closure of (K, P). Then the only K -automorphism
of R is the identity.

Corollary 2.5. Let R be a real closed field, K C R a subfield. Set P :=
K N Y R? the induced order. Then

K™ = {a € R: a is algebraic over K}

is relatively algebraic closed in R and is a real closure of (K, P).

Proof. It is enough to show that K79 is real closed.
K79 is real because Q := K"9 N 3" R? is an induced ordering.
Let a € Q, a=0% b€ R. Sop(x) =x%>—ac K"[x] has a root in R.
One can see that b is algebraic over K (so b € K"%9).

Similarly one shows that every odd polynomial with coefficients in K9
has a root in K79, (]

Corollary 2.6. Let (K, P) be an ordered field, S a real closed field and
¢: (K, P) < S an order preserving embedding. Let L|K an algebraic ex-
tension. Then there is a bijective correspondence

{extensions : L — S of p} — {eatensions Q of P to L}

N OIS
Proof.

(=) Let v: L = S an extension of . Then indeed Q := ¥~1(>_ 5?) is
an ordering on L. Furthermore ¥ 1(3>S?)NK = ¢~ 1(3.5%) = P.
So the extension v induces the extension Q.
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(<) Conversely assume that @ is an extension of P from K to L (QNK =
P). Note that if R is a real closure of (L, Q) then R is a real closure
of (K, P) as well.

Now apply Theorem 2.2 to extend ¢ to o: R — S. Set ¢ := o),
which is order preserving with respect to ). So the map is well-
defined and surjective. To see that it is also injective, assume

Yr:L— S, i L— S, gy =y =g

which induce the same order

Q=v'Q_s)=v3'0_5%
on L. Let R be the real closure of (L, Q). Apply Theorem 2.2 to 1,
and 19 to get uniquely determined extensions
c1: R—S, o09: R— S,
of 11 and o respectively.
But now o1, = 02, = ¢ By the uniqueness part of Theorem

2.2 we get 01 = 02 and a fortiori ;1 = 9.
O

Corollary 2.7. Let (K, P) be an ordered field, R a real closure, [L : K| < co.
Let L = K(a), f = MinPol(a| K). Then there is a bijection

{roots of f in R} — {extensions Q of P to L}.
Proof. If B is a root we consider the K-embedding
po: L =R
such that () = B. Set Q := ¢~ 1(3_ R?) ordering on L extending P. [

Example 2.8. K = Q(v/2) has 2 orderings P; # P,, with v/2 € P, V2 ¢
P,. The Minimum Polynomial of v/2 over Q is p(x) = x> — 2.
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1. BASIC VERSION OF TARSKI-SEIDENBERG

Basic version: Let (R, <) be a real closed field. We are interested in a
system of equations and inequalities (Gleichungen und Ungleichungen) for
X = (X1,...,X,) of the form

fi(X) <10
S(X) := :

fe(X) <1 0

where Vi=1,...,k <; € {>,>,=,#} and f;(X) € Q[X] or f;(X) € R[X].
We say that S(X) is a system of polynomial equalities and inequalities with
coefficients in Q (or with coefficients in R) in n variables.

Theorem 1.1. (Tarski-Seidenberg Theorem: Basic Version) Let S(T'; X) be
a system with coefficients in Q in m+n variables, with T = (T1,...,T,,) and
X =(Xy,...,X,). Then there exist S1(T), ..., S| (T) systems in m variables
and coefficients in Q such that:

for every real closed field R and every t = (t1,...,ty,) € R™ the sys-
tem S(t; X) of polynomial equalities and inequalities in n variables and co-
efficients in R obtained by substituting T; with t; in S(T,X) for every i =
1,...,m, has a solution x = (x1,...,x,) € R" if and only ift = (t1,...,tm) €
R™ is a solution in R for one of the systems S1(TL),...,Si(T).

Example 1.2. Let m =3 and n =1, so T = (T1,73,73) and X = X, and

S(T, X) = {T1X2 L TX +T3=0
1
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Let R be a real closed field and (t1,t2,t3) € R3. Then S(¢; X) has a solution
X in R if and only if

(t1 20 A t2—dtit3=0) VvV (t1=0 A t2#0) V (1 =t3=1t3=0)

| | |
S1(Th, T, T3) So(Th,T>,T3) S3(T1,T5,T3)

Concise version:
l
VI [(3X:S(T:X)) & (\/Si(D) ]
=1

Remark 1.3. The proof is by induction on n.

The case n = 1 is the heart of the proof and we will show it later.

For now, let us just convince ourselves that the induction step is straight-
forward.

Assume n > 1, so

S(Ith?Xn) - S(Iaxlv"'7Xn—l;Xn)-

By case n = 1 we have finitely many systems S1 (T, X1, ..., Xp—1),..., 51T, X1,..., Xn_1)
such that

for any real closed field R and any (t1, ..., tm, T1,...,Tn_1) € R™T" 1 we
have
l
31X, : S(tl, ey bm, X1, - .,xn_l;Xn) — \/ Si<t1, oy tmy 1, ,.’L'n_1>.
i=1

By induction hypothesis on n:
for every fixed i, 1 < ¢ <[, 3 systems S;;(T), j = 1,...,1; such that: for
each real closed field R and each t € R™ the system
SZ(L X17 s 7Xn—1)

has a solution (x1,...,2,_1) € R"~! if and only if ¢ is a solution for one of
the systems S;;(T); j =1,...,1;.
Therefore for any real closed field R and any t € R™

S(t; Xq,...,X,) has a solution z € R" if and only if

t is a solution to one of the systems {Sij(I); i=1,....0, j=1,...,

2. TARSKI TRANSFER PRINCIPLE I

Theorem 2.1. Let S(T,X) be a system with coefficients in Q in m + n
variables. Let (K,<) be an ordered field. Let Ry, Re be two real closed
extensions of (K,<). Then for every t € K™, the system S(t,X) has a
solution x € R} if and only if it has a solution z € RY.
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Proof. Let t € K™ C R* N RY'. Then there are systems S;(T) (i =1,...,1)
with coefficients in Q and variables 17, ..., T,, such that

l
Jdx € Ry : S(t,z) «— t satisfies \/Si(z) +— Jx € Ry: S(t,z).
i=1

3. TARSKI TRANSFER PRINCIPLE II

Theorem 3.1. Let (K, <) be an ordered field, Ry, Ry two real closed exten-
sions of (K,<). Then a system of polynomial equations and inequalities of
the form

fi(X) <10
S(X) = :

Jr(X) < 0
where Vi=1,...,k <; €{=,>,=,#} and fi(X) € K[X1,...,X,],

has a solution x € R} <= it has a solution x € RY.

Proof. Let t1,...,tmn be the coefficients of the polynomials fi,..., fx, listed
in some fixed order. Replacing the coefficients ¢y, ..., t,, by variables T1, ..., T,
yields a system o (T, X) in m + n variables with coefficients in Q (in fact in

7) for which
oty,. .. tm, X) = S(X).

Now we can apply Tarski Transfer I. O

4. TARSKI TRANSFER PRINCIPLE III

Theorem 4.1. Suppose that R C Ry are real closed fields. Then a system
of polynomial equations and inequalities with coefficients in R

f1(X) <10
S(X):=1q
fi(X) <% 0
whereVi=1,...,k <; € {>,>=#} and fi(X) € R[X1,..., X,

has a solution x € R} <=> it has a solution x € R".

Proof. Apply Tarski Transfer II with K = Ry = R. U
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5. TARSKI TRANSFER PRINCIPLE IV

Theorem 5.1. Let R be a real closed field and (F,<) an ordered field ex-
tension of R. Then a system of polynomial equations and inequalities of the
form
f1(X) <10
S(X) = :

fe(X) <x 0

whereVi=1,...,k <, € {=,> =,#} and fi;(X) € R[Xq,...,X,]

has a solution x € F™ <= it has a solution x € R".

Proof. Let R; be the real closure of the ordered field (F, <) and apply Tarski
Transfer II1. O

6. LANG’S HOMOMORPHISM THEOREM

Corollary 6.1. Suppose R and Ry are real closed fields, R C Ri1. Then a
system of polynomial equations of the form

fir(X)=0
S(X) =4 filz) € R[X1,...,X,]
fr(X) =0
has a solution x € R} if and only if it has a solution x € R".
Proof. Apply Tarski Transfer II1. O

The previous Corollary is equivalent to the following:

Theorem 6.2. (Homomorphism Theorem I). Let R and Ry be real closed
fields, R C Ry. For any ideal I C R[X], if there exists an R-algebra homo-
morphism

v: RIX]/I — Ry
then there exists an R-algebra homomorphism

v: R[X]/I — R.

Proof. By Hilbert’s Basis Theorem, I is finitely generated, say I = (fi,..., fx),
with f1,..., fr € R[X]. Consider the system

f1(X)=0
S(X) := :

fe(X) =0

Claim. There is a bijection

{z € RY solution to S(X)} «+— {¢: R[X]/I — R; R-algebra homomorphism}
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Proof of the claim:
Let z € R} be a solution to S(X); then the evaluation homomorphism
¢: RIX]/I — R
f+1 = f(z)
is well-defined and is an R-algebra homomorphism.
Conversely: assume that

v: RIX]|/I — Ry
is an R-algebra homomorphism. Then for e = (e1,...,ey) and f = > a X =

Dty e, X1t X5 € RIX],

p(f+1) = ap(X1+D" - o(Xn+ D) = f(o(X1+1),...,0(Xn+1)).

In other words set (z1,...,x,) € R} to be defined by =1 = ¢(X; +
I),....zy = (X, + I), then (z1,...,2,) is a solution to S(X) and the
R-algebra homomorphism ¢ is indeed given by point evaluation at x =
(1‘1, .. .,xn) € R?

Now apply Corollary 6.1. O
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1. HOMOMORPHISM THEOREMS

Theorem 1.1. (Homomorphism Theorem I) Let R C Ry be real closed fields
and I C R[z] an ideal. Then
Rz]

3 R-alg. hom. p: — — R; = 3 R-alg. hom. ¢:

I — R.

Rlz|
I

Corollary 1.2. (Homomorphism Theorem II) Suppose R and Ry are real
closed fields, R C R1. Let A be a finetely generated R-algebra. If there is an
R-algebra homomorphism

©: A — Ry
then there is an R-algebra homomorphism

P: A — R.

Proof. We want to use Homomorphism Theorem I. For this we just prove
the following:

Claim 1.3. A is a finitely generated R-algebra if and only if there is a
surjective R-algebra homomorphism ¥: R[x1,...,x,] — A (for some n €
N).

Proof.

(=) Let A be a finitely generated R-algebra, say with generators ry, ..., 7.

Define ¥: R[x1,...,x,] — A by setting J(x;) := r; for every i =
1,...,n, and ¥(a) := a for every a € R.

(<) Given a surjective homomorphism ¥: R[x1,...,x,] — A set r; :=
9(x;) € A for every i = 1,...,n. Then {ry,...,r,} generate A over

R.
O

So we get A = R[x]/I with I = ker?.
(]
1
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We can see that Homomorphism Theorem II implies T-T-III:

Let R C Ry be real closed fields. S(X) with coefficients in R has a solu-
tion z € R} if and only if it has a solution z € R".

We first need the following:
Proposition 1.4. Let

fi(x) <10
S(x) =1

fr(x) <0

be a system with coefficients in R, where <; € {>,>,=,#}. Then S(x) can
be written as a system of the form

for some g1,...,95,9 € R[x].
Proof.

e Replace each equality in the original system by a pair of inequalities:

_ fi=0
iz {—fi20

e Replace each strict inequality

fi=0
fi #0

e Finally collect all inequalities f; £ 0,i=1,...,t as

Ji>0 bY{

t
g:=][f#o0
i=1

Now we show that Homomorphism Theorem II implies T-T-III:

Proof. Let R C Ry and let S(x) be a system with coefficients in R:

J1(x) <10
S(x):=19

fr(x) <r 0

Rewrite it as
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filx) =0
S(x) =
fs (K) =0
g(x) #0

with fi(x),g(x) € R[x1,...,%n].
Suppose z € R} is a solution of S(x). Consider

RIX1,..., X, Y1,...,Y}, 7]
<}/12—fl,...,}/k?—fk;gZ—1>7

A=
which is a finitely generated R-algebra. Consider the R-algebra homo-
morphism ¢ such that
@: A — Ry
Xi — T
Y=/ fi(z)
Z— 1/g(z).
By Homomorphism Theorem II there is an R-algebra homomorphism

: A — R. Then 9(X1),...,¥(X,) is the required solution in R™.
U

2. HILBERT’S 17" PROBLEM

Definition 2.1. Let R be a real closed field. We say that a polynomial
f(x) € R[x] is positive semi-definite if f(z1,...,2,) 20V (21,...,2,) €
R™. We write f > 0.

We know that
fe) R = f>o0

Now take R = R. Conversely, for any f € R[z] is it true that

f=0onR" 5 fe ZR(X)Q. (Hilbert’s 17"" problem).

Remark 2.2.

(1) Hilbert knew that the answer is NO to the more natural question
FERK, f>0mR" = fe> Rx??

(2) If n =1 then indeed f >0 on R = f = fZ+ f2.

39



Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 40

4 SALMA KUHLMANN

(3) More generally Hilbert showed that:

Set Py, := the set of homogeneous polynomials of degree d in
n-variables which are positive semi-definite

and set > dn := the subset of Py, consisting of sums of squares.
Then

Pin=> 4, = n<2or d=2 or (n=3andd=4).
Note: only d even is interesting because

Lemma 2.3. 0 # f € Y. R[x]?2 = deg(f) is even. More precisely, if

f=3F 2 with fi € Rx] fi #0, then deg(f) = 2max{deg(f;) :
i=1,...,k}.

Hilbert knew that Ps3 \ Y 5 # 0.
The first example was given by Motzkin 1967:
m(X,Y,Z) =X+ Y422 +Y22* - 3X2Y? 72
Theorem 2.4. (Artin, 1927) Let R be a real closed field and f € R[x], f > 0

on R™. Then f €Y R(x)2.

Proof. Set F = R(x) and T = > F? = " R(x)?. Note that since R(x) is
real, > F? is a proper preordering.
We want to show:

f¢T = Jze€R": f(z) <0.

Since f € F'\ T, by Zorn’s Lemma there is a preordering P O T of F
which is maximal for the property that f ¢ P. Then P is an ordering of F
(see proof of Crucial Lemma 2.1 of Lecture 3).

Let <p be the ordering such that (F,<p) is an ordered field extension of
the real closed field R (since R is a real closed field, it is uniquely ordered

and we know that (F,<p) is an ordered field extension). By construction
f ¢ P so f(z) <0. Consider the system

S {f@ <0, fx) e Rk
This system has a solution X in F' = R(x), namely

X=(Xi,....,X,) Xi€Rx=F
thus by T-T-IV 3z € R" with f(z) < 0. O
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1. NORMAL FORM OF SEMIALGEBRAIC SETS
Let R be a fixed real closed field and n > 1. We consider 3 operations on
subsets of R™:
(1) finite unions,
(2) finite intersections,
(3) complements.
Definition 1.1.

(7) The class of semialgebraic sets in R™ is defined to be the smallest
class of subsets of R™ closed under operations (1), (2), (3), and which
contains all sets of the form

{z € R": f(z) <0},
where f € R[z] = R[x1,...,z,] and < € {>, >, =, #}.

(73) Equivalently a subset S C R™ is semialgebraic if and only if it is a
finite boolean combination of sets of the form

{z € R": f(z) >0},
where f(z) € R[z].
(7i7) Consider

fi(z) <10
(*) S()=4

fe(z) <x 0

with f;(z) € Rlz]; <; € {>,>,=,#}.
The set of solutions of S(z) is precisely the semialgebraic set
1
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k

S:=(zeR": filz) < 0}.

1=1

The solution set S of a system (x) is called a basic semialgebraic
subset of R".

(v) Let fi1,..., fx € R[z] = R[z1,...,2,]. A set of the form

Z(fi,. ., fx) ={z e R": fi(z) =--- = fu(z) =0}

is called an algebraic set.

(v) A subset of R" of the form
U= {2 e R flz) > 0).
U(fiy. ooy fr) i ={z € R": fi(z) >0,..., fr(z) >0}
=U(f)n---NU(fr)

is called a basic open semialgebraic set.

(vi) A subset of R™ of the form
K(f):={z e R": f(z) > 0},
K(fis-os o) = K(f1) 0= O K(fr)

is called a basic closed semialgebraic set.

Remark 1.2.

(a) An algebraic set is in particular a basic semialgebraic set.
(0) Z(f1,--- Ji) = Z(f), where f =371, f7.
Proposition 1.3.

(1) A subset of R™ is semialgebraic if and only if it is a finite union of
basic semialgebraic sets.

(2) A subset is semialgebraic if and only if it is a finite union of basic
semialgebraic sets of the form

Z(f) a u(flv"')fk)
(normal form).

Proof. (1) ((2) is similar).

(<) Clear.

(=) To show that the class of semialgebraic sets is included in the class of
finite unions of basic semialgebraic sets it suffices to show that this
last class is closed under finitary boolean operations: union, inter-
section, complement.
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The closure by union is by definition.

Intersection:

(UiCs) N (U;D5) = Ui, (CiNDj).
Complement: It is enough to show that the complement of

{zeR": f(z) <0} <e€{z>=#}

is a finite union of basic semialgebraic, since

(CND)=C°UD’ and (CUD)®=C°ND"

Let us consider the possible cases for < € {>, >, =, #}:
{zeR": f(z) 201 ={z € R": —f(z) > 0}
{zeR": f(z) >0t ={zeR": f(z) =0}U{z € R": —f(z) > 0}
{zeR": f(z) =0} ={z e R": f(z) #0}.

2. GEOMETRIC VERSION OF TARSKI-SEIDENBERG

We shall return to a systematic study of the class of semialgebraic sets
and its property in the next lectures.

For now we want to derive an important property of this class from Tarski-
Seidenberg’s theorem:

Theorem 2.1. (Tarski-Seidenberg geometric version)
Consider the projection map

m: Rt = R™ x R —s R™
(t, z) = t

Then for any semialgebraic set A C R™™ 7(A) is a semialgebraic set in
R™.

Proof. Since

W(UAz‘) :UW(Az'),

3 (2

it sufficies to show the result for a basic semialgebraic subset A of R™"™; i.e.
show that 7(A) is semialgebraic in R™.

Let uw := (u1,. .., uq) be the coefficients of all polynomials fi(T, X),..., fu(T,X) €
R[Ty, ..., T, X1, ..., Xy] of the system S(T, X) = S describing A.

So we can view S as a system of polynomial equations and inequalities
S(U, T, X) with coefficient in Q such that A is the set of solutions in R™*"
of the system S(u,T, X), i.e.
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A={(t,z) € R™"" : (t,z) is solution of S(u,T,X)}.

By Tarski-Seidenberg’s theorem, we have systems of polynomial equalities
and inequalities with coefficients in Q, say

Si(w,T), ..., 8(u,T),

such that for any t € R™ the system S(u, ¢, X) has a solution z = (z1,...,2,) €
R™ if and only if (u,t) is a solution for one of Sy (u,T),...,S;(u,T), i.e.

m(A) ={te€ R™ : 3z € R" with (t,z) € A}
={te R™:3xz € R" s.t. (t,z) is a solution of S(u, T, X)}
= {t € R™ : the system S(u,t, X) has a solution z € R"}
={t € R™:tis a solution for one of the S;(u,T),i=1,...,1}

= U {t € R™ : t is a solution of S;(u,T)}.
i=1,...1

O

We shall show many important consequences such as the image of a semi-
algebraic function is semialgebraic and the closure and the interior of a semi-
algebraic set are semialgebraic.

Definition 2.2. Let A C R™ and B C R". We say that f: A —» B, is a
semialgebraic map if A and B are semialgebraic and

L(f)={(z,y) e R"™":z€ A ye B, y= f(z)}
is semialgebraic.

3. FORMULAS IN THE LANGUAGE OF REAL CLOSED FIELDS

Definition 3.1. A first order formula in the language of real closed
fields is obtained as follows recursively:

(1) if f(z) € Q[z1,...,2,], n = 1, then
f(2) =20, f(z) >0, f(z) =0, f(z)#0
are first order formulas (with free variables z = (x1,...,2,));
(2) if ® and ¥ are first order formulas, then

PAT, dVE, -

are also first order formulas (with free variables given by the union
of the free variables of ® and the free variables of ¥);
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(3) if @ is a first order formula then

dz® and VzP
are first order formulas (with the same free variables as ® minus {z}).

The formulas obtained using just (1) and (2) are called quantifier free.
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1. QUANTIFIER ELIMINATON FOR THE THEORY OF REAL CLOSED FIELDS

We recall from last lecture the definition of first order formulas in the
language of real closed field:

Definition 1.1. A first order formula in the language of real closed
fields is obtained as follows recursively:

(1) if f(z) € Q[z1,...,2n], n > 1, then
flz) 20, f(z) >0, f(z) =0, f(z)#0

are first order formulas (with free variables z = (x1,...,2,));
(2) if @ and ¥ are first order formulas, then

PAY, dVE, O

are also first order formulas (with free variables given by the union
of the free variables of ® and the free variables of ¥);

(3) if @ is a first order formula then

dx® and Vad

are first order formulas (with same free variables as ® minus {z}).

The formulas obtained using just (1) and (2) are called quantifier free.

Definition 1.2. Let ®(zq,...,x,) and ¥(zq,...,z,) be first order formu-
las in the language of real closed fields with free variables contained in
{z1,...,2n}. We say that ®(z) and ¥(x) are equivalent if for every real
closed field R and every r € R",

®(r) holds in R <= ¥(r) holds in R.
1
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If ® and ¥ are equivalent, we write & ~ V.

Remark 1.3. (Normal form of quantifier free formulas). Every quantifier
free formula is equivalent to a finite disjunction of finite conjuctions of for-
mulas obtained using construction (1).

Proof. Like showing that every semialgebraic subset of R" is a finite union (=
finite disjunction) of basic semialgebraic sets (= finite conjuction of formulas
of type (1)). O

Theorem 1.4. (Tarski’s quantifier elimination theorem for real closed fields).

Every first order formula in the language of real closed fields is equivalent to
a quantifier free formula.

Proof. Since all formulas of type (1) are quantifier free, it suffices to show
that

C := the set of first order formulas which are equivalent to quantifier free formulas

is closed under constructions of (2) and (3).
Closure under 2. If ® ~ ® and ¥ ~ ¥’ then
PVY ~ VY
PAT ~ AT
-0 ~ @

Closure under 3. It is enough to consider dx ®, because

Ved «— -3z (D).

We claim that if ® is equivalent to a quantifier free formula then Iz ® is
equivalent to a quantifier free formula. Since

31‘(‘1’1V~--\/(I)k) ~ (3m<I>1)V~--\/(3x<I>k),

using the normal form of quantifier free formulas (Remark 1.3), we can
assume that ® is a finite conjunction of polynomial equations and inequali-
ties (i.e. a system S(T,x)).

Applying Tarski-Seidenberg’s Theorem:

l
Iz S(T;z) < \/ Si(b),
i=1
there exist finitely many finite conjunctions of polynomial equalities and
inequalities ¥, ..., (corresponding to the systems Si(t),...,S;(t)) such
that

dz ® ~ V- VY.

47
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2. DEFINABLE SETS

Definition 2.1. Let ®(T, X) a first order formula with free variables
Ty,..., Ty, X1,..., X, Let R be a real closed field and ¢ € R™. Then
®(t,X) is a first order formula with parameters in R, and t1,...,tp,
are called the parameters.

Definition 2.2. Let R be a real closed field, n > 1. A subset A C R" is said
to be definable (with parameters from R) in R if there is a first order for-
mula ®(¢, X)) with parameters t € R™ and free variables X = (X1,..., X)),
such that

A={reR":d(tr)is true in R}.

Corollary 2.3. For any real closed field R the class of definable sets (with
parameters) in R coincides with the class of semialgebraic sets.

(For the second part of the lecture, see file of Lecture 13, from 1.4).
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THE TARSKI-SEIDENBERG PRINCIPLE

Recall. Let R be a real closed field, a € R. Define

1 if a>0,
sign(a) :=<¢ 0 if a=0,
-1 if a<0.

The Tarski-Seidenberg Principle is the following result.

Theorem 1. Let f;(T,X) = him,(D)X™ + ...+ hio(T) for i = 1,..

be a sequence of polynomials in n+1 variables (I’ = (T3,...,T,),X)

coefficients in Z. Let € be a function from {1, ..., s} to {—1,0,1}. Then there
exists a finite boolean combination B(T) := S1(T)V...V.S,(T) of polynomial
equations and inequalities in the variables T7,...,T,, with coefficients in Z

such that for every real closed field R and for every t € R™, the system

stgn(fi(t, X)) = €(1)

sign(fs(t, X)) = €(s)

has a solution = € R if and only if B(¢) holds true in R.

Notation I. Let f1(X),..., fs(X) be a sequence of polynomials in R[X]. Let

x1 < ... < zy be the roots in R of all f; that are not identically zero.
Set xg:= —00 , Ty = 400

Remark 1. Let m := maz(degf;;i =1,...,s). Then N < sm.
Set Ik I:]l‘k,Ik_H[ s k= O, c. ,N

Remark 2. sign(fi(z)) is constant on [, for each i € 1,...,s, for each

keo,..., N.
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Set sign(fi(Ix)) := sign(fi(z)), x € Iy

Notation II. Let SIGNg(f1,. .., fs) be the matrix with s rows and 2N + 1

columns whose " row (for i = {1,...,s}) is

sign(fi(1o)), sign(fi(x1)), sign(fi(11)), - . ., sign(fi(zn)), sign(fi(In)).

i.e. SIGNR(fi1,...,fs)isan sx(2N +1) matrix with coefficients in {—1,0,1}
and

signfi(lo) signfi(x1) ... signfi(ry) signfi(In)
SIGNa(f1, . f.) = SignJ:CQ([o) Sign]jz(l’l) e Signf?(mN) SigmeUN)
signfo(lo) signfu(z1) ... signfu(an) signfo(ly)

Remark 3. Let fi,...,fs € R[X] and e: {1,...,s} — {—1,0,+1}. The
system

sign(f1(X)) = e(1)

sign(fo(X)) = €(s)

has a solution x € R if and only if one column of SIGNg(fi,..., fs) is
e(1)
precisely the matrix

(s)

Notation III. Let Mpyg := the set of Px() matrices with coefficients in
{-1,0,+1}.
Set Wy, 1= the disjoint union of M, (o141, for I =0,...,sm.

Notation IV. Let ¢ : {1,...,s} — {—1,0,1}. Set

e(1)
W(e) = {M € Wy, : one column of Mis | : |} C W

€(s)
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Lemma 2. (Reformulation of remark 3 using notation IV) Let e : {1,...,s} —
{—1,0,+1}, R real closed field and f;(X),..., fs(X) € R[X] of degree < m.
Then the system

sign(f1(X)) = €(1)

sign(fs(X)) = €(s)
has a solution z € R if and only if SIGNg(fi1,..., fs) € W(e).

By Lemma 2 (setting W’ = W (e)), we see that the proof of Theorem 1
reduces to showing the following proposition:

Main Proposition 3. Let fi(T,X) = him,(T)X™ + ... + hio(T) for
1 =1,...,s be a sequence of polynomials in n+1 variables with coefficients
in Z, and let m := maz{m;|i = 1,...,s}. Let W' be a subset of W, ,,. Then
there exists a boolean combination B(T) = S1(T) V...V .S,(T) of polynomial
equations and inequalities in the variables T with coefficients in Z, such that,
for every real closed field R and every t € R", we have

SIGNR(fi(t, X),..., fs(t,X) € W' < B(t) holds true in R.

The proof of the main Proposition will follow by induction from the next
main lemma, where we will show that SIGNg(f1,..., fs) is completely de-
termined by the “"SIGNg"of a (possibly) longer but simpler sequence of
polynomials, i.e. SIGNg(f1,..., fe—1,fi,01,--,9gs), where f, = the deriva-
tive of f, and g1, ..., gs are the remainders of the euclidean division of f, by

fi, ooy feot, f;, respectively.

First we will state and prove the lemma and then prove the proposition.
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Main Lemma. For any real closed field R and every sequence of polynomials
fi,-.., fs € R[X] of degrees < m, with f; nonconstant and none of the
fi,- -+, fs—1 identically zero, we have

SIGNRg(fi,...,fs) € Wi is completely determined by

SIGNg(fi,- - feo1, fas 1y -+ -5 Gs) € Wagm, where f, is the derivative of f,,
and ¢, ..., gs are the remainders of the euclidean division of f, by f1,..., fs_1, f;,
respectively.

Equivalently, the map ¢ : W, — Wi,

SIGNR(f1, - foets forG1s- s gs) — SIGNR(f1, ..., fs)
is well defined.
In other words, for any (fi,..., fs), (F1,...,Fs) € R[X],
SIGNR(fi,. s feet, fir g1, gs) = SIGNg(Fy, ..., Fs_ 1, F., Gy, ...,GY)
= SIGNg(f1,..., fs) = SIGNR(Fy, ..., Fy).

Proof. Assume w = SIGNg(f1,. .., feet, for g1, .., gs) is given.
Let 21 < ... < zy, with N < 2sm, be the roots in R of those polyno-

mials among fi,..., fs_1, f;, g1, - ..,gs that are not identically zero. Extract
from these the subsequence z;, < ... < z;,, of the roots of the polynomials
Ji,- -, fs—1, fs. By convention, let z, := 29 = —00 ; T4,,,, = Ty41 = +00.

Note that the sequence z;, < ... < x;,, depends only on w.
For k =1,..., M one of the polynomials fi,..., fs_1, f; vanishes at x;,. This
allows to choose a map (determined by w)

9:{1,...7M}_>{17""8}
such that  fo(z;,) = gor (wi,)
(This goes via polynomial division fs = fo)qak)+90k), Where fou (i) = 0)-

Claim I. The existence of a root of f, in an interval |z;,, ;. ,[, for & =
0,..., M depends only on w.
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Proof of Claim I.
Case 1: fs has a root in | — 0o, z;, [ (if M # 0) if and only if
sign(fs( | — 00, 21 ))sz’gn(gg(l)(xil)) =1,
equivalently iff
sign(fs( | — 00, xq| )) = signfs(z;,).
(=) We want to show that if sign(f,( ] — oo, 21])) = signf(z;,),
then f; has a root in | — 0o,z |.
Suppose on contradiction that fs has no root in | — oo, z;, [, then
sign fs must be constant and nonzero on | — 0o, x;, ], S0 we get
0 # si/gnfs( | —o00,x1[ ) = signfs( | — oo, x4] ) = signfs(zy,) =
signfy( ] —o0,a1])
= signfy(]—o0,x1[) = signf.(]—oo, 1] ), a contradiction [because
on | —oo,—D]: signf(zr) = (—1)"sign(d) for f =dax™ + ...+ dy
and signf (z) = (1) 'sign(md) for f = mdz™ '+ ... |
see Corollary 2.1 of lecture 6 (05/11/09)].
(<) Assume that fs has a root (say) x € | — 00, x4 |.
Note that signfs(x;,) # 0 [otherwise fs(ziy) = f(x;,) = 0, so (by
Rolle’s theorem) f. has a root in ]z, z;,[ and the only possibility is
x1 € |z, z;, [ (by our listing), but then z; = x;,, a contradiction].
Note also that fs cannot have two roots (counting multiplicity) in

| — o0, x| [otherwise f+ will be forced to have a root in | — oo, x|,

a contradiction as before} )
So
—signfs( | — o0, 2| ) = signfs( |z, 2 ) = signfs(xy),
also (by same argument as before)
—sz’gnfs( ] — o0, z] ) = sz’gnf;( | — 00, zq ),

therefore, we get

signf,( ] — oo, x1] ) = signfs(z;,). [ (case 1)
Case 2: Similarly one proves that: f, has a root in |z;,,, +oo[ (if M # 0) if
and only if

SZgn(f;( ]xNa +OO[ ))sign(gg(M)(xiM)) = -1,
(i.e. iff signf.( Jzn, +ool ) = —signfs(x,,) # 0)-
Case 3: f, has a root in |z;,, x5, [, for k=1,..., M — 1, if and only if
Sign(ge(k) (ﬂfz’k))Sign(ge(k+1)($ik+1)) = -1
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equivalently iff
Slgnfs(xlk) = _Signf8<xik+1)'
(Proof is clear because if fs has a root in |z;,, T, ., [, then this root is
of multipilicty 1 and therefore a sign change must occur.)

Case 4: f; has exactly one root in | — oo, +oo[ if M = 0. O (claim I)

Claim II. SIGNg(f1,..., fs) depends only on w.

Proof of Claim II.

Notation: Let y; < ... < yr, with L < sm, be the roots in R of the
polynomials fi,..., fs. As before, let yg := —00, yr11 := 400.

Set Ik = (ylmyk—o—l); k= 0, cey L.

Define

p {0, L+1} — {0,... M+1U{(kk+1)|k=0,..., M}

. k %f Y = Tiy,
(kyk+1) if y €]ay,, 2, |
Note that by Claim I, L and p depends only on w. So, to prove claim II it is
enough to show that SIGNRg(f1,..., fs) depends only on p and w.

Also,

signfi(lo)  signfi(yr) ... signfilyr)  signfi(lL)
SIGNg(f1, ) f) = : : : :
r(fi fs) signfs_1(ly) signfs_1(y1) ... signfs_1(yr) signfs_1(I1)
Signfs(jo) Signfs(yl) CIE Signfs(yL) Signfs<IL)

is an sx (2L + 1) matrix with coefficients in {—1,0,+1}.

Casel: 7=1,...,s—1
For 1 € {0,..., L+ 1} we have

o if p(l) =k = sign(f;(w)) = sign(f;(zs,)),
o if p(I) = (k. k + 1) = sign(f;(w)) = sign(f;( Jxi,, zip,,[)).

So, sign(fj(yl)) is known from w and p, for all j = 1,...;s — 1 and [ €
{0,...,L+1}.
We also have

e if p(l)=kor (k,k+1) = sz'gn(fj( Y, Y [ )) = sign(fj( iy s Tig o | ))
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So, sign(f;( Jyi, yir1] ) is known from w and p, for all j =1,...,s — 1 and
leA{0,...,L+1}.
Thus one can reconstruct the first s — 1 rows of SIGNg(fi, ..., fs) from w.

Case 2: j =s
For [ € {0,..., L+ 1} we have

o if p(l) =k = sign(fs(yl)) = sign(ga(k)(l‘z‘k));
o if p(l) = (k,k + 1) = sign(fs(w)) = 0.

So, sign(fs(y)) is known from w and p, for alll € {0,..., L+1} and therefore
can also be reconstructed from w.

Now remains the most delicate case that concerns sign(fs( Jyi, yia[ )):

For 1 € {0,...,L + 1} we have

o ifl £0, p(l) = k =

sign(fs(lyo, ynl ) = {Sign(ge(k)(x"k)> ititis #0,

sign(f,( |zi,, z;,,,[)) otherwise.
[This is because (p(l) = k if y, = x;,, so):

- if gory(74,) = fs(xi,) # 0, then by continuity sign is constant, and
- if gogy (wi,) = fs(w,) = 0, then on |z, z;, [ :

fs/ Z O = fs(xzk) < fs(y) fOI' Yy < Lk41, S0 fs(y) > 07
f; S 0= _fs(xik) < _fs(y) for Yy < Lk+1, SO fs(y) <0
(using lemma (Poizat): In a real closed ordered field, if P is a noncon-

stant polynomial s.t. P >0 on [a,b], a < b, then P(a) < P(b))}

o ifl # 0, p(l) = (k. k+1) = sign(fo(Jy, yn[)) = sign(fo(]zi,, 2i,00)).

[We argue as follows (noting that p(l) = (k,k + 1) if y €|z, 24, [ ):

55

sign(fs(Jyi, yi+1[)) is constant so at any rate is equal to sign ( fs( Jyi, 24, [ ),

now using the fact that fs(y;) = 0 and the same lemma (stated above)
we get, for any a € |y, x5, [ :

fo> 0= fw) < fi(a), so f(a) >0,
f; < 0= —fi(u) < —fs(a), so fs(a) <O

. . I
i.e. fs has same sign as fs.}

o if | = 0= sign(fs(]—o0,y1])) = sign(f,(]—o0,21])) (as before). O
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Main Proposition. Let f;(T,X) 1= hjm,(L)X™ + ... 4+ hio(T) for ¢ =
1,...,s be a sequence of polynomials in n+1 variables with coefficients in
Z, and let m := max{m;|i = 1,...,s}. Let W’ be a subset of W,,. Then
there exists a boolean combination B(T) = S1(L) V...V .S,(T) of polynomial
equations and inequalities in the variables T with coefficients in Z, such that,
for every real closed field R and every t € R", we have

SIGNg(fi(t,X),..., fs(t, X)) € W < B(t) holds true in R.

Proof. Without loss of generality, we assume that none of fi,..., f, is
identically zero and that h; ,, () is not identically zero for i = 1,...,s. To
every sequence of polynomials (fi, ..., fs) associate the s-tuple (m, ..., my),

where deg(f;) = m;. We compare these finite sequences by defining a strict
order as follows:

o= (my,...,my) < T = (my,...,m)

if there exists p € N such that, for every ¢ > p,

-the number of times ¢ appears in ¢ = the number of times ¢ appears in 7,
and

-the number of times p appears in 0 < the number of times ¢ appears in 7.

This order < is a total order ! on the set of finite sequences.

[Example: let m = max({my,...,ms}) = ms (say), o and 7 be the sequence
of degrees of the sequences (f1,..., fe—1, fur 915+, 9s) and (f1,..., fe_1, fs)
respectively, i.e.

g~ (fh"'7f8—17f;7gl»"'7gs>7

T~ (fro fs1, fo)

!This was a mistake in the book Real Algebraic Geometry of J. Bochnak, M. Coste,
M.-F. Roy. For corrected argument, see Appendix I following this proof.

56



Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010 57

REAL ALGEBRAIC GEOMETRY LECTURE NOTES (14: 03/12/2009) 2
then o < 7'.]
Let m = max{my,...,ms}.

In particular using p = m we have:
(deg(fl), . deg(fe_1),deg(f.),deg(qr), . .. ,deg(gs)) < (deg(fl), . ,deg(fs)).

If m = 0, then there is nothing to show, since SIGNg (f1 (t, X),..., fs(t, X)) =
SIGNg (hLO(i), e hsjo(z_f)) [the list of signs of “constant terms"}.

Suppose that m > 1 and m, = m = maxz{my,...,my}. Let W' C Wasm be
the inverse image of W' C W, under the mapping ¢ (as in main lemma).

Set W” = {SignR(fla' : 'afsflvfslagla' e 795) ‘ SignR(fl:' : '7f8) € WI}

-Case 1. hj,,(t) #0foralli=1,... s

By the main lemma, for every real closed field R and for every ¢t € R" such

that h;m,(t) #0fori =1,...,s, we have
SIGNR(fl(LX)) . afs(th)) € W/

=

SIGNr(fi(t, X), ..., foor(t, X), fo(t, X), (£, X), ..., g5(t, X)) € W,

where f, is the derivative of f, with respect to X, and gi,..., g, are the re-
mainders of the euclidean division (with respect to X) of fs by fi,..., fs_1, f;,
respectively (multiplied by appropriate even powers of Ay, ..., Rsm,, T€-
spectively, to clear the denominators).

Now, the sequence of degrees in X of fi,..., fe_1, fo, 91, - - -, gs is smaller than
[the sequence of degrees in X of fi,..., fsie.] (mq,...,ms) w.r.t. the order
<.

-Case 2. At least one of h;,, (t) is zero

In this case we can truncate the corresponding polynomial f; and obtain
a sequence of polynomials, whose sequence of degrees in X is smaller than
(mq,...,ms) w.r.t. the order <.

This completes the proof of main propostion and also proves the Tarski-
Seidenberg principle. oo
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Set N := U en N"

We define on N an equivalence relation ~:

for 0 := (ny,...,ns) and 7 := (my,...,my) in N, we write o ~ 7 if and only if
the following holds:

s =t and there exists a permutation g of {1,..., s} such that m; = ngy; for all
ied{l,... s}

For any o € N, the equivalence class of o will be denoted by o]
For any o0 € N and p € N, we set f,(0) := (number of occurrences of p in o).
For any 0,7 € N and p € N we define the property P(p,o,7) by:

Pp,o,m) = (fp(0) < fo()) AN(Yg > p, fo(0) = fo(7)).

Set M := N/ ~
Note that if ¢/, 7" are permutations of o and 7, then P(p, o,7) is equivalent to
P(p,o’, ") for all p € N. This allows us to define a binary relation < on M:

[o] < [7] if and only if there exists p € N such that P(p, o,7) is satisfied.

Remark 1
If p € N satisfies P(p,0,7), then for all q>p, f,(o) < f,(7)

Proposition 1
< defines a strict order on M.

Proof. We want to prove that < is antisymmetric and transitive:

antisymmetry: Let 0,7 € N such that [o] < [7]; we want to show [7] £ [o]
Choose p € N satisfying P(p,0,7) and let ¢ € N.

If ¢ > p, then by remark 1 we have f,(7) £ f,(0) so the first condition of
P(q,1,0) fails. Moreover, we have f,(c) < f,(7), so if ¢ < p the second
condition of P(q, ,0) fails.

Thus, P(q, 7,0) fails for every ¢ € N, which proves [7] £ [o].
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transitivity: Let o,7,p € N such that [p] < [o] and [o] < [7]
Choose p1, pa € N such that P(py,p,0) and P(ps,0,7) hold.

Set p := maz(p1, p2).

If ¢ > p, then in particular ¢ > p; so f,(p) = f,(0); similarly, we have g > po
s0 fg(0) = fo(7) hence f,(p) = fo(7).

Since p > pi, pa, we have by remark 1: f,(p) < fp(0) < fo(7). If p = py,
the first inequality is strict, hence f,(p) < f,(7); if p = p2 then the second
inequatlity is strict, which leads to the same conclusion.

This proves that P(p,p,7) is satisfied, hence [p] < [7].

Proposition 2
The order < is total on M

Proof. Let 0 = (ny,...,ns), 7 = (mq,...,my) € N be non-equivalent.

Set A:={qe{ny,....,ns,ma,...,mu} | fo(o) # fo(7)}.

Note that A = @ if and only if 0 ~ 7, so by hypothesis we have A # @&. Thus,
we can define p := mazA.

By definition of p, we have f,(7) = f,(o) for all ¢ > p.

Moreover, since p € A, we have f,(c0) # f,(7).

If f,(o) < fo(7), then P(p,o,7) is satisfied, so [o] < [7]; if f(T) < f,(0), then
P(p, 1,0 ) is satisfied, so [7] < [o].

O

Note that we have an algorithm which determines how to order the pair (o,7)
and gives us an apropriate p:

pi=max{ng,...,Ne,My,..., M}
while p > 0:
if f,(0) > f,(7) return (o > 7,p)
if fo(0) < fpo(7) return (o < 7,p)
p=p—1

Proposition 3
(M, <) is well-ordered:

Proof. For any 0 = (nq,...,ns) € N, set m, := max(ny,...,ns). Since m, is left

unchanged by permutation of o, so we can define my,) := m, unambiguously.
Note that for any a,b € M, m, < m,; implies a < b. Indeed, if m, < my, then

for any p > my, we have f,(b) = 0 = f,(a); moreover, f,,, (a) =0 < fp,, (b), which
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proves that P(my, a,b) holds.

Let A be a non-empty subset of M and set m := min{m, | a € A}
We are going to prove by induction on m that A has a smallest element.

m=0: If m = 0, then the set Ay := {[o] € A | ¢ only contains zeros } is non-empty.
Let a be the element of Ay of minimal length; then I claim that a is the
smallest element of A.

Indeed: let b € A, b # a.

If b € Ag, then a and b both only contain zeros, so for all p > 0 f,(a) =0 =
f»(b); moreover, by choice of a, we have fy(a) = length(a) < length(b) =
fo(b). This proves that P(0, a,b) holds, hence a < b.

If b € A\ Ag, then my, >0 =m, so b > a.

m—1— m: Assume m > 1.
Set B:={a € A|my,=m}, n:=min{f(a)| a € B} and C := {a € B |
fm(a) =n}.
[ claim that for any ¢ € C' and any a € A\C, ¢ < a.
Indeed:

— if a € B\C, then by definition of C' we have f,,(¢) < fmn(a). Since
a,c € B, it follows from the definition of B that m is the maximal
element of both a and ¢, so that f,(a) =0 = f,(c) for all p > m. Thus,
P(m,c,a) holds.

— If a ¢ B, then by definition of B we have m, > m = m,, hence a > c.

Thus, it suffices to prove that C' has a smallest element.

For any ¢ € C, we denote by ¢’ the element of M obtained from ¢ by removing
every occurrence of m. Set C' := {¢ | ¢ € C}. Since m is the maximal
element of every ¢ € C, we have my < m — 1 for every ¢ € C’, hence
min{mey | ¢ € C'} < m — 1. By induction hypothesis, C’ then has a smallest
element ¢. ¢ is then the smallest element of C.

]

Note that there is a recursive algorithm which takes a subset of M as an
argument and returns its smallest element:

smallest element(A):
m :=min{m, | a € A}
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B:={a€ A|m,=m}

n = min{ f.(b) | b € B}
C:={be B| fn(b) =n}

if C' is a singleton then return its only element

C"={d|ceC}
:=smallest__element(C")
return the concatenation of ¢ with (m,...,m)
—_———
n times

Proposition 4
The ordinal type of (M, <) is w®

Proof. For any n € N, set A, := {a € M | m, =n}.
We are going to build an isomorpism from w® to M by induction. More precisely,
we are going to build a sequence (¢,,)nen of maps such that:

o« for any n € N, ¢, is an isomorphism from w"*! to A,,.

o for any n € N, ¢,.1 extends ¢,.

Taking ¢ := U,ey @n, We obtain an isomorphism ¢ from U,cyw™™ = w® to
UnEN An - M
n =0 Note that we have (0) < (0,0) < (0,0,0) < (0,0,0,0) < ..., so an isomor-
phism from w to Ay is given by n — (0,0,...,0)
1ti
n+1 times

n — n+ 1 Assume we have an isomorphism ¢, : w"™! — A,. Remember that w2 is
the order type of (w X W™ <ep).

Define: ¢pi1(a,8) == dn(B) A (n+1,...,n+1)

a times

(here ‘A’ means concatenation). This is an isomorphism from (w X W™, <)
to An+1.

]
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REAL ALGEBRAIC GEOMETRY LECTURE NOTES
(15: 08/12/09)
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CONTENTS

Algebraic sets and constructible sets
Topology

Semialgebraic functions
Semialgebraic homeomorphisms

Ll e
=W N =

1. ALGEBRAIC SETS AND CONSTRUCTIBLE SETS

Definition 1.1. Let K be a field. Let fi,..., fry € K[x] = K[x1,...,x,]. A
set of the form

Z(f1,. o fr) ={z e K": fi(z) = - = fr(z) = 0}

is called an algebraic set.

Definition 1.2. A subset C C K" is constructible if it is a finite Boolean
combination of algebraic sets.

Remark 1.3.

(1) A constructible subset of K is either finite or cofinite.
(2) Let K =R and consider the algebraic set

Z ={(z,y) € K*: 2> —y = 0}.

Its image under the projection m(z,y) = y is m(Z) = [0, oo[ which is
neither finite nor cofinite.

This shows that in general a Boolean conbination of algebraic sets
is not closed under projections.

Definition 1.4. A function F': K™ — K™ is a polynomial map if there
are polynomials Fi, ..., F,, € K[x1,...,Xy] such that for every z € K",

F(z) = (Fi(z),..., Fn(z)) € K™
1
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Example 1.5. The projection map
IL,: Kntm — K"

(T1,- s Tntm) (T1y.. ., xp)

>
is a polynomial map, where for every i, 1 < i < n,

P(x1, .. Ty Tyl v oy Tipm) = T4

and [[,, = (P1,..., Pn).

By Chevalley’s Theorem (Quantifier elimination for algebraically closed
fields), if K is an algebraically closed field, then the image of a constructible
set over K under a polynomial map is constructible (in particular under

projections).
Let R be now a real closed field.
Remark 1.6.

(1) A semialgebraic subset of R™ is the projection of an algebraic subset

of R*™™ for some m € N, e.g. the semialgebraic set
{z€R": fiz) == filz) =0,g1(z) > 0,...,gm(z) > 0}

is the projection of the algebraic set

{(z,y) e R™*™: fi(z) = - = filz) = 0, yigi(z) = 1,..., ypgm(x)

= 1).

(2) Every semialgebraic subset of R™ is in fact the projection of an alge-
braic subset of R"*! (Motzkin, The real solution set of a system of
algebraic inequalities is the projection of a hypersurface in one more
dimension, 1970 Inequalities, II Proc. Second Sympos., U.S. Air
Force Acad., Colo., 1967 pp. 251-254 Academic Press, New York).

2. TOPOLOGY

For z = (x1,...,2,) € R", we have the norm ||z || := /2% + - - + 22.

Let re R, r > 0.
By(z,r) ={y € R": ||y —z|| <r} is an open ball.

By(z,r) ={y € R": ||y —z|| <7} is a closed ball.
Sn_l(&ar):{QERni||y—£||=7"} is a n — 1-sphere.

snl=g8""10,1) 0e R™

Exercise 2.1.

63
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— Bu(a,7), Bu(z,7), S"(z,7) are semialgebraic.

Polynomials are continuous with respect to the Euclidean topology.

The open balls form a basis for the Euclidean topology = norm topol-
ogy = interval topology.

The closure and the interior of a semialgebraic set are semialgebraic.

Remark 2.2. It is not true that the closure of a semialgebraic set is obtained
by relaxing the inequalities! For instance

{x>0}n{x <0} =0.

3. SEMIALGEBRAIC FUNCTIONS
Definition 3.1. Let A C R™, B C R be two semialgebraic sets. A function
fiA— B
is semialgebraic if its graph

I'y={(z,y) e AxB:y=f(z)}

is a semialgebraic subset of R,

Example 3.2.

(1) Any polynomial mapping f: A — B between semialgebraic sets is
semialgebraic.

(2) More generally, any regular rational mapping f: A — B (i.e. all
coordinates are rational functions whose denominators do not vanish
on A) is semialgebraic.

(3) If A is a semialgebraic set and f: A — R, g: A — R are semialge-
braic maps, then |f|, max(f,g), min(f, g) are semialgebraic maps.

(4) If A is a semialgebraic set and f: A — R is a semialgebraic map with
f>=0o0n A, then /f is a semialgebraic map.

Proposition 3.3.
(1) The composition go f of semialgebraic maps f and g is semialgebraic.

(2) Let f: A— B and g: C — D semialgebraic maps. Then the map

fxg: AxC — BxD
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s semialgebraic.
(3) Let f: A — B be semialgebraic.

(i) S C A semialgebraic = f(S) is semialgebraic.
(i1) T C B semialgebraic = f~Y(T) is semialgebraic.

(4) Let A be a semialgebraic set. Then

S(A)={f: A— R: [ is semialgebraic}

is a commutative ring under pointwise addition and pointwise multi-
plication.
Proposition 3.4. Let A C R" be a non-empty semialgebraic set.
(i) For every x € R™ the distance between z and A:

dist(z, A) = inf({[lz — yl| : y € A})
is well-defined.

(13) The function
dist: R" — R

x — dist(z, A)

is continuous semialgebraic vanishing on the closure of A and positive
elsewhere.

4. SEMIALGEBRAIC HOMEOMORPHISMS

We have that every semialgebraic subset of R can be decomposed as the
union of finitely many points and open intervals. We shall generalize this to
higher dimension:

Definition 4.1. Let A, B be semialgebraic sets and f: A — B. We say that
f is a semialgebraic homeomorphism if

(1) f is a bijection,

(2) f and f~! are continuous and semialgebraic.

Definition 4.2. Let A, B be semialgebraic sets. We say that they are semi-

algebraically homeomorphic if there is a semialgebraic homeomorphism
f:A— B.

Our aim is to show that every semialgebraic set can be decomposed as
the disjoint union of finetely many pieces which are semialgebraically home-
omorphic to open hypercubes (0,1)¢ (possibly for different d € N).
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1. Cylindrical algebraic decomposition 1

Let R be a real closed field.

1. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Theorem 1.1. Letx = (x1,...,Xy). Let f1(X,¥),..., fs(x,y) be polynomials
in n+ 1 variables with coefficients in R. Then there exizts a partition of R™
into a finite number of semialgebraic sets

R'=A1U -+ UA,

and for each i =1,...,m there exists a finite number (possibly 0) of contin-
uous semialgebraic functions &1, ..., &y, defined on A; with

Si1 < <&y,
gijZAi — R

and &j(x) < &ij+1(z) for allz € A;, for all j =1,...,1;, such that

(i) for each x € Ai, {&i1(x),.... &, (x)} = {roots of those polynomials
among f1(z,y),..., fs(z,y) which are not identically zero};

(13) for each x € A; and y € R, sign(fi(z,y)),...,sign(fs(z,y)) depend
only on sign(y — &i1), . .., sign(y — &, )-

We will prove this Theorem using the following Proposition:

Proposition 1.2. (Main proposition "with coefficients")
Let fi(x,5),-.., fs(x,y) be polynomials in n+ 1 variables with coefficients in
R. Let ¢ := max;—1,.  s{deg iny of fi(x,y)} and w € W,,.

Then there exists a boolean combination B, (x) of polynomial equations
and inequalities in the variables x with coefficients in R such that for any
x € R",

sighp(f1(2,y), -, fs(z,y)) =w & Buy(z) is satisfied in R.
1
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Proof. Let a € RP be the list of coefficients of the polynomials f1,..., fs.
Then for every k=1,...,s,

fe(x,y) = Fr(a,x,y),

where Fi(t,x,y) € Z[t,x,y] is a polynomial in p + n + 1 variables.

Then there is a boolean combination B}, (t,x) of polynomial equations and
inequalities in the variables (t,x) with coefficients in Z such that, for every
(t,z) € RPT™ we have

signp(Fi(t, z,y), ..., Fs(t,z,y)) =w < B, (t,z) holds.
Now set By, (x) = B} (a,x). O

Let us prove now Theorem 1.1:

Proof of the Theorem. Without loss of generality we may assume that the
set {f1,...,fs} is closed under derivation with respect to the variable y
(because we can always remove the functions &;; that do not give the roots
of the polynomials belonging to the initial family, and the conclusions of the
theorem still hold with the remaining &;;’s).

As in the previous Proposition, let ¢ := max;—; _ {deg in y of fi(z,y)}.
Now Wj 4 is a finite set with

|W,q| = 3°0

For w € W 4, define:
Ay ={z € R": By(x) is satisfied }
— {l 6 Rn : SignR(f1(£7 y)? ctt f5(£7 y)) = w}'
Observe that A, is a semialgebraic set of R”. Let Aj,..., A, be the semi-
algebraic sets among the A, that are non-empty, i.e.
{A1,..., Ay} ={Ay : w e W4 and A, # 0}.

Note that by definition of A,, we have that Ay,...,A,, form a partition of
R™ (they are all disjoint because wy # we = Ay, N Ay, = 0, and for every
z € Rn’ S Aw with w = SignR(fl(i, Y)a R fs(l, Y)))

Note also that by definition of A, signgp(fi(z,y),..., fs(z,y)) = w €
Wy s is constant on each A;. In other words by definition of w there is

a number I; < sq such that, for each x € A;, the polynomials among
fi(z,y), ..., fs(z,y) which are not identically zero have altoghether /; roots

&i(z) < -+ < &)

and moreover for every k =1,...,s the signs
sign(fe(z, &i;(2),  Jj=1....L

sign(fr(z, | &ij(z), &j1(2) ), J=0,...,0
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depend only on ¢ and not on z € A; (with the convention &
5ilz‘+1 - +OO)'

= —oo and

Now it remains to show that each §;; is semialgebraic and continuous.

The graph of §;; is

T(&y) ={(z,y) € A4 x R : 3 (y1,.-,m,) € RN ([ [ fulzpn) =
k

and y1 < --- <y, and y =y;)}

(where k ranges over the subscripts of those polynomials fi(x

= fr@m) =0
k

,y) that are

not identically zero on A;), and therefore the function &;; is semialgebraic.
To show the continuity of &;, fix 2y € A;. Then y; = &;(xg) is a simple
root of at least one of {fi(zg,y),. .., fs(xg,y)} (closure under derivatives of

the family), say of fi(zg,y). For € € R small enough,
fl(@()v Y; — 5)f1(§0, Yj + 6) <0.
Hence, in a neighbourhood U of z, in R", we have

VeeU  filz,y; —e)filz,yj +¢) <0

and fi(z,y) has a root between y; — ¢ and y; + ¢ is &;(x). This proves that

&ij is continuous.

O
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1. Decomposition of semialgebraic sets 1

Let R be a real closed field.

1. DECOMPOSITION OF SEMIALGEBRAIC SETS
In the last lecture we proved the following:

Proposition 1.1. (Main proposition "with coefficients")
Let fi(x,5),-.., fs(x,y) be polynomials in n+ 1 variables with coefficients in
R. Let q := max;—; . s{deg iny of fi(x,y)} and w € Wi q-

Then there exists a boolean combination By (x) of polynomial equations
and inequalities in the variables x with coefficients in R such that for any
xz € R",

sighp(f1(2,y), -, fs(2,y)) =w & Buy(z) is satisfied in R.
Theorem 1.2. Letx = (x1,...,Xp). Let fi(X,¥),..., fs(X,y) be polynomials

in n+ 1 variables with coefficients in R. Then there exizts a partition of R™
into a finite number of semialgebraic sets

R"=A1 U --- U A,

and for each i =1,...,m there exists a finite number (possibly 0) of contin-
uous semialgebraic functions &1, ..., &;, defined on A; with

§i1 < <&y,
&'j: Az — R
and &;j(z) < &j11(z) for allx € Ay, for all j =1,...,1;, such that

(i) for each x € Ai, {&i1(x),.... &, (x)} = {roots of those polynomials
among f1(z,y),..., fs(x,y) which are not identically zero};

(13) for each x € A; and y € R, sign(fi(z,y)),...,sign(fs(z,y)) depend

only on sign(y — &)y sign(y - é.’ili)'
1
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Definition 1.3. Let fi(x,y),..., fs(x,y) be polynomials in n + 1 variables
with coefficients in R. A partition of R™ into a finite number of semialgebraic

sets
R'=A4,0 --- UA,

together with continuous semialgebraic functions

§n<-- <&, A — R

satisfying properties () and (i7) of Theorem 1.2 is called a slicing of fi, ..., fs
and is denoted by

(Ai 5 (§ig)j=1,...0)ief1,...m}

If the Ay,...,A,, are given by boolean conbinations on the polynomials
91,50t € R[x1,...,%Xy,], we say that the g1,..., g slice the fi,..., fs.

Lemma 1.4. Let fi(x,y),..., fs(x,y) be polynomials in R[x,y] and

(Ai 5 (&ij)j=1,..1;)ie{1,...m} @ slicing of f1,..., fs. Then for every i,
1<t <m, and every j, 0 < j < I;, the slice

16, &ija1l = {(z,y) € R" iz € A; and &5(x) <y < &j11(2)}

is semialgebraic and semialgebraically homeomorphic to A; x 10, 1[ (with the
convention o = —oo and &, = +00).

Proof. Each slice is semialgebraic, since 4; and the functions &;;, 7 =1,...,;
are semialgebraic. We now give explicity the semialgebraic homeomorphism

h: 1&gy Sigral — Aix]0, 1],
For j =1,...,1; — 1 define:
hz,y) = (z, (y—&;(@)/(&j+1(2) — &j(2))).
For j =0, &0 = —o0, define (if I; # 0):
h(z,y) = (z, 1+ &) —y)™h).
For j =1; # 0, &,,, = +00, define:
h(z,y) = (z, (y— & (@) +1)7").

Ifl; =0, & = —o0 and &1 = 400, define:

hz,y) = (2, (y+V1+12)/2V/1+42).
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Theorem 1.5. Every semialgebraic subset of R™ is the disjoint union of a
finite number of semialgebraic sets, each of them semialgebraically homeo-
morphic to an open hypercube |0, 1[4C R, for some d € N (where 10,1[° is a
point).

Proof. By induction on n.

For n = 1, we already know that every semialgebraic subset of R is the
union of a finite number of points and open intervals. Open intervals are
semialgebraically homeomorphic to ]0,1[ and a point is semialgebraically
homeomorphic to ]0, 1[°.

We now assume that the result holds for n. Let S be a semialgebraic
subset of R™*!, given by a boolean combination of sign conditions on the
polynomials fi,..., fs, and let (A; ; (&) =1,..1;)ic{1,..,m} De a slicing of
fla s f8~

By induction, all A; are semialgebraically homeomorphic to open hyper-
cubes. Moreover, S is the union of a finite number of semialgebraic sets that
are either the graph of a function &;;, or a slice 1§, &;;41[ as in Lemma 1.4.

The graph of §;; is semialgebraically homeomorphic to A;, while, by

Lemma 1.4, the slice ]&;;, &;;+1] is semialgebraically homeomorphic to 4;x]0, 1].

O
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Let R be a real closed field.

1. SEMIALGEBRAIC CONNECTEDNESS

In the last lecture we showed:

Theorem 1.1. Every semialgebraic subset of R™ is the disjoint union of a
finite number of semialgebraic sets, each of them semialgebraically homeo-

morphic to an open hypercube 10,1[* C R?, for some d € N (where ]0,1[° is
a point).

Question 1.2. Are the |0, 1[¢ connected? (equivalently is R? connected?)

If R = R yes, but in general no, because if R # R then R is not Dedekind

complete and therefore is disconnected.

So what is a reasonable notion of connectedness for semialgebraic sets?

Definition 1.3. Let A C R" be a semialgebraic set. We say that A is semi-
algebraic connected (semialgebraisch zusammenhdangend) if the following
equivalent conditions hold:

(1) Ais not the disjoint union of two non-empty semialgebraic open (rel-
atively to A) subsets of A.

(2) There are no semialgebraic open sets Uy, Uy of R™ such that

UiNA#D  UpnA#0
UyNUsNA=0 and (U1UU2)ﬁA:A.
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(3) If A, Ay are disjoint semialgebraic subsets of A with A = A; U Ag
and Ay, As are open in A, then

either A1 =0 or Ay = 0.
(4) Whenever F; C A, F5 C A are semialgebraic and closed in A with
F1 UF2 = A, then
F1 =A or F2 = A.

Remark 1.4.

(1) A subset A C R™ is connected if it is not the disjoint union of two
nonempty open (relatively to A) subsets of A. So for any semialge-
braic set A,

A connected = A semialgebraic connected.

(i) Every interval in R is semialgebraic connected, so

A semialgebraic connected # A connected.

(7i7) The property of being semialgebraic connected (as the property of
being connected) is preserved under semialgebraic homeomorphisms.

Theorem 1.5.

(a) Assume A, B C R™ semialgebraic connected with AN B # (). Then
AU B is semialgebraic connected.

(a') If A and B are semialgebraic, with A C B C A,

A semialgebraic connected = B semialgebraic connected.

(b) A C R™, B C R"™ semialgebraic connected = A x B C R"™™
semialgebraic connected.

(¢) If A C R™ semialgebraic connected and f: A — R™ a continuous
semialgebraic map, then f(A) C R™ is semialgebraic connected.

(a) Let AUB = UUV with U, V semialgebraic and open in AU B.
Assume for a contradiction U, V' # (), say without loss of general-
ity ANU # (. Since A is semialgebraic connected, we must have
A C U. Therefore ANV = (), V C B and B semialgebraic connected
= V=Band U = A. So A, B are open in AU B and disjoint.
Therefore AN B = (), contradiction.

(a') Exercise.
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(b) Let Ax B=UUV with U, V semialgebraic and open in A x B. Set

Ay:={zeA: {z} x BCU}.
Ay:={zr e A: {z} x BCV}.

Since B is semialgebraic connected, A = A;UAs. Now A — A; =
m1(V) is open in A. Therefore A; is closed in A, As is closed in A.
But Ay, As semialgebraic and A semialgebraic connected = Ay = ()
or Ao =0, soU=0or V=40.

(c) Exercise.

2. SEMIALGEBRAIC CONNECTED COMPONENTS

Proposition 2.1. Let A C R™ be non-empty semialgebraic. There are
finitely many pairwise disjoint A1, ..., A, semialgebraic connected, semial-
gebraic subsets of A which are all open (therefore all closed) in A with

A=AU---UA,
and this decomposition is unique (up to permutation).

Proof. We know A = C1U---UC,, with C; ~ R? semialgebraic, semialge-
braic connected C; # (). We proceed by induction on m.

e m =1. It is clear.

em > 1. If C is open and closed in A, we can use induction on
CoU---UC,. Otherwise 3i € {2,...,m} such that C; N C; # 0 or
C1 N C; # (0. In both cases we get C; U C; semialgebraic connected
(by 1.5(1.4)(a)) and we are done by induction again.

Uniqueness: Suppose A = A1 U---UA, = AJU---UA] with each A; and
each A;- open and closed in A and semialgebraic connected. Then each A; is
contained in exactly one A} and viceversa every A; is contained in exactly

one A; (Exercise).
(]

Definition 2.2. The Aq,..., A, are called the semialgebraic connected
components of the semialgebraic set A C R™.

Remark 2.3. A semialgebraic subset of R™ is semialgebraic connected if
and only if it is connected, so every semialgebraic subset of R™ has a finite
number of connected components which are semialgebraic.
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1. Motivation 1
2. Closed and bounded semialgebraic sets 1

Let R be a real closed field.

1. MOTIVATION

Theorem 1.1. (Curve-selection Lemma: Kurvenauswahllemma) Let A

be a semialgebraic subset of R", © € R", x € A = clos(A). Then there

exists a continuous semialgebraic map f: [0,1] — R™ such that f(0) = z
and f(]0,1]) C A.

This has important consequences such as

(1) The image of a closed and bounded semialgebraic set under a con-
tinuous semialgebraic map is a closed and bounded semialgebraic set.

(2) A semialgebraic set is semialgebraic connected if and only if it is
semialgebraic path connected (wegzusammenhdingend).

2. CLOSED AND BOUNDED SEMIALGEBRAIC SETS

Definition 2.1. A subset A C R" is bounded if 37 € R such that ||a|| < r
VaeA.

We have seen that for R # R we have to replace the notion of "connected"
by "semialgebraic connected".

Similarly the notion of compactness is problematic for R # R. In fact,
closed and bounded subsets of R need not be compact.

Example 2.2. Let R = R,y = {real algebraic numbers} = the real closure of Q in R.
The interval [0,1] C R is not compact. For example the set

U={[0,r]CR :r<7m/4}U{]s,1]CR :s>n/4}

is an open cover of [0, 1] by semialgebraic subsets of R and it is not possible
to extract from it a finite subcover!
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This example shows that, unlike the notion of semialgebraic connectness,
a notion of of semialgebraic compactness given just with semialgebraic open
coverings is not appropriate. Instead, we shall suffice ourselves with studying
"closed and bounded" semialgebraic sets and bounded semialgebraic func-
tions.

Definition 2.3. A function f: A — R is bounded if Va € A 3r € R with
1f(a)l] <7

Proposition 2.4. Letr € R, r > 0 and ¢: ]0,7] — R a continuous bounded
semialgebraic function. Then ¢ extends to a continuous function on [0,7].

For the proof we need the following lemma:

Lemma 2.5. Let A C R be a semialgebraic set and ¢: A — R a semial-
gebraic function. Then there exists a non-zero polynomial f € R[x,y] such
that f vanishes on I'(p), i.e.

VeeA f(z,o(x))=0.
(For its proof see Lemma 1.1 of Lecture 21)

Proof of Proposition 2.4. Assuming Lemma 2.5, let f € R[x,y] be a non-zero
polynomial such that f vanishes on I'(). We shall proceed by induction on
d=degf iny.
Suppost first d = 1. We write
f=Q1(x)y+Qo(x), Qo,Q1€R[x], Q1#0.
We have that

f(@,0(2) =0 = Qu(z)p(r) + Qo(z) =0 Vo e]0,r].

We may assume that Q1(x), Qo(x) € R[x] are relatively prime (otherwise
we divide by the common factor). So we get that

_ —Qo(2)
Q1(x)

(we may assume that Qi(x) # 0 for all x €]0,7], otherwise we take an
opportune subinterval ]0,7'] C]0,7]).

Note that Q1(z) does not have a zero at x = 0 (i.e. x does not divide
Q1(x)), otherwise by continuity

p()

li ==+
Ay ) = e

which contradicts our assumptions that 3M € R such that |¢(x)| < M for
all z €]0,7]. So we can set

_ —Q0(0)
Q1(0)

and with this new definition the map

©(0) :

®: [0,7’] — R

1S continuous.
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Let now d > 1 and assume the result to be true for degy f(x,y) < d.
Without loss of generality we may assume that f(x,y) is not divisible by x.
Otherwise, if

f(X’Y) = Xfl(XaY)a

we have

f($790($)) = xfl(a:,cp(x)) =0 Vz € ]0,7‘],
therefore

Nz, e(x) =0 Vre]or]
and we can replace f by fi if necessary.

Let
_9f

J'= Gy 20

and let
(Ai s{&j}tj=1,.1,)iel

be a slicing of {f, f'}. So A; is a partition of R in intervals and points.
We may assume without loss of generality that A; = ]0,r] and ¢ = & j, (for
some 7’ small enough, i.e. replacing r by 7’ if necessary).

We have to consider two cases:

e If for z € Ay ¢(x) is also a root of f/'(z,y) (i.e. f’ vanishes on I'(p)),
then we are done by induction hypothesis, since

degy f'(x,y) < d.
e If not, say sign(f'(z, &1, (z))) = sign(f'(z, p(x))) > 0 for = € ]0,r].
Claim: There are two continuous semialgebraic functions p and 6
such that p,0: [0,7] — R and
Vo e]0,r] p(z) < o(x) < 6(x
and sign(f/(x,y)) is positive for all y € ] p(x),0(z) [ ().
Proof of Claim. We can take

p = §1j0_1 and 9 = §1j0+1.

If ¢ = &5, = &1 then we can take p to be the constant function
—(M + 1), where M is the bound for .
If jo = |1 we can take 0 to be the constant function M + 1.

Note that these functions are roots of the derivative f/, and deg f’ <
d in y, so by induction hypothesis the continuous semialgebraic maps
p and 0 can be extended to [0, 7] since f" vanishes on I'(p) and I'()).

O
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Now consider p(0) and 6(0): by continuity we have p(0) < 6(0).

- If p(0) = 6(0), set ©(0) = p(0). This gives a continuous extension of
¢ to [0,r].

- Otherwise p(0) < 6(0). Consider the function f’(0,y): it is non-
negative for every y € [p(0),6(0)] (by continuity together with (*) of
Claim).

Now if f(0,y) is constant, it would be identically zero because we
have

f(0,p(0)) < 0 < f(0,6(0))

but this is impossible since x is not a factor of f.
So we must have f’(0,y) > 0 and the function f(0,y) is strictly
increasing and has a unique root yo € [p(0),0(0)]. Set

©(0) == yo.

It remains to show that with this definition ¢ is continuous at 0
(i.e. that lim, o+ ¢(x) = yo).

Case 1. p(0) < yo < 6(0).

Then for € € R, € > 0 small enough, f(0,yo—¢) <0, f(0,yo+¢) >
0, p(0) < yo—e < yo < yo+¢ < 0(0). Hence there existsn € R, n > 0
such that for every x €10, 7[:

f(z,y0 —€) <0
f(z,yo+¢€) >0
p(z) <yo—e
Yo + ¢ < 6(z)

Therefore () € |yo — €,y0 + €[ for every x €]0,7].
Case 2. p(0) = yo.

We have f(0,y9 +¢) > 0 for every ¢ € R, & > 0 small enough.
Then there exists n € R, n > 0 such that for every z €10, n[:

{f(vaIO‘i‘f) >0

Yo—e<p(r) <yo—e

Again these imply that ¢(z) € Jyo — &, y0 + €[ for every z €]0,7[.

Case 3. 6(0) = yo. Analogous.
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Let R be a real closed field.

1. RECALL AND PLAN
During the last lecture we proved that:

Proposition 1.1. Let ¢: |0,7[ — R be a continuous bounded semialgebraic
function defined on an interval 10,7 C R. Then ¢ can be continuously
extended to 0.

This was done assuming the following Lemma that we did not yet prove:

Lemma 1.2. Let A C R be a semialgebraic set, ¢o: A — R a semialgebraic
function. Then there exists a nonzero polynomial f € R[x,y| such that for
every x € A, f(x,p(x)) =0.

We shall postpone the proof of the previous Lemma to next lecture, since
we want to focus today on the proof of the Curve Selection Lemma. For this
we shall further assume Thom’s Lemma:

Proposition 1.3. (Thom’s Lemma) Let f1, ..., fs be a family of polynomials
in R[x]| closed under derivation. Let e: {1,...,s} — {=1,0,1} be a sign
condition. Set

A = ﬂ{a: € R :sign(fr(x)) =e(k)}.
k=1

Denote by Az the semialgebraic subset of R obtained by relaxing the strict
inequalities in Ag, i.e. :

s

Az = ({z € R:sign(fi(x)) = £(k)}.

k=1

where € is defined as follows:

0= {0} —1={-1,0} 1={0,1}
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Then
(1) either A; is empty, or A; is a point, or A. is an open interval;
(ii) if Ae is nonempty then its closure is Ag;
(ii1) if A is empty then Az is either empty or a point.
Using Prop 1.1 (proved last time) and Thom’s Lemma (to be proved next

time) our goal today is to prove the following:

Theorem 1.4. (Curve Selection Lemma) Let A be a semialgebraic subset
of R, x € R", x € A = clos(A). Then there exists a continuous semialge-
braic map f:[0,1] — R™ such that f(0) =z and f(]0,1]) C A.

Lemma 1.5. Let fi,..., fs € R[x1,...,Xn;y] be quasi-monic with respect
toy (i.e. fr= adkydk—i—gdk (X1, s Xp )y - go(X1, . . ., X,) and aq, € R
is constant). Assume that the set {fi,..., fs} is closed under derivation with

respect to'y.
Let (A; 5 (&j)j=1,...1;)i=1,...,m be a slicing of {f1,...,fs}. Then every
function &; can be continuously extended to the closure of A;.

We shall prove the CSL and Lemma 1.5 simultaneously by induction on
n in the following way. We shall show that:
(1) CSL is true for n = 1.
(1) CSL for n implies Lemma 1.5 for n.
(7i7) CSL and Lemma 1.5 for n imply CSL for n + 1.
(Clearly once (7), (i), (ii7) are established, CSL and Lemma 1.5 will follow
by induction).

2. PROOF OF THE CURVE SELECTION LEMMA

(i) n=1. Let z € A. We may assume z ¢ A (otherwise take f to be the
constant map f: [0,1] — R", f(r) =z Vr).

(By o-minimality) we know that A C R semialgebraic is a finite union of
intervals and points. So the result is clear in this case (if z € A, say x is
the endpoint of a (half) open interval I of the form (z,b] C A or (z,b) C A
or [a,x) C A or (a,x), in all cases one can define continuous semialgebraic

f:0,1] — I with f(0) = x).

(74) Assume CSL holds for n. We show that Lemma 1.5 holds for n.
For fixed i, j and x € A;, we set

e(k) = sign(f(z,&i;(z))),

with & = 1,...,s. This is well-defined since sign(f(z,&;j(x))) does not
depend on z € A;.

Let 2’ € clos(A;). We show that &; can be continuously extended to the
semialgebraic set A; U {2'}.

By CSL for n there is f: [0,1] — R™ countinuous and semialgebraic such
that f(0) = 2’ and £(]0,1]) C (4; N By(2',1)) = A, where B, (z',1) is the

n-dimensional closed ball with center 2’ and radius 1, i.e.

By(z/,1)) ={a € R" | la — 2'|| < 1},

which is a closed and bounded semialgebraic set.
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Define ¢: ]0,1] — R, ¢ := (&5 0 fij0,1))- Then ¢ is continuous and semial-
gebraic. We want to show that ¢ is bounded in order to apply Prop 1.1.
Now let k € {1,...,s} be such that for z € A;:
§ij(z) is a root of fi(z,y),
i.e. say for x € A;, &j(x) is a root of
fel@,y) = aay® + ga1 @)y + -+ + go(z)
By Corollary 2.1 of Lecture 6 we have for x € A;:

ga-1(z) go(z) ‘
aq

€ij(z)] <1+ |+ +]

Consider now z in the bounded set A; N B, (z/,1)).

Each polynomial gy, ..., gqs—1 is bounded on this set.

So let @ € R be such that for every x € A; N B,(2',1)) we have
lg1(z)| < a Vi=0,...,d—-1

Therefore ¢ is a bounded function. Indeed let ¢ €]0, 1] and compute

o] = 1&;(f(#)]  witha = f(t) € A; N By(a',1))

da

1+—.
[

165 (PO < 1+ ]gamr (F())]+- - +lgo(F(1))] < 1+|:7|+. . .ﬂ%d' _

We apply Proposition 1.1 to the bounded continuous semialgebraic func-
tion ¢ to extend ¢ continuously to 0 and we define now

&ij(2') := ¢(0).

Claim. &;; is continuous at z’.
We argue by contradiction. If not 3 > 0, u € R such that

Vn e R 3z € A; such that |z —2'|| <n but |&;i(z) — @0)] > .
Consider

Cp={z € Ai | |&;j(x) — 0(0)] > p} N Bu(z',1)

Since 2’ € clos(C,,) C R", we can apply CSL to have a continuous semi-
algebraic function
g:10,1] — R"

with g(0) = 2’ and ¢(]0, 1]) € C,. We now consider
¢3 ]07 1] - R7 ¢ = (5@] og”O,l])‘

As before 1 can be continuously extended to 0.
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Subclaim.
(@) ©(0) =¥ (0)] = p.

(ee) For every k=1,...,s
sign fi.(', 0(0)) € e(k)

sign fx(2',4(0)) € e(k).

Proof of the Subclaim.

&ij(g(t)) = &j(z) for some z € C.

(e) For every t €]0,1], ¥(t)
or every t €]0,1] and by continuity of

Therefore |¢(t) — ¥ (0)| > p f
¥, lp(0) = ¢(0)] = p.
(ee) Let ke {1,...,s}.
If e(k) = 0, then fi(z,&;(z)) =0 for all z € A;, so by continuity

fr(@', ¢(0)) =0  and

fe(@', ¥(0)) =0.

Similarly if e(k) =
continuity

fe(@', 9(0)) >0 and

—1, then fi(z,&;(z)) <0 for all z € A;, so by

fe(@', ¥(0)) = 0.
and finally if e(k) = 1, then f(z,&;(z)) > 0 for all z € A; and

fr(@, p(0)) >0 and

fe(@', ¥(0)) = 0.
U

Consider now the set

{y € R| sign(fr(2',y)) € &(k), k=1,...,s}.

By Thom’s Lemma this set is either empty or reduces to a point. On

the other hand ¢(0) # 1(0) and bot ¢(0), ¥(0) belong to this set by the
subclaim, contradiction. Therefore &;; is continuous at z’.

(7i1) We assume CSL and Lemma 1.5 to be true for n and show that CSL

is true for n + 1.
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Let A C R"*! semialgebraic given by a boolean combination of sign con-
ditions on fi,..., fs € R[X1,...,Xn, Y]

Claim. We may assume that f1,..., fs are quasi-monic and that the family
is closed under derivation, so that fi, ..., fs satisfy the conditions of Lemma
1.5.

Let (A; 5{&j}j=1,..1;)i=1,.m be a slicing of fi,...,fs. So A; C R" for
every i = 1,...,m and the set A is the union of the graphs of some functions

&; and some slices ]&;;, &ijy1l-

Let (z,y) € clos(A) € R"1. We have to consider the following cases:

(1) (z,y) € clos(I'(&;5)), &j: Ai — R.
(2) (z,y) € clos(J&ij, &ij+1[), where 1 < j <1;.

(3) (z,y) € clos(]&j, &j+1]), where j =1 or j =1;.

Case 1. Let (z,y) € clos(I'(&5)), &j: Ai — R, with I'(§;;) € A. Applying
the CSL, let ¢: [0,1] — R™ be a continuous and semialgebraic map such that
¢(0) = 2 and ©(]0,1]) C A;.

We can use Lemma 1.5 for n to extend &;; at x continuously. So we must
have &(z) = y.

Now set
vi0,1] % Aufz) 24 R
and f := (p,¢). f is continuous semialgebraic, f(0) = (¢(0),v(0)) =

(z,y) and £(J0, 1]) C'A.

Case 2. (z,y) € clos(]&;j, &j+1]), where 1 < j < I;, with |&;, &j4+1[ €
AC R & &j: A — R.

By CSL for n let : [0, 1] — R™ be a continuous semialgebraic map with

#(0) =z and (]0,1]) C A;.
By Lemma 1.5 for n extend the function &;; and ;41 continuously to x:

§ij: Aiu{z} — R & (z)eR
Sijrit AiU{z} — R &) €R

Set
1/2 if &j(z) = &ij1(x)

sl it () # Gyn(@)
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and ¢: [(1 — t)&; + t(&j+1)] o ¢. Then 1 is continuous semialgebraic
d ¥(0) = y. Set f := (p,¢). f is continuous and semialgebraic, with
( ) = (#(0),%(0)) = (z,y) and f(]0, 1]) C A.

Case 3. Exercise.
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Let R be a real closed field.

1. THOM’S LEMMA

Lemma 1.1. Let A C R be a semialgebraic set and p: A — R a semialge-
braic function. Then exists f € R[x,y|, f # 0, such that

VzeA flz,p(z)) =0 (f vanishes on the graph of ¢).

Proof. The graph of ¢ T'(p) = {(z,¢(x)) : * € A} C R? is a semialgebraic
set, so it is a finite union of sets of the form

{(z,y) € R*: fi(x,y) =0, i=1,...,0 gj(z,y) >0, j=1,...,m}

with at least one among the f; # 0, otherwise I'(¢) would contain an open
subset of R?, contradiction.
Now take f to be the product of these nonzero polynomials. (]

Proposition 1.2. (Thom’s Lemma) Let { f1,..., fs} be a family of non-zero
polynomials in R[X] closed under derivation. Let e: {1,...,s} — {—1,0,1}
be a sign function. Set

A; :={x € R:sign(fr(x)) =e(k), k=1,...,s}.

Denote by Az the semialgebraic subset of R obtained by relaxing the strict
inequalities in Ag, i.e. :

Az = ﬂ{x € R :sign(fr(x)) € £(k)}.

k=1
where € is defined as follows:

0={0} —1={-1,0} 1=1{0,1}.
Then
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(1) either Ac is empty, or Ae is a point, or Ac is a non-empty open in-
terval (if Ac is empty or a point, then (k) = 0 for some k; if A is
a non-empty open interval then (k) = £1 for every k);

(13) if Az is non-empty then its closure is Az (which is either a point or a
closed interval different from a point and the interior of this interval
is Ac);

(7i1) if Ac is empty then Az is either empty or a point.

Proof. By induction on s. The Lemma holds trivially for s = 0. Let
fisoos fss fey1 € R[x] \ {0} be polynomials such that if f; # 0, then
fr. € {fi,-.., fo41}. Without loss of generality we assume that deg(fs41) =
max{deg(fx): 1 <k <s+1}.

Let ¢': {1,...,8,s +1} — {-1,0,1} and e: {1,...,s,} — {—1,0,1} the
restriction.

Note that

Ao =A.N{x € R:sign(fsi1(z)) =<' (s+1)}.

By induction A, is empty, a point, or an interval.

If A, is empty or a point, then obviously so is A.s and the other property
follows immediately by induction hypothesis on A..

Assume A, is an interval. Now f, , =0or fi,, € {f1,..., fs}. So by def-
inition of A, fi,; has constant sign on A.. Therefore f,y1 is either strictly
increasing, or strictly decreasing or constant on A..

Consider A; = (a,b) There are three cases depending on &'(s + 1):

Case 1. Ao ={x € (a,b) : fs41(x) > 0}.
Case 2. Ao = {x € (a,b) : fs41(x) < 0}.
Case 3. Ao ={x € (a,b) : fs41(x) = 0}.

If A, = () there is nothing to prove.

Assume A, # (). If fsy1 is constant on A, then fs11 is a constant polyno-
mial fsy1(x) = ¢ # 0. So A is empty or A = (a,b) depending on whether
sign(c) = €'(s + 1).

Assume now fsyq strictly increasing on A, and Ao = {z € (a,b) :
fst1(x) > 0} # 0. Let 9 = inf{z € (a,b) : fsr1(x) > 0}. Since foy1
is strictly increasing it follows that feyi(x) > 0 V2 € (a,b) with x > xo.
So Az = (z0,b) and its closure is [zg,b] = Az. The other cases are treated
similarly. (]

2. SEMIALGEBRAIC PATH CONNECTEDNESS

Definition 2.1. Let A C R™ be a semialgebraic set.
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(1) A semialgebraic path in A is a continuous semialgebraic map

a: I — A,
where [ is either [0, 1] or |0, 1].

(2) Let z,y € A. We say that x is semialgebraic path connected to y if
there exists a semialgebraic path in A

a:[0,1] — A

with a(0) = z and a(1) = y.

Remark 2.2. Note that "z is semialgebraic path connected to y" is
an equivalence relation on A:
To see simmetry observe that if « is a path from x to y then

a*(t) = a(l—1t)

defines a path from y to x.
To see transitivity observe that if « is a path from x to y and [ is
a path from y to z, then

a2 0<t<1/2
() = {5(275— ) 1/2<t<1

is a path from z to z.

(3) A is semialgebraic path connected if any two points in A are
semialgebraic path connected.

Proposition 2.3. Let A be a semialgebraic set. Then
A is semialgebraic connected <= A is semialgebraic path connected.

Proof.
(=) Suppose A is a semialgebraic connected set and let

Ve
=1

a semialgebraic cell decomposition of A (so each Cj; is semialgebraic
path connected). Then we have seen that there is an equivalence
relation on {C; : i =1,...,n} given by:

Ci ~ Cj = CZ'O,. . .,Ciq such that Cio = CZ', Ciq = Cj and
CikﬂéikJrl#@OFCikﬂCikJrl#@ VO0<k<q,
such that the equivalence classes with respect to this equivalence re-

lation are the semialgebraic connected component of S. Since A is
semialgebraic connected there is only one equivalence class.

Claim 1. If C is a semialgebraic path connected set, also the
closure C' of C' is semialgebraic path connected (it is an immediate
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consequence of the Curve Selection Lemma).

Claim 2. If Ay, Ay C R" are semialgebraic path connected with
A1 N As # (), then A; U As is semialgebraic path connected.

So let x,y € A. We want to find a semialgebraic path in A joining
xand y. Let x € C; and y € Cj and Cy, ..., C;, as above. For every
0<k<aq,leta e Clk ﬂC’ikH or ai € CZk mCik+1' By Claim 1
and Claim 2 we can find semialgebraic paths joining ay with a1
for every 0 < k < ¢ and conclude joining x with ag (since C; = Cj,
is semialgebraic path connected) and a,—1 with y (since Cj = C;, is
semialgebraic path connected).

(<) Claim. If A is path connected then A is connected.

Suppose for a contradiction that A is a disjoint union of non-empty
open sets A; and Ap. Take z € Ay, y € Ag and ¢ : [0,1] — A a
continuous function such that ¢(z) = 0 and ¢(y) = y (it exists
because A is path connected).

Now consider X7 := [0,1] N o~ !(A1) and X3 := [0,1] N~ (As).
Then X; and X5 disconnect [0, 1], contradiction.

So we have:

A semialg. path conn. = A path conn. = A conn. = A semialg. conn.
O

The semialgebraic assumption is essential to prove (=), as the following
example shows:

Example 2.4. Let T' = {(z, sin(1/z) : £ > 0} C R? and consider A =
{(0,0)} UT. Note that (0,0) is in the closure I of I'. Then A is connected
but it is not path connected: there is no continuous function inside A joining
{(0,0)} with a point of T.

3. SEMIALGEBRAIC COMPACTNESS
Definition 3.1. A semialgebraic set A C R" is semialgebraic compact if

for every semialgebraic path «a: |0, 1[— A,

3 lim a(t) € A.
t—0t
Theorem 3.2. Let A C R" be a semialgebraic set. Then
A is semialgebraic compact <= A is closed and bounded.

Proof.

(<) Let A C R" be closed and bounded and «a: ]0, 1[— A a semialgebraic
path.
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Since A is bounded, « can be continuously extended to 0, so

3 lim a(t) =z € R"
t—0t
and = = «(0).
But A is closed, then a(0) € A.

(=) Assume A is semialgebraic compact and suppose for a contradiction
that A is not closed.

Let z € A, x ¢ A. By the Curve Selection Lemma there is a semi-
algebraic continuous function f: [0,1] — R"™ such that f(]0,1]) C A
and f(0) = x. Therefore

x = lim f(¢),
Tim f()
and x € A, since A is semialgebraic compact. Contradiction.

To show that A is bounded we use the following corollary to the

Curve Selection Lemma:

Corollary 3.3. Let A C R™ be an unbounded semialgebraic set.
Then there is a semialgebraic path a: ]0,1[— A with

1““ o\l = .
‘:‘

The following Theorem and its Corollory is a particular indication that
the notion of "semialgebraic compactness" is the correct analogue to usual
compactness, adapted to the semialgebraic setting:

Theorem 3.4. Let A, B semialgebraic sets and f: A — B a semialgebraic
continuous map. Then

A semialgebraic compact = f(A) semialgebraic compact .
Proof. We assume the following Lemma:

Lemma 3.5. Let f: A — B be a semialgebraic map with A, B semialgebraic
sets. Let 3:1]0,1[— B be a semialgebraic path in B with 5(]0,1[) C f(A).
Then there is 0 < ¢ < 1 and a semialgebraic continuous function a: |0, c[— A
such that B(t) = f(a(t)) for every 0 <t < c.

Let 8:]0,1[ — f(A) be a semialgebraic path. We want to show that
3 1i t) € f(A).
Jim () € f(A)

and a semialgebraic continuous function

By Lemma 3.5, there is 0 < ¢ < 1
= f(a(t)) for every 0 < t < ¢. Since A is

a:]0,c[ — A such that §(¢)
semialgebraic compact
3 lim at) =z € A.
t—0+

So limy_ o+ B(t) = f(x) € f(A), as required. O
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Corollary 3.6. If A is a semialgebraic compact set then any semialgebraic
continuous function f: A — R takes maximum and minimum.

Proof. By Thereom above f(A) is semialgebraic compact, so by 3.2 it is
closed and bounded. So f(A) is a union of finitely many intervals [a;, b;]
(With a; < b; € R) O
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Let R be a real closed field.

1. SEMIALGEBRAIC DIMENSION

Theorem 1.1. Let S C R" be a semialgebraic set and T1,..., Ty finitely
many semialgebraic subsets of S. Then

S = U Yk, where
k=1,...r

(i) every Xy, is semialgebraic homeomorphic to an open hypercube (0, 1)% ;

(1) the closure of ¥y, in S is the union of ¥y and some ¥; with j # k
and d; < dy;

(ii1) the closure X, of Xy is the union of Xy and finitely many semi-
algebraic sets S; semialgebraic homeomorphic to an open hypercube
(0, 1)di, with d; < dy;

(iv) every T; is the union of some Y.

Such a decomposition S = |J,, Xy, is said to be a stratification of S and the
31,...,2 are called strata.

Proposition 1.2. Let S C R" be a semialgebraic set. Let
P q
s=Ja s=JDp;
i=1 j=1

be two decompositions of S into a disjoint union of semialgebraic sets, with
C; semialgebraic isomorphic to (0,1)% Vi=1,...,p,
D; semialgebraic isomorphic to (0, D% Vi=1,...,q

Then max;=i,..., p{dz} = man:L._,g{dj} =d.
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We define the dimension of S such a d. We write dim S = d.

Proof. We can apply Theorem 1.1 taking the semialgebraic subsets T;; =
CiNDj, fori=1,...,pand j =1,...,q, and we find a stratification

5o U
k=1

which is a common refinement of the two decomposition, i.e. each C; and
each D; is a finite union of some ¥, and each X is semialgebraic homeo-
morphic to (0, 1)%.

We want to show that max;—1 . p{d;} = maxj—1 __.{d;} = maxz—1 __,{d}.

Set CZZ = maxi:17._,,p{di} and CZk = maxkzl,,..m{dk}.
Since every ¥, is contained in some Cj, of course dj, < d;. )

Let now ¥, a stratum semialgebraic homeomorphic to (0, 1)% and suppose
that ¥ C C;. We claim that X, is open in C; (equivalently, C; \ 3y is closed
in C;): by Theorem 1.1(i7), if X is a stratum in C; \ X then the closure
of ¥ in C; contains only 3, and strata %, with d, < ds < di. Therefore
the closure of C; \ X in C; is disjoint from X and this shows that C; \ 3
is closed in C; (and X is open in C;). We conclude assuming the following
fact:

Fact 1.3.

e A C X, X homeomorphic to (0,1)%, A open in X = A locally
homeomorphic to (0,1)¢ (i.e. for every x € A there is an open neigh-
borhood of & homeomorphic to (0,1)%).

e (0,1)% is homeomorphic to (0,1)% < dy = ds.
Therefore dj, = d;, and dj, = Jj is similar. O
Remark 1.4. Let A, B C R" be semialgebraic sets. Then
(1) dim(A U B) = max{dim A, dim B}.
(2) dim(A x B) = dim A 4+ dim B.

We see now that the dimension of a semialgebraic set behaves well with
respect to the topological closure:
Proposition 1.5. Let S C R" be semialgebraic. Then

(i) dim S = dim S.

(ii) dim(S \ S) < dim S.

Proof. Let us observe that by 1.4(1), (1) = (4).
We claim that if .
S = U Yk

k=1,...,r
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is a stratification of S as in Theorem 1.1, then
T
5=
k=1

(C) Ui—y Zk is a finite union of closed set, so it is closed. It contains S,
so it contains also the closure S of S.

(D) Forevery k=1,...,r, %, CS. Then 4 C S and | J;_, X C S.

Therefore dim(S \ S) < max{dim(Z;\ 1) : 1 < k < r} and by Theorem
1.1(474) this is stricly less than max{dim¥; : 1 <k <r} =dimS. O

Now we see that the dimension of a semialgebraic set is invariant by semi-
algebraic bijections (not necessarily continuous!):

Lemma 1.6. Let A C R"'F be a semialgebraic set, m: R"* — R™ the
projection on the first n coordinates. Then dimm(A) < dim A. Moreover if
m,: A — R" is injective, then dim(A) = dim A.

Proof. By induction on k.

e k=1. Write A as a disjoint union of cells.

e k= k+ 1. Consider the projection 7: R*™*+1 — R™ on the first n
coordinates as the composition of the projection 71 : Rk — Rntl
on the first n + 1 coordinates and the projection my: R"*!1 — R™ on
the first n coordinates:

Rn+1+k L Rn+1 L Rn
A — A - 7(A)

Then by induction dim A > dimm(A4) = A; > dimma(4;) = 7(A).

Moreover

3

4 s Injective <= |, and T2|,, are mjective.

0

Theorem 1.7. Let S C R™ be semialgebraic, f: S — RF a semialgebraic
map (not necessarily continuous). Then dim f(S) < dim S. If f is injective
then dim f(S) = dim S.

Proof. Let A C R"** be the graph of f:
A=T(f)={(z f(z)) 2z € S}.

Let m1: R"t* — R™ be the projection on the first n coordinates. Then T,
is injective and 71 (A) = S. Therefore, by Lemma 1.6, dim S = dim A.

Let now my: R"*% — RF be the projection on the last k coordinates. Then
m2(A) = f(S). Again by Lemma 1.6 dim f(S) < dim A = dim S.

If f is injective then dim f(S) = dim A. O

93



Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010

4 SALMA KUHLMANN

2. ALGEBRAIC DIMENSION

Consider the ring of polynomials R[x] := R[xy,...,X,] in n variables and
coefficients in R.

An algebraic set V' C R"™ is by definition the common zeroset of all poly-
nomials belonging to a subset A C R[x]:

V=Z(A):={zcR":plz) =0Vpe A}.

Then we can consider the set of polynomials which vanish on V' (which of
course contains A):

Z(V):=={p€ R[x] : p(z) =0 Vz € V}.
We take the ring of polynomal functions on V, i.e. the quotient of R[x| by
Z(V):

R[x]
V)
And now we are ready to define the algebraic dimension of V:

PV):=

Definition 2.1. The dimension of an algebraic set V' is by definition the
Krull dimension of P(V), i.e. the maximal d € N such that

d1Ph € P C---C Py,

where P; is a prime ideal of P(V) Vi=1,...,d.
We recall that an ideal P is said to be prime if for every pair of ideals A
and B,
ABCP = ACPorBCP.

In general, given a subset S C R", Z(Z(S)) is the smallest algebraic
subset of R™ containing S. It is said to be the Zariski closure of S and it
is denoted by S%.

In fact, the algebraic subsets of R™ are the closed sets of the Zariski
topology, and SZ is the closure of S with respect to this topology.

The Zariski topology is coarser than the Euclidean topology, i.e. each
algebraic set is closed in the FEuclidean topology, but the converse is not
true.

Theorem 2.2. Let S C R" be a semialgebraic set. Then its dimension as a
semialgebraic set is equal to the dimension, as an algebraic set, of its Zariski
closure SZ. In particular, if V. C R™ is an algebraic set, then its dimension

as a semialgebraic set is equal to its dimension as an algebraic set (i.e. the
Krull dimension of P(V)).

Dimension will be investigated more during next term.
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Konvexe Bewertungen und reelle Stellen auf angeordnete Korper

1. VALUED Z-MODULES AND VALUED (Q-VECTOR SPACES

All modules M considered are left Z-modules for a fixed ring Z with 1
(we are mainly interested in Z = Z, i.e. in valued abelian groups).

Definition 1.1. Let I' be a totally ordered set and oo an element greater
than aech element of I' (Notation: co > I'). A surjective map

vi M — T'U{oo}

is a valuation on M (and (M,v) is a valued module) if Vz,y € M and
VreZ:

(1) v(z) =0 < z=0;
(73) v(rz) =v(x), if r # 0 (value preserving scalar multiplication);

(#i7) v(x —y) > min{v(z),v(y)} (ultrametric A-inequality).
Remark 1.2. (i) + (i1) = M is torsion-free.

Remark 1.3. Consequences of the ultrametric:

e v(z) #v(y) = v(z+y)=minfu(z),v(y)};

o v(x+y)>v(x) = v(z)=0(Yy).

Definition 1.4. v(M) :=T = {v(z) : 0 # x € M} is the value set of M.
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Definition 1.5.

(1) Let (My,v1), (Ma,v2) two valued modules with value sets I'; and T’y
respectively. Let
h: M1 — M2

be an isomorphism of Z-modules. We say that h preserves the
valuation if there is an isomorphism of ordered sets

(Y2l Fl — FQ
such that Vo € My : p(vi1(z)) = va(h(z)).

(73) Two valuations vi, v2 on M are equivalent if the identity map on
M preserves the valuation.

Definition 1.6.
(1) An ordered system of Z-modules is denoted by:

[T, {B(v) :v€T}]

where {B(7y) : v € '} is a family of modules indexed by a totally
ordered set I'.

(2) Two systems
Si= [Ty, {Bi(v) ;v eli}]  i=1,2

are isomorphic (we write S; = Ss) if and only if there are an iso-
morphism
@Y: Fl — Fg

of totally ordered sets, and V~ € I'; an isomorphism of modules

@y Bi(y) — Ba(e(y)).

(3) Let (M,v) be a valued module, I' := v(M). For v € T" set
MV :={x e M:v(z) >~}
M, :={z e M:v(z) >~}
Then M, C M"Y C M. Set
B(M,~) := M"/M,.
B(M,~) is the (homogeneous) component corresponding to

7. The skeleton (das skelett) of the valued module (M,v) is the
ordered system

S(M) := [v(M), {B(M,7) : v €v(M)}].

We write B(v) for B(M,~) if the context is clear.
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(4) For every v € I, the coefficient map (Koeffizient Abbildung)

M (y,=): M7 — B(7)
T — r+ M,

is the canonical projection.
We write 7(7y, —) instead of 7 (v, —) if the context is clear.

Lemma 1.7. The skeleton is an isomorphism invariant, i.e.

if  (My,v1) = (Ma,vs),
then S(Ml) = S(Mg)

Proof. Let h: M1 — My be an isomorphism which preserves the valuation.
Then

h: v(Ml) — "U(MQ)
defined by

h(vi(x)) := va(h(x))

is a well defined map and an isomorphism of totally ordered sets.
For v € v(M7) the map

hy: Bi(y) — Ba(h(7))

defined by

i (y,z) = 72 (h(y), h(z))

is well defined and an isomorphism of modules. O

2. HAHN VALUED MODULES

A system [T, {B(7) : v € T'}] of torsion-free modules can be realized as
the skeleton of a valued module through the following canonical construction:

Consider [], o B(v) the product module. For s € [, o B(7v) define

support(s) = {y € I : s(y) # 0}.

The Hahn sum | | .
elements with finite support (i.e. @

B(v) is the submodule of [[ . B(v) consisting of

ver B) endowed with the valuation:

Umin * |_| B(’Y) - FU{OO}
yel’
Umin (8) = min support(s).

(convention: min ) = 0o).
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The Hann product Hyer B(y) is the submodule of [ [ . B(7) consisting
of the elements with well-ordered support equipped with viiy.

We recall that a totally ordered set I' is well-ordered if every non-empty
subset of I has a least, or equivalently if every descending sequence of ele-
ments from T is finite.

3. HAHN SANDWICH PROPOSITION

Lemma 3.1.
(1) Uyer B(7)) € Hyer B(7).
(i1)
S(||B() = [T {B(»):7€T}]

vyel
~ S(H,er B(7)).

We shall show that if Z = @ is a field and (V,v) is a valued Q-vector
space with skeleton S(V') = [T, B(y)], then

(|_|B(’7)7Umin) - (Vvav) — (HWGFB(’V)’Umin)'
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1. HAHN SANDWICH PROPOSITION

From now, let Z = @ be a field and (V,v) a valued @Q-vector space with
skeleton S(V') = [T, B(~)]. We want to show

(|_|B('V)a Vmin) = (V,v) = (Hyer B(7), Vmin)-
~yel'

2. IMMEDIATE EXTENSIONS

Definition 2.1. Let (V;,v;) be valued Q-vector spaces (i = 1,2).

(1) Let Vi C Va @-subspace with v1(V7) C ve(Va). We say that (Va, v9)
is an extension of (V,v1), and we write

(Vi,v1) € (Va,v9),

if V2|, = V1.

(2) If (‘/luvl) - (‘/271}2)7 for v E ’Ul(Vl) the map

Bi(y) — Bz2(7)
z+(Vi)y = x+(Va)y
is a natural identification of Bi() as a @-subspace of Ba(y). The
extension (Vi,v1) C (Va,v2) is immediate if ' := vy (V) = va(V2)
and Vv € v1(11)
Bi(7) = Ba(v)-

Equivalently, (V1,v1) C (Va,v2) is immediate if S(Vi,v1) = S(Va,v2).



Vorlesung "Reelle algebraische Geometrie" - WS 2009/2010

2 SALMA KUHLMANN
Lemma 2.2. (Characterization of immediate extensions)
The extension (Vi,v1) C (Va,va) is immediate if and only if
Ve eVa, x#0, Jy € Vi such that va(z —y) > va(x).
Proof. We show that in a valued @Q-vector space (V,v), for every x,y € V
3 = = d
v —y) >v(r) <= (Z) 7 =v(@) =v(y) an
(it) w(y,z) =7(y,y).
(<) Assume (i) and (4i). So z,y € VY and x —y € V,.
Then v(z —y) > v(z) = 7.

(=) Assume v(x —y) > v(x). We show (¢) and (47).

If v(z) # v(y), then v(z — y) = min{v(z),v(y)}. In both cases
min{v(z),v(y)} = v(z) and min{v(z),v(y)} = v(y) we have a con-
tradiction. (7i) is analogue.

(]
Example 2.3. (l_l»yer B(7v), vmin) € (Hvel“B('Y)a Vmin)
is an immediate extension.

Proof. Given x € Hyer B(7),  # 0, set
~o := min support(x) and z(y0) = bo € B(0).

Let y € [ |,ep B(7) such that

_J0 ify#F v
y(v) = :
by if v = 0.

Namely y = boX~,, where
Xvo: I — @

() = 1 ify=m
o0 iy # 0.

Then vpmin(x — y) > 70 = vmin(z) (because (z — y)(y0) = x(y0) — y(y0) =
bo — by = 0).
O

3. VALUATION INDEPENDENCE

Definition 3.1. B={xz;:i € I} CV \ {0} is Q-valuation independent
if for ¢; € Q with ¢; = 0 for all but finitely many ¢ € I, we have

v(; giwi) = min, {v(z)}.
Remark 3.2. B C V\{0} Q-valuation independent = @Q-linear indepen-
dent.
(Otherwise 3 ¢; # 0 with > ¢z; = 0 and v()_ giz;) = 00).
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Proposition 3.3. (Characterization of valuation independence)

Let B C V \ {0}. Then B is Q-valuation independent if and only if
Vn €N, Vby,..., by, € B pairwise distinct with v(by) = --- = v(b,) = =y, the
coefficients

W(fyv bl)a s 777(’)/’ bn) € B(V)
are Q-linear independent in B(vy).

Proof.

(=) Let by,...,b, € B with v(b1) = --- = v(b,) = v and suppose for a
contradiction that

7'('(’% bl)v s 777(7’ bn) € B(’Y)

are not @-linear independent. So there are ¢q,...,q, € @ non-zero
such that 7(v,> ¢ib;) = 0 and v(D>_ g;b;) > -y, contradiction.

(<) We show that
U(Z ¢ib;) = min{v(b;)} = .

Since 7(v,b1),...,m(7,by) are Q-linear independent in B(7), also

W(fy) Z szz) ;é 07
=0

fe. v(dqibi) <.
On the other hand v(}_ ¢;b;) = 7, so v(>_ qib;) = v = min{v(b;)}.

O

4. MAXIMAL VALUATION INDEPENDENCE

By Zorn’s lemma, maximal valuation independent sets exist:

Corollary 4.1. (Characterization of maximal valuation independent sets)
B CV \ {0} is mazimal valuation independent if and only if Vv € v(V)

B, = {m(y,b) : b € B;v(b) = 7}

is a Q-vector space basis of B(V, 7).

Corollary 4.2. Let BC V \ {0} be valuation independent in (V,v). Then
B is mazimal valuation independent if and only if the extension

(B) = (V()aU|V0) c (Viv)

1s an immediate extension.

Proof.
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(=) Assume B C V is maximal valuation independent. We show Vj C V
is immediate.
If not 3 x € V,  # 0 such that

VyeVo: vz —y) <o(z).

We will show that in this case BU{x} is valuation independent (which
will contradict our maximality assumption).
Consider v(yo + qx), ¢ € Q, ¢ # 0, yo € Vp. Set

Y= —%/q.

We claim that v(yo + qz) = v(z — y) = min{v(x),v(y)}
Fact.
v(z —y) <v(z) <= v(z—y) =min{v(z),v(y)}.

Proof of the fact. (<) is clear. To see (=), assume that v(z—y) >
min{v(z),v(y)}. If min{v(x),v(y)} = v(x), then we have a contra-
diction. If min{v(x),v(y)} = v(y) < v(x), then v(x —y) = v(y) >
v(y), again a contradiction.

(<) Now assume (Vp,v) C (V,v) is immediate. We show that B is maxi-
mal valuation independent.
If not, there is v € v(V) such that B, is not a basis for B(V,~).
Let b e B(V,v), b ¢ (B,).

beVIV, = b=a+V,,
with z € V, v(x) =17.
Claim: Vy € Vj v(z — y) < v(x) (contradicting that the exten-

sion is immediate). This follows by Characterization of immediate
extensions (Lemma 2.2).

O

5. VALUATION BASIS

Definition 5.1. B is a -valuation basis of (V,v) if
(1) Bis a Q-basis,
(2) B is Q-valuation independent.

Remark 5.2. B ()-valuation basis = B is maximal valuation independent.

Example 5.3. (||, B(7), vmin) admits a valuation basis.

Proof. Let By be a Q-basis of B(y) for v € I' and consider
B:= U{bxh}; be BW},

yel’

where Vv € T’
Xy: T — @
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() = 1 ify=+
X\ )= 0 ifv=#4.

O

Corollary 5.4. (V,v) with skeleton S(V) = [T, B(vy)] admits a valuation
basis if and only if

(V,u) = |_|B Y)s Vmin)-
yerl’

Proof.
(<) Clear.

(=) Let B be a valuation basis for (V,v). Then B = {b; : i € I} is
maximal valuation independent. For every b; € B,v(b;) = -, define

h(bi) = 7 (7, bi) x4

and extend it to V' by linearity (note that v(b;) = vmin(h(b;))).

Corollary 5.5. Assume S(V) = [T, B(y)]. Then
|_| B(7), vmin) — (V,v).
yel’

Proof. By Zorn’s lemma, let B C V' \ {0} be maximal valuation independent.
Set
Vo :i= o(B).

Then B is a valuation basis for V) and V) C V (immediate), so S(Vp) =
S(V) = [T, B(»)] and

‘/07 |_| B ) vmm
yel’
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1. INTRODUCTION

Our aim for this and next lecture is to complete the proof of Hahn’s em-
bedding Theorem:

Let (V,v) be a Q-valued vector space with S(V') = [T', B(v)].
Let {z;: ¢ € I} C V be maximal valuation independent and

hi Vo= (({wizie}), v) = (| BO), vmin)-
~yel

Then h extends to a valuation preserving embedding (i.e. an isomorphism
onto a valued subspace)

h: (V7U) — (HWEF B(’Y)a Umin)-
The picture is the following:

h
(V, v) &= (Hyer B(7); Vmin)
immediate immediate

Vo, v) —> (Uyer BOY), vmin)

2. PSEUDO-CONVERGENCE AND MAXIMALITY

Definition 2.1. A valued Q-vector space (V,v) is said to be maximally
valued if it admits no proper immediate extension.
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Definition 2.2. A well ordered set S = {a, : p € A} C V without a last
element is said to be pseudo-convergent (or pseudo-Cauchy) if for every
p < o <1 we have

v(ag —a,) < v(ar — aq).

Example 2.3.
(a) Let V = (Hn, R, vmin), where Ng ={0,1,2,...}. An element s € V
can be viewed as a function s: Ny — R. Consider

ao = (1,0,0,0,0...)
a1 = (1,1,0,0,0...)
as = (1,1,1,0,0...)

The sequence {a, : n € Ng} C V is pseudo-Cauchy.
(b) Take V as above and s € V' with
support(s) = Ny,

ie. s; :=s(i) # 0 Vi € Ny. Define the sequence

b(): (80,0,0,0,0...)
bl = (80,81,0,0,0...)
52: (80,81,82,0,0...)

For every | < m < n € Ny, we have

l+1= Umin(bm — bl) < 'Umin(bn — bm) =m+1.

Therefore {b, : n € Ngo} C V is pseudo-Cauchy.

Lemma 2.4. If S = {a,} e is pseudo-convergent then
(i) either v(a,) < v(ag) for all p <o € A,

(i1) or Ipg € X such that v(a,) =v(as) Yp,0 = po.

Proof. Assume (i) does not hold, i.e. v(a,) > v(a,) for some p < o. Then
we claim that
v(ar) =v(ay) V7> o0.

Otherwise, v(a; — ay) = min{v(a;),v(as)} < v(ay).
But v(ay — a,) > v(a,), contradicting 2.2. O

Notation 2.5. In case (ii) define

Ult S :=v(ay,) = v(a,) Vo = po.
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Lemma 2.6. If {a,} is pseudo-convergent then for all p < o we have
v(ag — ap) = v(apt1 — ap).
Proof. We may assume 0 > p+1 (so p < p+1 < o). From

v(ape1 —ap) < v(ag — apyr)
and the identity
g — ap = (Ao — apy1) + (apr1 — ap),
we deduce that

v(ag — ap,) = min(v(ae — apt1), v(app1 — ap))

=v(apr1 — ap).

Notation 2.7.

Yot = (ap+1 - ap)
(ag — ap) Yo >p.

Remark 2.8. Since p < p+1 < p+ 2, we have 7, < 7,41 for all p.

3. PSEUDO-LIMITS

Definition 3.1. Let S = {a,} be a pseudo-convergent set. We say that
r € V is a pseudo-limit of S if

v(z —ap) =, for all p.

Remark 3.2.
(¢) If v(a,) < v(as) for p < o, then x = 0 is a pseudo-limit.

(73) If 0 is not a pseudo-limit and x is a pseudo-limit, then v(z) = Ult S.

Example 3.3.
(a) In Example 2.3(a), the costant function 1:
a=(1,1,...)

is a pseudo-limit of the sequence {ay, }nen,-

(b) In Example 2.3(b), s is a pseudo-limit of {by, }nen,-

Definition 3.4. (V,v) is pseudo-complete if every pseudo-convergent se-
quence has a pseudo-limit in V.
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Definition 3.5. Let S = {a,} be pseudo-convergent. The breadth (Breite)
B of S is defined to be the following subset of V:

B(S)={y eV :v(y) >, Vp}.

Lemma 3.6. Let {a,} be pseudo-convergent with breadth B and let x € V
be a pseudo-limit. Then an element of V is a pseudo-limit of {a,} if and
only if it is of the form x +y with y € B.

Proof.
(=) Let z be another pseudo-limit of {a,}. It follows from
r—z=(x—ap) —(z—ap)

that

v(z — z) 2> min{v(z —a,),v(z —a,)} =, Y p.

Since 7, is increasing, it follows that v(z — z) > ~, for all p.
So z € B as required.

(<) If y € B then v(y) > v, = v(z — a,) for all p. Then

v(@+y—ap) =v(@—a,+y) =min{v(z—ay),v(y)t =7 Vo

4. COFINAL SUBSETS

Definition 4.1. Let I' be a totally ordered set. A subset A C I' is cofinal
in T if
Vy el da e A with v < a.

Example 4.2. If I' = [0, 1] C R, then for instance A = {1} is cofinal in T".

Lemma 4.3. Let I' be a totally ordered set. Then there is a well ordered

cofinal subset A C I'. Moreover if I' has no last element, then also A has no
last element.
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1. PSEUDO-COMPLETENESS

Let (V,v) be a valued Q-vector space. We recall that

- (V,v) is said to be maximally valued if it admits no proper imme-
diate extension.

- (V,v) is pseudo-complete if every pseudo-convergent sequence in
V has a pseudo-limit in V.

Theorem 1.1. (V,v) is mazimally valued if and only if (V,v) is pseudo-
complete.

We prove only one implication:
(V,v) pseudo-complete = (V,v) maximally valued.

This implication follows from the following:

Proposition 1.2. Let (V,v) be an immediate extension of (Vo,v). Then
any element in V which is not in Vy is a pseudo-limit of a pseudo-Cauchy
sequence of elements of Vi, without a pseudo-limit in Vj.

Proof. Let z € V' \ V. Consider the set
X ={v(z—a):ae W}

Since z ¢ Vp, 00 ¢ X.

We show that X cannot have a maximal element. Otherwise, assume
ap € Vp and v(z — ap) maximal in X. Since the extension is immediate, by
Lemma 2.2 of Lecture 24 there is a; € Vj such that v(z—ap—a1) > v(z—aop).
So ap+ay € Vo and v(z — (ag+a1)) > v(z — agp), contradiction. Then X has
no greatest element.

Select from X a well ordered cofinal subset {c,},ex. Since the set X has
no greatest member, also {a,} e does not have a last term (see Lemma 4.3
of Lecture 25).
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For every p € A choose an element a, € V with
v(z —a,) = a,.
The identity
ag —ap = (z —a,) — (2 — ao)
together with the inequality
v(z —a,) <v(z—ag) Vp<oel)
imply
(%) v(ag —ay,) = v(z —a,).

Then {a,},ex is pseudo-convergent with z as a pseudo-limit.
Suppose now that {a,},ex had a further limit z; € Vj.
Then by Lemma 3.6 of Lecture 25 we have

v(z — 21) > v(ae — ay).
Combining this with (x) we get
v(z —21) >v(z—ay) =, Vpe

and this is a contradiction, since {a,} ey is cofinal in X. O

Theorem 1.3. Suppose that
(i) Vi and V] are Q-valued vector spaces and V] is an immediate exten-
sion of Vi, fori=1,2.

(i) h is an isomorphism of valued vector spaces of Vi onto Va.

(113) V3 is pseudo-complete.

Then there exists an embedding h' of valued vector spaces of V{ in V3 such
that ' extends h.

Moreover h' is an isomorphism of valued vector spaces of V{ onto Vi if
and only if V| is pseudo-complete.

Proof. The picture is the following:
Vv - V3

immediate immediate

Vi —s

By Zorn’s Lemma, let
Vic M CV,
Vo C My CV,y

and g a valuation isomorphism of M; onto M extending h. We shall show
how to extend g to V/.
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Let y; € V/\ M;. Since V/ is an immediate extension of M; there exists
a pseudo-convergent sequence

S = {ap}pe)\

of M; without a pseudo-limit in M; but with a pseudo-limit y; € V7.
Consider

9(8) ={g(ap)}pex

Since g is a valuation preserving isomorphism, g(.S) is a pseudo-convergent
sequence of My without a pseudo-limit in Ms but with pseudo-limit yo € V5,
because Vj is pseudo-complete.

Let M = (M;, y;), for i = 1,2, and denote by ¢’ the unique Q-vector space
isomorphism of the linear space M| onto the linear space M, extending g
and such that ¢'(y1) = ya.

We show that ¢’ is valuation preserving: let

y=z+qn xeM qeQ\{0}

be an arbitrary element of M{\ V;. The set

S(y) = {z + qap}pex

is a pseudo-convergent sequence in M; with pseudo-limit y € M7 and 0 is
not a pseudo-limit (otherwise —z/q € M; would be a pseudo-limit of 5).

It follows that (since y = x4 qy; is a pseudo-limit for the sequence x+qa,
which does not have 0 as a pseudo-limit)

v(y) = Ult S(y)

similarly

v(g'(y)) = Ult S(g'(y))

where
S(9'(y)) = {9 (x) + q9'(ap)} pex

is a pseudo-convergent sequence of My with limit ¢'(y) € MJ.
Now g|’ A, = 9 1s valuation preserving from M to M. So we have

Ult(S(y)) = UL(S(d' (v)))
hence

as required. O

Proposition 1.4. H,cr B(y) is pseudo-complete.
Proof. Let {a,},cx be pseudo-Cauchy. Recall that
Vp = v(ap — apt1)

is strictly increasing. Define x € H,cr B(7) by
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0 otherwise.

() = {ap('y) if v <

It is well defined because if p1 < p2, v < v,, and v < 7,,, then

v(ap, = ap,) =Y
and then
apy (7) = apy (7)-
We show now that support(z) is well ordered.
Let A C support(z), A # 0 and vp € A. Then 3 p such that vy < 7, and

z(70) = ap(70) with 70 € support(ay).
Consider

Ap={y€A:v <}

Note that since z(y) = a,(7y) for v < g it follows that Ay C support(a,)
which is well ordered, so min Ag exists in Ay and it is the least element of A.

We now conclude by showing that x is a pseudo-limit. From definition of
x we have

v(@ —ap) =7 = v(apt1 —ap) Vp.

If v(z — a,) > v(a, — apt1), then

V(X —apt1) =v(x —ap,+a, — apr1) =v(a, — apr1) =Y
but

V(T = Gpr1) 2 Ypr1 > Vps

contradiction. O

As a corollary to the general embedding theorem and this proposition we
get Hahn’s embedding’s theorem.
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1. ORDERED ABELIAN GROUPS

Definition 1.1. (G,+,0,<) is an ordered abelian group if (G, +,0) is
an abelian group and < is a total order on G such that for every a,b,c € G

a<b = atc<b+tec

Definition 1.2. A subgroup C' of an ordered abelian group G is convex if
Vei,eco € Cand Vo € G

a<x<c = zel.
Examples 1.3. C = {0} and C = G are convex subgroups.

Definition 1.4. Let G be an abelian ordered group, z € G, x # 0.
We define:

Cyp = ﬂ {C': C is a convex subgroup of G and =z € C}.
D, = U {D : D is a convex subgroup of G and = ¢ D}.

A convex subgroup C' of GG is said to be principal if there is some z € G
such that C = C,.
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Proposition 1.5.

(1) D is a proper convex subgroup of Cy.

(2) D, is the largest proper convezr subgroup of Cy, i.e. if C is a convex
subgroup such that
D, CCCCy

then C = D, or C' = C.

(3) It follows that the ordered abelian group Cy/Dg has no non-trivial
proper convex subgroup.

2. ARCHIMEDEAN GROUPS
Definition 2.1. Let (A, +,0, <) be an ordered abelian group. We say that
A is archimedean if for all non-zero a1, as € A:
dn eN: nlai]| > |az] and nlaz| > |ai],

where for every a € A, |a| := max{a, —a}.

Proposition 2.2. (Hélder) FEvery archimedean group is isomorphic to a
subgroup of (R, +,0, <).

Proposition 2.3. A is archimedean if and only if A has no non-trivial
proper convex subgroup.

Therefore if G is an ordered group and z € G with x # 0, the quotient
Cz/Dy is archimedean (by 2.3) and can be embedded in (R, +,0, <) (by 2.2).

Definition 2.4. Let G be an ordered group, x € G, x # 0. We say that

B, :=C,/D,

is the archimedean component of z in G.

3. ARCHIMEDEAN EQUIVALENCE

Definition 3.1. An abelian group G is divisible if for every z € G and for
every n € N there is y € G such that z = ny.

Remark 3.2. Any ordered divisible abelian group G is a Q-vector space
and G can be viewed as a valued Q-vector space in a natural way.

Definition 3.3. (archimedean equivalence) For every z,y € G we define
r ~Ty & IneN nlz| >yl and nly| > |z
r <<ty & VneN njz|<|y|
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Proposition 3.4.

(1) ~T is an equivalence relation.

(2) ~T is compatible with <<*:

r<<ty and z~T2z = z<<ty,

r<<ty and y~Tz = <<tz

Because of the last proposition we can define an order <p onT" := G/ ~*=
{[z] : = € G} as follows:

] <r[z] & z<<Ty

Proposition 3.5.
(1) T is a totally ordered set under <p.

(2) The map

v: G — T'U{oo}

0 — oo
z — [z (fx#0)

is a valuation on G as a Z-module:

For every x,y € G:

-v(r) =00 iff =0,
-v(nz) =v(z) YneZ, n#0,
- v(z +y) = minfu(z),v(y)}-

(3) ifx € G, x # 0, v(x) =, then
GV :={a€eG:v(a) =2~} =C,.

Gy ={aeG:v(a) >~} =D,.
So

1s the archimedean component associated to .
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1. EXAMPLES

If G is a Hahn group, namely a Hahn sum

G=||Bw

vyel

or a Hahn product
G= HWEF B(’Y)

as in section 2 of Lecture 23, then the valued Q-vector space (G, vUmin) is
isomorphic to (G, v), where v is the natural valuation explained in the last
lecture (Lecture 27, section 3). Namely

Vz,ye G v(z) =v(Yy) < Vnin(T) = Umin(Y).

2. VALUED FIELDS

Definition 2.1. Let K be a field, G an ordered abelian group and oo an
element greater than every element of G. A surjective map

w: K — GU{oc}
is a valuation if and only if Va,b € K:
(i) w(a) =00 & a=0.
(i) w(ab) = w(a) + w(b).
(iii) w(a — b) > min{w(a), w(b)}.

Immediate consequences are:
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o w(a) =w(—a),
e w(a™!) = —w(a)if a #0,

e w(a) #w(b) = w(a+b) =min{w(a), w(d)}.
Definition 2.2.
Ry, :={a € K : w(a) > 0} is the valuation ring.
I, :={a € K : w(a) > 0} is the valuation ideal.

Lemma 2.3. [, is an ideal of the ring Ry, and it is maximal proper.

Thus Ry /1, is a field denoted by K,, and called the residue field.
The residue map is the canonical surjection:

R, — Ry/I,
b = b+ L, = by

The group of units of the valuation ring R, is given by

Uy ={a € K :w(a) =0}

and it is a subgroup of the multiplicative group of R,,.
The group of 1-units is the multiplicative subgroup of U,, given by

1+ I, ={ae K:w(a—1) >0}

3. THE NATURAL VALUATION OF AN ORDERED FIELD
Let (K,+,-,0,1,<) be a totally ordered field.
Remark 3.1. (K,+,0,<) is a totally ordered divisible abelian group.

So we have the natural valuation v on K as a QQ-vector space. Setting
G :=v(K \ {0}), we have:
v: K — GU{oo}
0#a +— v(a):=|al
0 — 00

We shall show now that we can endow the totally ordered value set (G, <)
with a group operation + such that (G,+,<) is a totally ordered abelian
group. For every a,b € K\ {0} define

[a] + [b] == [ab]-

Lemma 3.2. This addition is well defined and (G,+, <) is a totally ordered
abelian group.
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4. THE FIELD OF POWER SERIES

Let K be a field and G a totally ordered abelian group.
The field of formal power series with coefficients in K and exponent in G
is the set of formal objects

K(GQ)) :={s= Z s(g)t? : s(g) € K and support(s) = {g € G : s(g) # 0}
geG
is well ordered in G}

with the following addition and multiplication:

O s(@)t) + O _r(@t?) = (slg) +r(g) .

geG geG geG
O s(@)t?) - O _r@t?) =D (> rlg)slg—g) o
geG geG geG g'eG

Lemma 4.1. This multiplication is well defined:

(1) the sum is finite.
(2) support(rs) is well ordered.

To see that K((G)) is a field, we compute the inversion function. Let
s € K((G)) with minsupport(s) = go. We can write

s = S(QO)tgo(l + 5))
and then

1

-1 - -1
s = 71l +e) ",
s(go) ( )

with

(1+e)t= Zaiai.

1€EN

Example 4.2. If G = Z and K =R, K((G)) = R((Z)) is the field of Laurent

series with coefficients in R:
o

s = Z s(n)t" s(n) € R.

n=-—m
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1. HARDY FIELDS

Definition 1.1. (Hardy field) Consider the set of all real valued functions
defined on positive half lines:

F={f]f:]a,00) =Ror f: (a,00) = R, a € R}

For every f,g € F we define

f~g & INeNst. f(x)=g(xr) Ve > N.

When f ~ g we say that f and g have the same germ at oco.
We identify f € F with its germ [f].

We denote by G the set of all germs. Note that G is a commutative ring
with 1 by:
[f1+ 9] :=[f +4d]
[f1-lgl:=1f - gl

A subring H of G is a Hardy field if it is a field with respect to the
operations above and it is closed under differentiation, i.e.

feH = f €H.

Remark 1.2. (defininig a total order on a Hardy field). Let H be a Hardy
field and f € H, f #0.

Since 1/f € H, f(x) # 0 ultimately. Moreover since f' € H, f is ulti-
mately differentiable and thus ultimately continuous.

It follows that sign(f) is constant ultimately (i.e. f is strictly positive on
some interval (N, 00) or f is strictly negative on some interval (IV, c0)).

This key property allows us to define a total order on H:
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Definition 1.3. Let H be a Hardy field. For every f, g we define

f>g9g & f—g is ultimately positive.
Lemma 1.4. > above is an ordering on H.

Examples 1.5.

(1) Q and R are Hardy fields consisting of just constant germs. They
are archimedean Hardy fields.

(2) Let x denote the germ of the identity function. Then x > R and R(x)
is a non-archimedean Hardy field.

Lemma 1.6. (Monotonicity) Let H be a Hardy field and f € H, f' # 0.
Since f' is ultimately positive or negative, it follows that f is ultimately
increasing or decreasing. Therefore

3 lim f(z) € RU{—00,+00}.

2. THE NATURAL VALUATION OF A HARDY FIELD

Definition 2.1. (Valuation on H). Let H be a Hardy field. Define for
f9#0

This is an equivalence relation. Denote the equivalence class of f by v(f).
Define

v(f) +v(g) = v(f9),
and
f(z)

v(f) >v(g) < mh_)noloﬁ = 0.

Lemma 2.2. The map

H — H/~ U {co}
0#f — wv(f)

0 — oo

18 a valuation and it is equivalent to the natural valuation.
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Remark 2.3.
R, ={f: lim f(z) € R}.

I, ={f: xlirglof(x) = 0}.

Uy = {f s Jim f(z) € R\{0}}.
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1. CONVEX VALUATIONS

Let K be a non-archimedean ordered field. Let v be its non-trivial natural
valuation with valuation ring R, and valuation ideal I,.

Remark 1.1.
(1) R,/I, is archimedean.

(2) R, is the convex hull of Q in K.

Let w be any valuation of K with valuation ring R, valuation ideal I,
and residue field K, := Ry, /1.

Definition 1.2. We say that w is compatible with the order ifVa,b € K

0<a<b = wla)=>wd).

Compatible valuations are also called convex valuations.
Example 1.3. The natural valuation is compatible with the order.

Remark 1.4. We recall that a subset C of a totally ordered set X is said
to be convex if Vey,c0 € C and = € X:

a<x<c = zel.
If C' is a subgroup of an ordered abelian group A, equivalently C' is convex
if and only if Vc € C and a € A:
0<a<c = ael.
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Proposition 1.5. (Characterization of convex valuations). The following
are equivalent:

(1) w is compatible with the order of K.
(2) Ry is convex.

(3) I, is convex.

(4) I, < 1.

(5) 1+ 1, € K>°.

(6) The residue map

Ry, — Ry/Iy
a +— a+1,

induces an ordering on Kw given by

a+ I, >0 < a>0.
(7) The set
U ={ac K:wla)=0 A a>0}

of positive units is a convex subgroup of (K>°,- 1, <).

Proof. (1) =(2).0<a<be Ry, = w(a) > w(b) =0.

(2) = (3). Let a,b € K with 0 < a < b € I,,. Since w(b) > 0, it follows
that w(b™!) = —w(b) < 0 and then b~ ¢ R,,.

Therefore also ™! ¢ Ry, because 0 < b~! < a~! and R, is convex by
assumption. Hence w(a) > 0 and a € I,,.

(3) = (4). Otherwise 1 € I, but w(1) = 0, contradiction.

(4) = (5). Clear.

2. COMPARISON OF CONVEX VALUATIONS

Let w and w’ be valuations on K. We say that w’ is finer than w or w is
coarser than w’ if w’ has a smallest valuation ring, i.e. if

Ry C Ry.
Lemma 2.1.

(1) Ry C Ry if and only if I, C Iy .

=
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(2) If W' is convex and Ryy < Ry, then w is also convex.

(3) The set R of all convex valuation rings Ry, is totally ordered by in-
clusion.

(4) The natural valuation is the finest convex valuation, i.e.

Ry, C Ry,

for every convex valuation w # v.

3. THE RANK OF ORDERED FIELDS

Definition 3.1. Let K be an ordered field with natural valuation v. The

set R of all valuation rings R,, of convex valuations w # v is called the rank
of K.

Examples 3.2.

e The rank of an archimedean ordered field is empty since its natural
valuation is trivial.

e The rank of the rational function field K = R(¢) with any order is a
singleton.

4. CONVEX VALUATIONS AND CONVEX SUBGROUPS

Notation 4.1. For simplicity we denote by w(K) the value group of a val-
uation w on K (even if w(0) = 00).

To every convex valuation w on K we associate a convex subgroup G, of
v(K), namely

Gw :={v(a):a € K A w(a) =0} =oU,°).

Proposition 4.2.

canonically.
Proof. The map
v(K)/Gy — w(K)
v(a)+ Gy — w(a)

is well defined and an isomorphism. O
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We call G, the convex subgroup associated to w. Note that the
convex subgroup G, associated to the natural valuation v is
G, = {0}.

Conversely, given a convex subgroup G, of v(K) we define a map:

w: K — v(K)/Gy U {o0}
0#a — wv(a)+Gy
0 — 00

Then w is a convex valuation with v(U. %) = G,,. We call w the convex
valuation associated to Gy,.

We have proved the following theorem:

Theorem 4.3. There is a bijection between the set of convex valuations on

an ordered field K and the set of convex subgroups of the value group v(K)
associated to the natural valuation v.





