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1. The Main Theorem

In the previous lecture we introduced the "Main Theorem" of this chapter.

Theorem 1.1. Let k ⊆ R be a subfield, G a totally ordered abelian group
and K := k((G)). Then K is a real closed field if and only if

(i) G is divisible,

(ii) k is a real closed field.

Last time we already proved the implication "⇒". For the converse we
need some notions and preliminary results.

2. The divisible hull

Proposition 2.1.
(i) Let (G,+) be a torsion free abelian group. Then there exists a unique

(up to isomorphism of groups) minimal divisible group (G̃,+) that
contains (G,+).

(G̃,+) is called the divisible hull of G.

(ii) If H 6 G, then H̃ 6 G̃.

(iii) If G is a totally ordered abelian group (particularly torsion free),
then the order on G extends uniquely to an order on G̃. Therefore
the ordered divisible hull (G̃, <) of (G,<) is unique up to an order
preserving isomorphism.

Proof. (i) Consider the set {(x, n) : x ∈ G,n ∈ N} under the equivalence
relation

(x, n) ∼ (y,m) :⇔ mx = ny,
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i.e. set

G̃ := {(x, n) : x ∈ G,n ∈ N} / ∼ .
Define an addition on G̃ by (x, n)+̃(y,m) := (mx+ ny,mn).

Verify that (ÜA)
– +̃ is well-defined and (G̃, +̃) is a torsion free abelian group.
– the map g 7→ (g, 1) defines an embedding of G in G̃.
– (G̃, +̃) is divisible.
– if G∗ ⊇ G is a group extension and G∗ is divisible and torsion

free, then

QG := {qx : q ∈ Q, x ∈ G}
is a minimal divisible subgroup of G∗ containing G. Moreover,
the map (a, n) 7→ 1

na is an isomorphism of groups G̃→ QG.

(ii) Straight forward by construction as in (i) (ÜA).

(iii) Declare (x, n) ∈ G̃ to be positive if and only if x ∈ G is positive.
Verify that the map G→ G̃, a 7→ (a, 1) is order preserving.

�

Remark 2.2. G is divisible if and only if G = G̃.

Proposition 2.3. (Generalized ultrametric inequality)
(i) v(a) 6= v(b)⇒ v(a+ b) = min{v(a), v(b)}.

(ii) v(
∑
ai) > min{v(ai)}.

(iii) If there exists a unique index i0 ∈ {1, . . . , n} such that v(ai0) =
min{v(ai) : i = 1, . . . , n}, then v(

∑
ai) = min{v(ai)}.

Proposition 2.4. Let (L, v) be a valued field and K ⊆ L be a subfield such
that L|K is algebraic. Then v(L) is contained in the divisible hull of v(K).

Proof. Let α ∈ v(L)\v(K) and let l ∈ L be such that α = v(l). Since L is
algebraic over K, l satisfies

n∑
i=0

ail
i = 0

for some ai ∈ K with 0 6= an. Taking valuations on both sides we obtain

v

(
n∑

i=0

ail
i

)
=∞ = v(0).

Thus there must be two indices i, j ∈ {0, . . . , n} with i < j such that
∞ 6= v(ajl

j) = v(ail
i). In other words

v(aj) + jv(l) = v(ai) + iv(l)
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i.e.
(j − i)v(l) = v(ai)− v(aj) ∈ v(K)

and therefore

α =
v(ai)− v(aj)

j − i
∈ v(K̃).

�

3. Algebraically closed fields

In this section we prove the Main Theorem for algebraically closed fields.
We conclude by showing that this transfers to real closed fields by applying
the Theorem of Artin-Schreier (see RAG I).

Proposition 3.1. Let (L, v) be a valued field and K ⊂ L a subfield such
that L|K is algebraic. Then the residue field L is contained in an algebraic
closure of the residue field K.

Proof. Let 0 6= z ∈ L and 0 6= z ∈ L be a preimage of z in L. Now L is
algebraic over K, so z satisfies a polynomial equation

anz
n + . . .+ a0 = 0 (ai ∈ K, an 6= 0).

Set v(aj) = min{v(ai) : i = 0, . . . , n} and bi :=
ai
aj

for i = 0, . . . , n. Then
bj = 1 and v(bi) > 0 for i = 0, . . . , n. Therefore

0 6= bnX
n + . . .+ b0 ∈ Kv[X]

and
bnz

n + . . .+ b0 = 0,

where Kv denotes the valuation ring of K. Thus z is a root of the non-zero
polynomial 0 6=

∑n
i=0 biX

i ∈ K[X], i.e. z is algebraic over K. �

Theorem 3.2. (algebraically closed fields of generalized power series, Mac
Lane, 1939)
Set K := k((G)) for some field k and some ordered abelian group G. Then K
is algebraically closed if and only if

(i) G is divisible,

(ii) k is an algebraically closed field.

Proof. "⇒" is analogue to the proof for the real closed field case seen last
lecture (ÜA). Let us prove "⇐". So we want to show that K is algebraically
closed.

Claim: Every algebraic extension L of K is immediate.

(Since K is maximally valued, as shown in chapter 1, K will then admit
no proper algebraic extensions at all, i.e. is algebraically closed)
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Proof of the claim: Since L|K is algebraic we know by Proposition 2.4
that

v(L) ⊆ v(K) = G̃ = G.

On the other hand, since (L, v) is a valued extension of (K, v), we have
v(L) ⊇ v(K) = G, so we get v(L) = v(K).
Similarly we show that L = K = k. By some proposition L is contained in
the algebraic closure k, but k = k. So L ⊆ k = k. On the other hand, since
(L, v) is a valued field extension of (K, v), we have L ⊇ K = k, so again
L = k. Hence the valued field extension (L, v)|(K, v) is immediate. �

Remark 3.3. What is meant in the claim is the following: (K, v) is a valued
field and L|K a field extension, extending the valuation v on K to a valuation
v on L. After that we mean (L, v) is an immediate extension of (K, v).

4. Finishing the proof of the Main Theorem

Proposition 4.1. Let k be a field, G an ordered abelian group and i =
√
−1.

Then k((G))(i) ∼= k(i)((G)).

Proof. ÜA. �

Theorem 4.2. (real closed fields of powerseries)
k((G)) is a real closed field if and only if k is a real closed field and G is
divisible.

Proof. It remains to prove "⇐". Since k is real closed, k(i) is algebraically
closed (Artin-Schreier). So k(i)((G)) is algebraically closed by Mac Lane.
But then k((G))(i) is also algebraically closed. By Artin-Schreier k((G)) is
a real closed field. �

Example 4.3. Define Q̃rc := the field of all real algebraic numbers. Then
K = Q̃rc((Q)) is a real closed field. Note that K is not countable.

Question: Are there countable non-Archimedean real closed fields?


