25. Script zur Vorlesung: Lineare Algebra I

Prof. Dr. Salma Kuhlmann, Dr. Merlin Carl

WS2011/2012: 31. Januar 2012

(WS 2015/2016: Korrekturen vom 25. Januar 2016)

Ansatz wie in der 24. Vorlesung.

Korollar 1 Sei L ein lineares Funktional auf V^* . Es existiert genau ein $\alpha \in V$ mit $L = L_{\alpha}$, i.e. $L(f) = f(\alpha)$ für alle $f \in V^*$ (**)

Beweis Setze $\alpha := \lambda^{-1}(L)$

Korollar 2 Sei \mathbb{B} eine Basis für V^* . Dann existiert eine Basis \mathcal{B} für V mit $\mathcal{B}^* = \mathbb{B}$.

Beweis Setze $\mathbb{B} = \{f_1, \dots f_n\}$. Satz 1 (aus Vorlesung 22) liefert eine Dual-Basis zu $\mathbb{B}; \mathbb{B}^* := \{L_1, \dots, L_n\}$ für $(V^*)^* = V^{**}$

so dass $L_i(f_j) = \delta_{ij}$.

Korollar 1 liefert: Für alle i existiert genau ein $\alpha_i \in V$ mit (**), i.e.

$$L_i(f) = f(\alpha_i)$$
 für alle $1 \le i \le n; f \in V^*$.

Insbesondere: $\delta_{ij} = L_i(f_j) = f_j(\alpha_i)$ für alle $1 \le i \le n$ und $1 \le j \le n$. Setze nun $\mathcal{B} := \{\alpha_1, \dots, \alpha_n\}$

Bemerkung Sei $E \subseteq V^*$, dann ist $E^0 \subseteq V^{**}$.

$$E^0 = \{ L \in V^{**} \mid L(f) = 0 \text{ für alle } f \in E \}.$$

Wir berechnen:

$$\lambda^{-1}(E^0) = \begin{cases} \left\{ \begin{array}{cccc} \alpha \in V & | & \lambda(\alpha) \in E^0 \right\} = \\ \left\{ \begin{array}{cccc} \alpha \in V & | & L_{\alpha} \in E^0 \right\} = \\ \left\{ \begin{array}{cccc} \alpha \in V & | & L_{\alpha}(f) = 0 \end{array} \right. & \text{für alle} & f \in E \right\} = \\ \left\{ \begin{array}{cccc} \alpha \in V & | & f(\alpha) = 0 \end{array} \right. & \text{für alle} & f \in E \right\} \end{cases}$$

Satz 2 Sei $W \subseteq V$ ein Unterraum. Es gilt $\lambda^{-1}(W^{00}) = W$.

Beweis $\dim W + \dim W^0 = \dim V = \dim V^* = \dim W^0 + \dim W^{00}. \text{ Dann gilt } \dim W = \dim W^{00} = \dim \lambda^{-1}(W^{00}).$

Es genügt nun zu zeigen, dass

$$W \subseteq \lambda^{-1}(W^{00}) = \{\alpha \in V \mid f(\alpha) = 0 \text{ für alle } f \in W^0\}$$
 (siehe (†)). Aber $\alpha \in W$, also $f(\alpha) = 0$ für alle $f \in W^0$ per Definition!

Korollar 3 Sei $U \subseteq V^*$ ein Unterraum. Setze $W := \lambda^{-1}(U^0)$. Es gilt: $W^0 = U$.

Beweis $\dim V^* = \dim U + \dim U^0 = \dim V = \dim W + \dim W^0$. Also $\dim U = \dim W^0$ (weil $\dim W = \dim \lambda^{-1}(U^0) = \dim U^0$).

Es genügt zu zeigen, dass $U \subseteq W^0$.

 $W = \{ \alpha \in V \mid f(\alpha) = 0 \text{ für alle } f \in U \} \text{ (siehe (†)). Sei } f \in U, \text{ dann gilt } f(\alpha) = 0 \text{ für alle } \alpha \in W. \text{ Also } f \in W^0 \text{ per Definition.}$

Kapitel 3: § 7 Die transponierte Abbildung

Ansatz wie immer.

Sei $T:V\longrightarrow W$ eine lineare Tranformation. T induziert eine Abbildung $T^t:W^*\longrightarrow V^*$ definiert durch $V^*\ni f:=T^t(g):=g\circ T$ für $g\in W^*$, das heißt $f(\alpha)=(g\circ T)(\alpha)=g(T(\alpha))$ für alle $\alpha\in V$.

Behauptung T^t ist linear: $c \in K$; $g_1, g_2 \in W^*$. $T^t(cg_1 + g_2) = (cg_1 + g_2) \circ T = c(g_1 \circ T) + (g_2 \circ T) = cT^t(g_1) + T^t(g_2)$.

Wir haben bewiesen:

Satz 3 Sei V, W ein (endlich dim) Vektorraum über K. Für jede lineare Abbildung $T: V \longrightarrow W$ existiert genau ein (auch lineares) $T^t: W^* \longrightarrow V^*$, so dass $T^t(g)(\alpha) = g(T(\alpha))$ für alle $g \in W^*, \alpha \in V$.