8. Script zur Vorlesung: Lineare Algebra II

Prof. Dr. Salma Kuhlmann, Lothar Sebastian Krapp, Gabriel Lehéricy SS 2016: 28. April 2016

Lemma 2 Sei $\delta: K^n \times \cdots \times K^n \longrightarrow K$ eine alternierende lineare Form und $A \in M_{n \times n}(K)$. Es gelten:

(i)
$$\delta(e(A)) = \delta(A)$$
; e Zeilenumformung von Typ 3

(ii)
$$\delta(e(A)) = -\delta(A)$$
; e von Typ 1; $i \neq j$

(iii)
$$\delta(e(A) = c\delta(A))$$
; e von Typ 2; $c \in K$; $c \neq 0$.
Allgemeiner

(iv)
$$\delta(cA) = c^n \delta(a); c \in K$$

Beweis

(i)
$$\delta(z_1 + cz_2, z_2, \dots, z_n) = \delta(z_1, z_2, \dots, z_n) + c\delta(z_2, z_2, \dots, z_n) = \delta(z_1, z_2, \dots, z_n).$$

- (ii) Folgt aus Lemma 1 (7. Vorlesung).
- (iii) Folgt aus n-Linearität.

$$(iv)$$
 $\delta(cz_1, \dots, cz_n) = c\delta(z_1, cz_2, \dots, cz_n) = c^2\delta(z_1, z_2, cz_3, \dots, cz_n) = \dots = c^n\delta(z_1, z_2, z_2, \dots, z_n).$

Lemma 3 $\delta(A) = \Delta_A \delta(\text{r.z.S.F.}(A))$, wobei $\Delta_A \in K$ und $\Delta_A \neq 0$; Δ_A hängt nur von $A \in M_{n \times n}(K)$ ab.

Beweis Wiederholte Anwendung von Lemma 2 (Δ_A ist ein Produkt aus der Gestalt $(-1)^{\ell}c_1\cdots c_k$ für geeignete $\ell,k\in\mathbb{N}_0$ und $c_1,\ldots,c_k\in K^{\times}$).

Bemerkung Für $A \in M_{n \times n}(K)$ gilt die folgende Dichotomie (siehe Lineare Algebra I):

Fall 1 r.z.S.F.(A) hat eine Nullzeile oder

Fall 2 r.z.S.F.(
$$A$$
) = I_n .

Also erhalten wir hier auch eine Dichotomie:

Fall 1
$$\delta(A) = \Delta_A 0 = 0$$

Fall 2
$$\delta(A) = \Delta_A \delta(I_n)$$
.

Korollar 1 $\delta \neq 0$ genau dann, wenn $\delta(I_n) \neq 0$.

Beweis "←" Klar.

"
$$\Rightarrow$$
" $\delta(I_n) = 0 \Rightarrow \delta(A) = 0$ in beiden Fällen (1) und (2).

Korollar 2 Seien $\delta \neq 0, A \in M_{n \times n}(K)$. Es gilt: $\delta(A) \neq 0$ genau dann, wenn A invertierbar.

Beweis A ist invertierbar \Leftrightarrow r.z.S.F.(A) = I_n

Korollar 3 Seien δ_1, δ_2 n-lineare alternierende Formen auf K^n . Es gilt $\delta_1 = \delta_2$ genau dann, wenn $\delta_1(e_1,\ldots,e_n) = \delta_2(e_1,\ldots,e_n)$ (wobei wie immer $\epsilon = \{e_1,\ldots,e_n\}$ die Standard-Basis ist).

 $\mathbb{A} := alt^{(n)}(K^n) := \text{der } K\text{-Vektorraum der } n\text{-linearen alternierenden Formen}$ Definition und auf K^n . Es ist ein Unterraum von $L^{(n)}(K^n \times \cdots \times K^n; K)$. Notation

 $\dim(alt^{(n)}(K^n)) \le 1.$ Korollar 4

Beweis Sei $\delta_1 \neq 0$ fixiert. Sei $\delta_2 \in \mathbb{A}$. Sei $A \in M_{n \times n}(K)$ wie im Fall 2.

Es gilt
$$\delta_2(A) = \Delta_A \ \delta_2(I_n) = \Delta_A \frac{\delta_2(I_n)}{\delta_1(I_n)} \delta_1(I_n)$$
 (*)

Setze $d := \frac{\delta_2(I_n)}{\delta_1(I_n)} \in K$.

Aus (*) folgt
$$\delta_2(A) = d\Delta_A \delta_1(I_n) = d\delta_1(A)$$
 für $A \in M_{n \times n}(K)$.
Also ist $\delta_2 = d\delta_1$.

Wir werden nun zeigen, dass ein $\delta \in \mathbb{A}$ existiert mit $\delta(I_n) = 1$. Solch eine Funktionale δ ist notwendig eindeutig!

Definition Die Determinante (Funktionale) ist die eindeutige n-lineare alternierende Form det auf K^n , wofür $\det(I_n) = 1$ gilt.

Berechnung Die Formelberechnung:

Sei $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n} \in M_{n \times n}(K), \delta \in \mathbb{A}.$

$$A = \left(\begin{array}{c} z_1 \\ \dots \\ z_n \end{array}\right).$$

Wir schreiben $z_i = \sum_{i=1}^n a_{ij_i} e_{j_i}$ in der Standardbasis.

Wir berechnen:

Wir berechnen:

$$\delta(A) = \delta \left(\sum_{j_i=1}^n a_{1j_1} e_{j_1}, \dots, \sum_{j_n=1}^n a_{nj_n} e_{j_n} \right) \stackrel{n-lin.}{=}$$
(*)

$$\sum_{j_1,\dots,j_n=1}^n a_{1j_1} \cdots a_{nj_n} \delta(e_{j_1},\dots,e_{j_n}). \tag{**}$$

Betrachte die Abbildung

$$\begin{cases}
1, \dots, n \\
i & \longmapsto j_i
\end{cases} \quad 1, \dots, n \quad .$$

Falls **nicht** injektiv, dann gibt es eine Wiederholung in (j_1, \ldots, j_n) und damit ist $\delta(e_{j_1},\ldots,e_{j_n})=0.$

Falls injektiv, dann ist sie eine Permutation $\pi \in S_n$ und damit ist $\delta(e_{j_1},\ldots,e_{j_n}) = \delta(e_{\pi(1)},\ldots,e_{\pi(n)}) = sign(\pi)\delta(e_1,\ldots,e_n).$

Also können wir nun (**) umschreiben.

$$(**) = \sum_{\pi \in S_n} sign(\pi) a_{1\pi(1)} \cdots a_{n\pi(n)} \delta(e_1, \dots, e_n)$$

$$= \sum_{\pi \in S_n} sign(\pi) a_{1\pi(1)} \cdots a_{n\pi(n)} \delta(I_n)$$

$$= \delta(I_n) \sum_{\pi \in S_n} sign(\pi) a_{1\pi(1)} \cdots a_{n\pi(n)} \qquad (***)$$

Wir sehen also, dass $\delta(I_n) = 1$ eine Formel für δ liefert wie in (***):

Satz Definiere für $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$:

$$\delta(A) := \sum_{\pi \in S_n} sign(\pi) a_{1\pi(1)} \cdots a_{n\pi(n)}$$
 (det)

 δ ist eine *n*-lineare alternierende Form und erfüllt $\delta(I_n) = 1$.

Beweis Sei $0 \neq A$ diagonal; also $i \neq j \Rightarrow a_{ij} = 0$. Das heißt, dass die einzige Permutation, die einen Beitrag $\neq 0$ bringt, diejenige ist, für die $i = \pi(i)$ für alle $i \in \{1, ..., n\}$ gilt, i.e. $\pi = (1)$ die Identität $\in S_n$. Es bleibt also nur ein Produkt in (det) übrig, nämlich $a_{11}a_{22}\cdots a_{nn} = \delta(A)$, insbesondere $\delta(I_n) = 1$.

- n-linear? Berechne $sign(\pi) \Big[(a_{1\pi(1)} + da'_{1\pi(1)}) a_{2\pi(2)} \cdots a_{n\pi(n)} \Big] = sign(\pi) \Big[(a_{1\pi(1)} a_{2\pi(2)} \cdots a_{n\pi(n)}) + d(a'_{1\pi(1)} a_{2\pi(2)} \cdots a_{n\pi(n)}) \Big]$ usw..... Übungsaufgabe.
- alternierend? Sei $z_1 = z_2$, i.e. $a_{1j} = a_{2j}$ für alle $1 \le j \le n$, i.e. $a_{1\pi(j)} = a_{2\pi(j)}$ für alle $\pi \in S_n$ und $1 \le j \le n$.

Berechne (mit
$$S_n = A_n \cup A_n(12)$$
)
$$\delta(A) = \sum_{\pi \in A_n \cup A_n(12)} sign(\pi) \ a_{1\pi(1)} \ a_{1\pi(2)} \ a_{3\pi(3)} \cdots a_{n\pi(n)}$$

$$= \left(\sum_{\pi \in A_n} sign(\pi) \ a_{1\pi(1)} \ a_{1\pi(2)} \ a_{3\pi(3)} \cdots a_{n\pi(n)} \right) +$$

$$(I)$$

$$\left(\sum_{\pi \in A_n} [sign(\pi)(12)] \ a_{1\pi(12)(1)} \ a_{1\pi(12)(2)} \ a_{3\pi(12)(3)} \cdots a_{n\pi(12)(n)} \right)$$

$$(II)$$

In der Summe (II) bekommen wir:

$$\sum_{\pi \in A_n} [-sign(\pi)] \ a_{1\pi(2)} \ a_{1\pi(1)} \ a_{3\pi(3)} \cdots a_{n\pi(n)} =$$

$$\sum_{\pi \in A_n} [-sign(\pi)] \ a_{1\pi(1)} \ a_{1\pi(2)} \ a_{3\pi(3)} \cdots a_{n\pi(n)}$$

Wir sehen also, die Termen kürzen sich ab, i.e. in (I) bzw. (II):
$$a_{1\pi(1)} \ a_{1\pi(2)} \cdots a_{n\pi(n)}$$
 und $-a_{1\pi(1)} \ a_{1\pi(2)} \cdots a_{n\pi(n)}$, i.e. $(I) + (II) = 0$.

Korollar 5 dim(\mathbb{A}) = 1 für alle $n \in \mathbb{N}$.