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Closures of Quadratic Modules in
Locally Convex Topologies.

Positivity and Duality.

• Let V := R[X ] := R[X1, · · · , Xn] be the real vector

space of polynomials in n variables and real coefficients.

• Fix τ a locally convex topological vector space topology

on V . Denote Vτ the corresponding topological space.

• Let K ⊂ Rn. Consider polynomials positive semi-

definite on K:

Pos(K) := {f ∈ V | f (x) ≥ 0 for all x ∈ K}

• Let C ⊂ V . Define

KC := {x ∈ Rn | g(x) ≥ 0 ∀ g ∈ C}
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• Let C ⊂ V . Define the dual of C:

C∨ := {L | L : Vτ → R ; cts linear functional; L(C) ≥ 0}

and the double dual of C:

C∨∨ := {f ∈ V | L(f ) ≥ 0 ∀ L ∈ C∨}

Straightforward properties are:

(i) Contravariance

(ii) C ⊂ C∨∨

(iii) C∨∨∨ = C∨

etc...
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The Moment Property and the Strong
Moment Property.

Haviland’s representation theorem for multidimensional

moment sequences:

Let K ⊂ Rn closed, and L : V → R a linear functional

6= 0. The following are equivalent:

(i) L(f ) ≥ 0 for all f ∈ Pos(K)

(ii) ∃ a positive Borel measure µ on K such that

L(f ) =
∫

K
fdµ ,∀ f ∈ V

We use Haviland’s theorem and the properties of duality

to deduce the following:
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Theorem 1: Let Vτ as above, C ⊂ V , K ⊂ Rn, K

closed. The following are equivalent:

(1) C∨ ⊂ Pos(K)∨

(2) C∨∨ ⊃ Pos(K)

(3) ∀ L ∈ C∨ ∃ µ on K such that:

L(f ) =
∫

K
fdµ ,∀ f ∈ V

Definitions: C satisfies (or solves) K MP if any of the

equivalent conditions of the above theorem hold. C satis-

fies (or solves) the strong K MP if C satifies K MP with

K = KC .

Remark: These notions were introduced and studied by

Schmüdgen for τ = ϕ := the finest locally convex topology,

thus studying representation of arbitrary linear function-

als. Here we consider representation of τ continuous linear

functionals. We shall return to this issue later.
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Double duals and closures.

If C ⊂ V is a (convex) cone (closed under addition and

scalar multiplication by positive reals), then

C∨∨ = C

in Vτ (Hahn–Banach). We obtain the following:

Corollary 1 Let C ⊂ V be a cone, K ⊂ Rn closed. The

following are equivalent:

(2) C ⊃ Pos(K)

(3) ∀ L ∈ C∨ ∃ µ on K such that:

L(f ) =
∫

K
fdµ ,∀ f ∈ V

These results are particularly interesting in the special

case when C is a finitely generated quadratic module

as we shall explain now.
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Finite solvability of the K Moment
Problem for continuous linear

functionals.

Let S := {g1, · · · , gs} ⊂ V . We define the (finitely gener-

ated) quadratic module:

MS := {σ0 + σ1g1 + · · · + σsgs | σi ∈ ∑
V 2} .

For S, MS, K as above we obtain the following:

Corollary 2: The following are equivalent:

(2) MS ⊃ Pos(K)

(3) If L is a continuous linear functional s.t.

L(h2) ≥ 0, L(h2g1) ≥ 0, · · · , L(h2gs) ≥ 0

(for all h ∈ V ), then there ∃ µ on K such that:

L(f ) =
∫

K
fdµ , ∀ f ∈ V .

Thus existence of representation via measures amounts

to checking psd-ness of finitely many Hankel matrices.
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Definition: The K MP is finitely solvable if S finite

exists such that any of the quivalent conditions of Corollary

2 holds.

Remark: If n ≥ 2 and K contains a 2-dimensional affine

cone, the K MP is never finitely solvable for the finest

topology ϕ (K–Marshall). The hope with this approach

is to get finite solvability for representation of linear func-

tionals continuous in a coarser topology τ . We discuss this

now.
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Closures of the cone of Sums of Squares

Theorem 2:

(1)
∑

V 2 =
∑

V 2 in Vϕ .

(2)
∑

V 2 = Pos [−1, 1]n in Vp .

Here, for 1 ≤ p ≤ ∞:

VP : = V endowed with the `p–norm topology (on the

coefficients of polynomials).

Two aspects: a. Approximating nonnegative polyno-

mials on the closed hypercube by sums of squares, and

b. applications to solvability of MP:
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Corollary 2 and this theorem, say for p = 1, establish the

following:

Corollary 3: Let L be a continuous linear functional

on V1, i.e. L is a linear functional on V with a bounded

sequence of moments (L(xα))α∈Nn.

Assume that

L(h2) ≥ 0 ∀ h ∈ V .

Then

∃µ on [−1, 1]n such that L(f ) =
∫

fdµ ∀ f ∈ V .
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Closures in Weighted `p Topologies.

Let 1 ≤ p < ∞, r = (r1, · · · , rn) be a n-tuple of positive

real numbers.

• Set

`p(r,Nn) = {s ∈ RNn
:

∑

α∈Nn
|s(α)|prα < ∞}

endowed with the norm defined by

‖(s)‖p,r = (
∑

α∈Nn
|s(α)|prα)

1
p .

• Denote by Vp , r the topological vector space V endowed

with the ‖ · ‖p,r norm.

• We compute the closure of the cone of sums of squares

in these norm topologies.
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Let f ∈ V . Assume that

f ≥ 0 on
n∏

i=1
[−ri, ri] .

Then the polynomial f̃ (X) = f (r1X1, · · · , rnXn) is a non-

negative polynomial on [−1, 1]n.

Combining this observation with Berg’s result we get:

Theorem 3

∑
V 2 = Pos (

n∏

i=1
[−ri, ri])

in V1 , r .

Theorem 4 For 1 < p < ∞,

∑
V 2 = Pos (

n∏

i=1
[−r

q
p
i , r

q
p
i ])

in Vp , r .

Here, q is the conjugate of p.

The End
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