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Abstract

The paper is a continuation of work initiated by the first two authors in [K—
M]. Section 1 is introductory. In Section 2 we prove a basic lemma, Lemma
2.1, and use it to give new proofs of key technical results of Scheiderer in
[S1] [S2] in the compact case; see Corollaries 2.3, 2.4 and 2.5. Lemma 2.1
is also used in Section 3 where we continue the examination of the case
n = 1 initiated in [K-M], concentrating on the compact case. In Section
4 we prove certain uniform degree bounds for representations in the case
n = 1, which we then use in Section 5 to prove that (I) holds for basic closed
semi-algebraic subsets of cylinders with compact cross-section, provided the
generators satisfy certain conditions; see Theorem 5.3 and Corollary 5.5.
Theorem 5.3 provides a partial answer to a question raised by Schmiidgen in
[Sc2]. We also show that, for basic closed semi-algebraic subsets of cylinders
with compact cross-section, the sufficient conditions for (SMP) given in [Sc2]
are also necessary; see Corollary 5.2(b). In Section 6 we prove a module
variant of the result in [Sc2], in the same spirit as Putinar’s variant [Pu] of
the result in [Scl] in the compact case; see Theorem 6.1. We apply this to
basic closed semi-algebraic subsets of cylinders with compact cross-section;
see Corollary 6.4. In Section 7 we apply the results from Section 5 to solve
two of the open problems listed in [K-M]; see Corollary 7.1 and Corollary
7.4. In Section 8 we consider a number of examples in the plane. In Section
9 we list some open problems.

1 Introduction

Let R[X] denote the polynomial ring in n variables X = (Xi,...,X,), with real
coefficients, and consider a finite set S = {g1, -, gs} of polynomials in R[X]. We
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denote by Kg the basic closed semi-algebraic set in R" defined by:
Ks={zeR" : gi(z) 20,...,95(z) 2 0}.
We denote by T the preordering in R[X]| generated by S:

Ts :{ Z Uege D 0e € ZR[X]Z}v

ec{0,1}*

where ¢¢ := g{'--- g%, if e = (e, -+, ¢€,), and > R[X]? denotes the preordering
of R[X] consisting of sums of squares. Note: Ky = R", Ty = S R[X]?. By the
Positivstellensatz [St], Kg =0 < —1 € Ty < Ts =R[X]. Set

T — {f e R[X]: f > 0on Kg},

T ={L:R[X] — R: Lis linear (# 0) and L(Ts) > 0},

and
T =Ty = {f € R[X]: L(f) > 0forall L €Ty}

Note: We have the inclusions Ty C TE* C T2, The sets T, Ti* depend on T.
The set T5'® depends only on Kg.

The set T3® is a preordering, called the saturation of Ty. We say T is saturated
if T2 = Ts. The set TH" is the closure of Ty in R[X], giving R[X] the unique
finest locally convex topology [Po-S, p. 76]. The set T4 is a preordering [Po-S,
Lem. 1.2]. We say Ts is closed if Ti® = Ts. This holds in a variety of special
cases, e.g., if Kg contains an n-dimensional cone [K-M, Th. 3.5] [Po—S, Prop. 3.7].
It also fails in many cases, e.g., if Kg is compact and dim(Kg) > 3. This follows
from [S1, Prop 6.1] using [Scl, Cor. 2|.

The general Moment Problem is the following: For a linear functional L on R[X],
when is there a positive Borel measure g or R" such that Vf € R[X] L(f) =

Jgn fdu? The following result is due to Haviland [H1] [H2]. For a proof based on
the Riesz representation theorem, see [M2, Th. 3.1], for example.

Theorem 1.1 For a linear functional L on R[X]| and a closed set K of R", the
following are equivalent:

(i) 3 a positive Borel measure p on K such that Vf € R[X|, L(f) = [ fdu.
(ii)) V feR[X], f>0o0on K = L(f) > 0.

Since Tglg is not finitely generated in general ;| one is interested in approximating it
by Ts. Therefore one studies the following concrete Moment Problem: When is it
true that every L € T¢ comes from a positive Borel measure on Kg? By Theorem
1.1, this is equivalent to asking when the following condition holds:

(SMP) T — Thn,
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In the landmark paper [Scl], Schmiidgen proves (SMP) when the basic closed
semi-algebraic set Kg is compact. Moreover, for compact Kg, he gets the following
substantial improvement of the Positivstellensatz:

(1) VieR[X],f>0on Kg=Vreale >0, f+ecTs.

See [B-W], [M1] or [P-D] for Wérmann’s proof of (f), which is based on the
Kadison-Dubois representation theorem.

We turn now to the case where Ky is non-compact. Given a pair of sets S, S’ with
Kg C Kg, one can also ask: When is it true that every L € Tg comes from a
positive Borel measure supported by Kg7 By Theorem 1.1 this is equivalent to
asking if T&® C T, We will consider this property in the special case S’ = :

(MP) T C T,
Note: T is saturated = () holds = (SMP) holds = (MP) holds.

Proposition 1.2 If Kg contains a cone of dimension 2 then (MP) fails.

Note: The statement of Proposition 1.2 is stronger than [K-M, Cor. 3.10], but the
proof is the same. Namely, one uses [K-M, Th. 3.5] along with [S1, Remark 6.7]
to produce p € T} 5y ¢ Tin. See [Po-S, Cor. 3.10] for a more general criterion.

Note: For n > 3 the condition that K¢ contains a cone of dimension 2 does not
imply that T is closed.

Example 1.3 Let n > 1 and pick S; in R[X] such that Kg, is compact and Tg,
is not closed. Define S in R[X,Y,Z] by S = S;. Then Kg = Kg, x R? contains a,
2-dimensional cone. Also T¢" C T¢" and T, = Ts NR[X] so if p € T§", p ¢ Ty,
then p € Té", p ¢ Ts. The possible choices for S are necessarily a bit artificial
itn=1,eg, S ={X?(1— X)} will do. For n = 2 it seems that less contrived
choices should exist. For n > 3 any S; with dim(Kg,) > 3 will do [S1, Prop. 6.1].

In [K-M], the authors consider the intermediate condition:
(1) V feR[z],f >0o0on Kg = Jg € R[X] such that V real € >0, f+eq € Ts.

It is shown that () is strictly weaker than (T), but implies (SMP). The condition
(1) holds in various non-compact cases, e.g., for basic closed semi-algebraic sets
obtained by a certain natural dimension extension process [K-M, Cor. 4.5] and for
cylinders with compact cross-section [K-M, Th. 5.1]. Define

Té ={f € R[X] : 3¢ € R[X] such that V real ¢ >0, f+eq € Ts}.

Note: (i) Tg C Ti C T (i) (i) holds iff T3 = T%. (i) It follows from
the proof of [K-M, Cor. 4.2]| that the element ¢ appearing in the description of
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Tgv can be chosen from the set {p’ : £ > 0}, where p € 1 + Ty is any polynomial
which ‘grows sufficiently rapidly’ on Kjg, e.g., p = 1 + || X||? always works. Here,
| X2 := 3, X2. If Kg is compact then p = 1 works.

Denote by P, the (finite dimensional) vector space consisting of all polynomials in
R[X] of degree < 2d, and by T; = Ts N P;. The set Ty is obviously a cone in P,
ie., Ty+Ty; C Ty and RTT; C Ty. Denote by Ty the closure of Ty in P;.

Proposition 1.4 (i) T = UgoTy. (i) Ti is a preordering.

Proof:  Assertion (i) is clear from the proof of [K-M, Prop. 1.3]. For polynomials
f, g, the coefficients of f + g and fg are polynomial functions (in particular, con-
tinuous functions) of the coefficients of f and of g. Assertion (ii) is clear from this,
using (i). O

Observe that (1), (1), (SMP) and (MP) all depend on Ts. Consequently, if (1),
resp., (1), resp., (SMP), resp., (MP) holds then we say that (1), resp., (1), resp.,
(SMP), resp., (MP) holds for Ts or that T satisfies (), resp., (), resp., (SMP),
resp., (MP).

In Section 2 we prove Lemma 2.1, which we need later, in Section 3, but which is
also of independent interest in that it yields alternate proofs of key technical results
in [S1] [S2]. In Sections 3 and 4 we continue the analysis of the 1-dimensional case
initiated in [K-M]. The results in these two sections are of interest in their own
right, but they are also essential in dealing with the fiber sets that arise in the
study of subsets of cylinders with compact cross-section.

In [Sc2], Schmiidgen considers the following general set-up: Suppose hq, ..., hq €
R[X] are bounded on Kg. For A = (A1, ..., \q) € R? define

S)\ = S U {hl = )\1, —(hl = )\1), ceey hd = )\d7 —(hd = )\d)}

Thus Kg, = Kg N Cy where C) denotes the algebraic set in R" defined by the
equations h;(X) = X;, i = 1,...,d. By the assumption Kg, =0 (i.e., Ts, = R[X])
for ||A|| sufficiently large. Schmiidgen proves:

Theorem 1.5 Suppose hy,...,hgy € R[X]| are bounded on Kg. If (SMP) (resp.,
(MP)) holds for Ts, for each X\ then (SMP) (resp. (MP)) holds for Ts.

Theorem 1.5 applies, in particular, to subsets of cylinders with compact cross-
section. In this special case, we prove that the converse of Theorem 1.5 also holds;
see Corollary 5.2.

The question of whether (SMP) is strictly weaker than () is posed as an open
problem in [K-M]. It seems likely that this is the case, but no examples are known.
In fact, no examples are known where T4 # Ti*. In [Sc2], Schmiidgen asks the
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following related question: Is it true that Theorem 1.5 continues to hold with
(SMP) replaced by ()7

We provide a partial answer to Schmiidgen’s question in the case of subsets of
cylinders with compact cross-section; see Theorem 5.3. At the same time, we
produce a variety of concrete examples where (SMP) holds but where we are unable
to prove (). Our results are applied to settle two open problems in [K-M]; see
Corollary 7.1 and Theorem 7.4.

As explained in [K-M], one can also consider the (generally smaller) quadratic
module

Ms = {Z: oigi : 0; € ) R[X]*},
generated by S (here gy := 1) and the corresponding objects
Mg ={L:R[X] — R| L is linear (#£ 0) and L(Mg) > 0},
Mg = MY = {f e R[X]: L(f) > 0for all L € M} and
M} = UgsoMy where My := Mg N Py,

M1 is the closure of Mg in R[X]. One can also consider the corresponding condi-
tions

(SMP’) T5® = My",
(MP) T C Mt
(1) VfeR[X],f>0on Kg=VYreale >0, f+e€ Mg and

(1) V feR[X],f>0on Kg = 3g € R[X]such that Vreal € >0, f+eq € Ms.

Again, (MP’) is strictly weaker than (SMP’) and ({') is strictly weaker than ({'),
but implies (SMP’). If (1), resp., ('), resp., (SMP’), resp., (MP’), holds then
we say that (), resp., (1), resp., (SMP), resp., (MP) holds for Mg or that Mg
satisfies (}), resp., (1), resp., (SMP), resp., (MP).

According to Putinar [Pu], also see [J], if Kg is compact and there exists N such
that N — || X||? € Mg, then (1) holds for Mg. In certain cases the condition that
there exists N such that N — || X||> € My is automatically fulfilled; see [J-P]. In
[M2] various results in [K-M], in particular, the results for dimension extension and
for cylinders with compact cross-section, are extended under suitable assumptions
to quadratic modules; see [M2, Cor. 4.3, Cor 5.3].

Insofar as it is possible, we develop quadratic module versions of the various results
considered. In particular, we prove quadratic module versions of Theorem 1.5 and
of Theorem 5.3; see Theorem 6.1 and Corollary 5.5.
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2 Basic Lemma
The following general result is useful:

Lemma 2.1 Let C' be a compact Hausdorff space, A a commutative ring with
1 with £+ € A for some integer n > 2 and ¢ : A — Cont(C,R) a (unitary) ring
homomorphism. Suppose f, g € A are such that ¢(f) > 0, ¢(g) > 0 and sf+tg =1
for some s,t € A. Then there exist o,7 € A such that of +79 =1 and ¢(0), (1)
are strictly positive.

Proof: ~ We suppress ¢ from the notation. Let s,# € A be such that 1 = sf + tg.

On the compact set
Li:={peC|s(p) <0},

tg=1—sf > 1. Thus g > 0 on Ly so, for N sufliciently large, s + Ng > 0 on
Ly. On C\L; this is obviously also true. Define s; = s+ Ng, t; =t — Nf. Thus
1=s1f+t;gin Aand s; > 0 on C. Choose a positive rational 6 € A so small that
d0fg < 1on C. Choose a positive rational ¢ € A so small that, on the compact set

Ly={peC:ygp) <e},

f >0, 1> eff and ety + s;f > 0. Choose k so large that, on the set Lo,
ety +sif > s1f(1 —edf)* and, on the set

Ly={peC:ygp) > e},

s1f(1—eff)F < 1. Chooser = s10f S8 (1—0fg)". Choose o = s1—71g, T = t;+7f.
Thus 1 = of +7g in A. It remains to verify that 0,7 > 0 on C. Using the identity
(1—2)XF )2 =1~ 2* we see that, on C,

o = sl—rg:sl—sléfgég(l—éfg)i
= S1— 81(1 — (1 - 5fg>k> = 81(1 - 5fg)k > 0.

On LQ,
o= S =t sdf £ (1 6fg)
>t t 516/ S (1= ebf) =ty + (s1f/e)(1 — (1 — e 1)*) > 0.

=0

On Lg,

T o= t+rf=t+(f/9)rg=ti+(f/g)s1(1 — (1 —=5fg9)")
= t+s1f/g— (s1f/9)(1=0fg)* =1/g— (s1f/g)(1 —dfg)* > 0.

This completes the proof. O



We apply Lemma 2.1 to ¢ = Kg and A = R[X]|/I, where [ is some ideal of
polynomials vanishing on Kg. In the next section we will be interested in the case
where n = 1 and I = {0}. Note: For Kg compact, 0,7 > 0 on Kg implies, by [Scl,
Cor. 3], that 0,7 € T.

Corollary 2.2 Let Kg be compact, f,g > 0 on Kg. Assume that f and g are
relatively prime modulo Ts N —Ts and that fg € Ts. Then f € Tg and g € Tg.

Proof:  Apply Lemma 2.1 with C = Kg, A = R[X]/(Ts N —Tg), together with
[Scl, Cor. 3], to obtain 0,7 € Ts, v € Tg N —Ts such that 1 = of + 79 + v. Then
f=o0f’+71fg+fveTlsand g=o0fg+ 19>+ gv € Ts. O

Corollary 2.3 Assume f,g € R[X]| are relatively prime. Assume further that
Kyzgy is compact and f,g > 0 on Kyrgy. Then

(i) There exist o, 7 € S R[X]? such that 1 = o f 4+ 79.
(1) Mypgy = Myzgy = Tisgy = Tisgp-

See [S1, Prop. 4.8] for another proof of Corollary 2.3 (i) in the case n = 1.

Proof: ~ Apply Lemma 2.1 with C' = K{z5 and A = R[X] and [Scl, Cor. 3] to
obtain 1 = of + 7g, 0,7 € Tysg. Thus there exist o;,7; € > R[X]?, ¢ = 0,1 such
that c = o9+ 01fg, 7T =19+ 11 fg. Then

l=of+719=_(00+01fg)f + (T0+Tf9)g = (00 +T1g°) [ + (10 + o1f)g.

This proves (i): 1 = of + 79, 0,7 € Y R[X]*. Thus fg = of’9+79°f € Mz
Also, f = of? +7fg € Ty = My and, similarly, g € Tyyy = Mz, . This
proves (ii). O

Lemma 2.1 is also closely related to results in [S2]. We illustrate by giving a proof
of two key results in [S2]:

Corollary 2.4 Let Kg be compact, f > 0 on Kg, and suppose

J € Ts+ f/(f)+ (Ts 0 —Ts).

Then f € Ts.

Proof: f=o0+fg,0€Ts, g*=af+7,k>1a€R[X], 7€ TsnN—Ts.
af + (1 —g*) =1 -7 50 f,1 — g are relatively prime modulo Ts N —Tg. Also
f(1—g) =0 € Ts. Using this, and the definition of g, one checks that 1 — g > 0
on Kg. Corollary 2.2 yields f € 1. O



Corollary 2.5 Let Kg be compact, f > 0 on Kg and suppose f = o + 7b, where
0,7 € Ts and b is such that f =0=5b>0 on Kg. Then f € Ts.

Proof: By [Scl, Cor. 3] applied to the set SU{—f?}, b=a — Bf% a,8 € Ts.
Then f =04+ 7b=0+7(a — Bf?) = (0 + 7o) — T8 f*. The conclusion follows by
Corollary 2.4. a

3 Compact Subsets of Lines

In this section, we continue the analysis begun in [K-M, Sect. 2], focusing on the
compact case. For related results see [Po-R] and [S2].

If K C R is a non-empty closed semi-algebraic set then K = Ky, for N the set of
polynomials defined as follows:

—Ifae K and (—oo,a) N K =0, then X —a e N.

—Ifa e K and (a,00) N K =0, then a — X € N.

—Ifa,b€e K,a<b, (a,b) N K =0, then (X —a)(X —b) € N.

— AN has no other elements except these.
We call N the natural set of generators for K. We adopt the convention that
the natural set of generators of the empty set is {—1}. The following can be easily
deduced from [K-M] and [Scl]:

Theorem 3.1 Suppose n = 1.

(a) If Kg is not compact, then Tg is closed, for any finite set of generators S.
Moreover the following are equivalent:

(i) Ts is saturated.

(i) Ts contains the natural set of generators for Kg.

(#ii) S contains the natural set of generators of Kg (up to scalings by positive
reals).

(b) If Kg is compact, then (T) holds for Tg, for any finite set of generators S.
Moreover the following are equivalent:

(i) Ts is saturated.

(i) Ts is closed.

(i1i) Ts contains the natural set of generators for Kg.

Note: Unlike the non-compact case (a), Ts may be saturated in the compact case
(b), even when S does not contain a scaling of the natural set of generators (cf.
[K-M, Notes 2.3(4)]).

Theorem 3.1 (b) is unsatisfactory unless we have a practical criterion on S for
determining when Ty is saturated. The following is such a criterion. Here, ¢’
denotes the derivative of g.



Theorem 3.2 Let Ks = Uj_ola; , bj], bj_y < aj, j =1,....k, S = {g1,- -, 9s}-

Then Ty is saturated if and only if the following two conditions hold:
(a) for each endpoint a; 3 i€ {1,---,s} such that g;(a;) =0 and g/(a;) > 0,
(b) for each endpoint b; 3 i € {1,---,s} such that g;(b;) =0 and gi(b;) < 0.

In fact, Theorem 3.2 is just a special case of a general criterion for curves proved
in [S2, Th. 5.17]. For completeness we include our own proof.

Proof: =~ We prove the necessity of condition (a). The necessity of condition (b)
is proved similarly. Let a = a;. There exists f € R[X] (of degree two), f > 0 on
Kg, f(a) =0, f'(a) > 0. Since Ty is saturated, f has a presentation f = 3 0.9°,
o. € Y R[X]®. Since f(a) = 0, each term o.g° is divisible by X — a. Since
f'(a) > 0, there exists e with (o.g%)'(a) > 0. If (X — a)?|o.g® then (0.9°)'(a) = 0,
a contradiction. Thus o.(a) # 0 and there is some unique i such that g; appears in
g¢ and g;(a) = 0. Then o.g°/g; is strictly positive at a so (0.9°)'(a) has the same
sign as g.(a).

We prove the sufficiency of conditions (a) and (b). Assume (a) and (b) hold.
According to Theorem 3.1 (b), it suffices to show that Ts contains the natural
generators. We begin with the linear generators. Let a = ag. By (a) there exists ¢
such that ¢; = (X — a)h;, hi(a) = gi(a) > 0. Then h; and X — a are each > 0 on
Kg and ged(h;, X —a) = 1 so, by Corollary 2.2, X —a € Ts. A similar argument
shows that b — X € Tg, where b = b,. Now consider a generator of the form
(X —a)(X =b),a=ap, b=">0r1, ¢ € {1,...,k}. By (a) and (b) there exists i, j
such that g;(a) = 0, gi(a) > 0, g;(b) = 0, g;(b) < 0. Factor g;, g; as g; = (X —a)h,,
g; = (X —b)h;. Then

(X —a)(X =B)((X = b)hi + (X — a)hyj) = (X —b)*g; + (X — a)°g; € T,

and (X —a)(X —b) and (X —b)h;+ (X —a)h; are each > 0 on Kg and are relatively
prime, so by Corollary 2.2, (X — a)(X —b) € T. O

Corollary 3.3 Let Kg be compact, S = {g1,--,9s}. Assume that Kg has no
isolated points. Then Tg is saturated if and only if, for each endpoint a € Kg,
there exists i € {1,---, s} such that x — a divides g; but (x — a)® does not.

Corollary 3.4 Let K be a compact semi-algebraic set in R without isolated points,
N its set of natural generators, and 7 the product of the elements of N'. Then

Mgy = My = Timy = Ti-

Proof: ~ Applying Corollary 3.3 to S = {7} we see that T{,) is saturated. Since
Kiry = K = Ky, and Ty is saturated, this implies T,y = T). It remains to show
that m € My,. Decompose 7 as

T=fq...q,

9



where f = (X — a)(b — X) is the product of the linear natural generators and
qi,--.,q are the quadratic natural generators, ¢ > 0. Suppose t = 0. Then
7= (X —-a)b—-X) € Mx_ap—x3 by Corollary 2.3. Suppose t > 0. Then
7 = 7'q, where 7’ = fq;...q—1. By Corollary 2.3, 7 € M{ 4. By induction on ¢,
7' € My, where NV = {X —a,b— X, q1,...,¢¢—1}. Thus m € Mpygqy = My. O

We need “no isolated points” in Corollaries 3.3 and 3.4: Take K = {0}, so N =
{X,—X} and 7 = (X)(—X) = —X?% Also M{_x2y # Mx_x3. On the other
hand, writing —X = a® — 0%, a,b € R[X], we see that

—X?=(a®> - V)X =X +b°(—X) € Mix—x3,

so Mix._xy = Tix,—x}. This suggests that My = Ty may hold even when K has
isolated points. In fact this is the case.

Theorem 3.5 Let K be a compact semi-algebraic set in R, N its set of natural
generators. Then My = T)y.

Note: If K is not compact, then My = T) holds only in a few cases: if |JN| =1 or
if JN| =2 and K has an isolated point; see [K-M, Th. 2.5].

Proof: Let N = {g1,...,9s}. It suffices to show that My is closed under
multiplication, equivalently, that g;g; € My for all 7 # j.

Case 1: g;, g; are both linear. g; = X —a, g; =b—X, a <b. If a = b then g; = —g,.
Write g; = f* — ¢%, f,9 € R[X]. Then

9:9; = f*9i — 9°9i = [*9i + 9°9; € Mg, 4,1-

If a < b then {g;,g;} are the natural generators of the compact set [a, ], so g;g; €
Mg, 4,3 by Corollary 3.4.

Case 2: g; is linear, g; is quadratic. Replacing X by —X if necessary, we can
assume g; = X —a. g; = (X —¢c)(X —d), a <c<d. If a=cthen gig; € My, 43
by [K-M, Th. 2.5]. Suppose a < ¢. Fix § € R so large that § — X > 0 on K.
p— X € My by [J-P, Remark 4.7]. Applying Corollary 3.4 to [a, c] U [d, 5], we see
that
9i9; = (X —a)(X — )(X — d) € Mix—a,(x—o)(x-d),8-x} S My

Case 3: ¢ = (X —)(X —d), 9, = (X —-)X —-d),e<d<d<d Iftd=d
then gig; € My, 4,3 by [K-M, Th. 2.5]. Suppose ¢’ > d. Use [J-P, Remark 4.7] to
choose o« < ¢ and 8 > d' so that X — o, — X € M. Applying Corollary 3.4 to
[, U [d, U [d, 5] yields

9i95 € Mix_a(X—c)(X=d),(X—c')(X—d'),8-Xx} © M.
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Corollary 3.6 Forn =1, Kg compact, the following are equivalent:
(i) My is saturated, i.e., Mg = T5®

(i) Mg contains the natural set of generators of Kg

(1ii) Mg is closed.

Proof: By [J-P, Remark 4.7] (1) holds for Mg so, in particular, (SMP) holds for
Mg. (i) < (iii) follows from this fact. (i) = (ii) is clear. (ii) = (i) follows from
Theorem 3.5 and Theorem 3.1(b). O

Corollary 3.6 can be viewed as the module analog of Theorem 3.1 (b). One would
also like to have a module analog of Theorem 3.2.

4 Uniform Degree Bounds

We continue to assume n = 1. Theorems 4.1 and 4.5 and Corollary 4.3, in this
section, are essential in the next section, in the proof of Theorem 5.3 and Corollary
5.5. These results, suitably formulated, hold over an arbitrary real closed field.

Fix a non-empty basic closed semi-algebraic set K in R, with N' = {sq,..., s}
its set of natural generators. T) is saturated, by Theorem 3.1, so each P € R[X]
non-negative on K is expressible as

(1) P= Y osp...s

ec{0,1}?
with 0. € Y R[X]?.

Theorem 4.1 Fach P nonnegative on K has a presentation (1), with the degree
of each term o.s{'...s;" bounded by the degree of P.

Proof: ~ This is just a matter of keeping track of degrees in the proof of [K-M,
Th. 2.2]. 0

Corollary 4.2 Suppose K = Ky, .
nonnegative on K has a presentation

(2) P= > 7gl.. . gF,
i€{0,1}*

g} 8 saturated. Then each P

.....

7; € S R[X]?, where the degrees of the terms are bounded by some number of the
form deg(P) + N, with N depending only on g1, ..., g.

11



Proof:  There exist presentations

S5 = Z pjpgi”---gi’“,
pE{O,l}k

with p;, € Y R[X]?, for each j. Substituting these into (1) and rearranging terms,
one obtains (2), with the degree of each term at most

deg(P) + t max{deg(p;pg?* ... g%") : j,p}

It does not seem possible to choose N in Corollary 4.2 so as to depend only on the
degrees of g1, ..., gr. Unfortunately, this limits what we are able to prove later, in
Section 5, in Theorem 5.3.

We consider module analogs of Theorem 4.1. We continue to denote by sq,...,s;
the natural generators of K. Is it possible to find presentations

P=coy+o181+...+ 05,

with o; € 3 R[X]?, with the terms of bounded degree depending only on the degree
of P? For t < 1 it is trivially true, by Theorem 4.1, (with deg(P) serving as the
bound). If K is not compact and ¢ > 2, then such a presentation may not exist.
(M), is saturated iff either t < 1 or if t = 2 and K has an isolated point; see [K-M,
Th. 2.5].) If such a presentation does exist, then deg(P) serves as a degree bound.
If K is compact and ¢ = 2, then one checks that deg(P) + 1 serves as a degree
bound. To summarize:

Corollary 4.3 [f eithert < 1 ort = 2 and K either has an isolated point or is
compact, then every polynomial P non-negative on K has a presentation

P:O'0+0'181+...+O't8t,
with the degree of each term bounded by deg(P) + 1.

What if K is compact and ¢ > 37 In view of Theorem 4.1, this reduces to the
question of whether a degree bound exists for representations of the products s;s;,
i < j. Such a bound exists if s;,s; are both linear, or, if at least one of s;,s;
is quadratic and Ky, 4,1 has an isolated point. In remaining cases (i.e, the cases
where at least one of s;, s; is quadratic and K, 4, has no isolated point), there is
no degree bound in general.

Example 4.4 (a) Suppose s; = X —a, so = (X — b)(X —¢), where a < b < ¢ are
fixed reals. Then, for any real 8 > ¢, sys9 has a presentation

(3), 8182:Uo+0181+0'282+0'3(ﬂ—X)

12



with o; € > R[X]? depending on 3. We claim that, for any such presentation,
as [ — oo, the maximum of the degrees of the ¢; necessarily tends to infinity.
Otherwise, by the Transfer Principle, for any real closed field # 2 R and any
B € R, B> c, we would have a presentation (3) with o; € 3 R[X]?>. Choose any
such (nonarchimedean) R, e.g., take R to be the field of formal Puiseux series with
real coefficients. Denote by v the unique finest valuation on R compatible with
the ordering, and choose  to be positive and infinitely large relative to R, i.e.,
v(fB) < 0. Write o; = X f7, fi; € R[X]. Choose d € R, d > 0, with v(d) equal to
the minimum of the values of the coefficients of the f;;, i € {0,1,2} and the /B fs;.
Case 1: v(d) > 0. Then (3) pushes down to the residue field giving an equation of

the form sys9 = ag + 181 + 989, a; € Y. R[X]?. This contradicts [K-M, Th. 2.5].

Case 2: v(d) < 0. Then dividing (3) by d* and pushing down to the residue field
vields an equation of the form 0 = ag + a;s; + aass, ; € S R[X]?, a; # 0 for
some i. Since s; and sy are both strictly positive on the infinite set (a,b), this is
not possible.

(b) A similar remark applies to presentations of the form
8189 = 09 + 0181 + 0289 + O'3(B + X) + 0'4(5 — X), g; € R[X]Q,

where 51 = (X —a)(X —b), s = (X —¢)(X —d), a < b < ¢ < d are fixed reals,
B > max{—a,d}.

We turn now to the case where K is the empty set. We use the next result
in the proof of both Theorem 5.3 and Corollary 5.5. Actually, for the proof of
Theorem 5.3, we need only a weaker preordering version of the result. The weaker
preordering version holds even in the multivariable situation, and is a consequence
of the Positivstellensatz.

Theorem 4.5 Given a positive integer k and non-negative integers dy,...,dy,
there exists a positive integer N such that for any real closed field R and any
set of polynomials S = {q1,..., gk} in one variable X with coefficients in R with
deg(g;) < dj, 7 =1,....k, if Ks =0, then there exist o; € 3. RIX]* of degree < N
such that —1 = Y8 0:g;. (Convention: gy = 1.)

Proof:  If —1 ¢ Mg then, by [Br, Satz 1.8], there exists a real prime ideal p in
R[X] such that the quadratic form ¢*, which is obtained from ¢ = (1,g1,..., )
by deleting the entries belonging to p, is strongly anisotropic over the residue field,
call it k(p), of R[X] at p. (This works even in the multivariable situation, in fact
it works for any commutative ring.) The point is, since we are in the 1-variable
situation, k(p) has transcendence degree < 1 over R, so there exists an ordering
of k(p) making ¢* positive definite [P, Th. 9.4]. By the Transfer Principle, this
implies Kg # (). The degree bounds follow by a standard ultrapower argument. O

13



Note: Using the identity P = (P%l))2 — (521)?%, we also get degree bounds for
presentations P = %, 0,g; depending only on k and the degree of P and the

degrees of gq,. .., gx, for each P € R[X].

5 Subsets of Cylinders

We fix the terminology. We consider the polynomial ring R[X, Y] in n+ 1 variables
X1, ..., Xp, Y with coefficients in R. We suppose S is a finite subset of R[X,Y].
When is it true that (SMP) (or (f) or (})) holds for Ts?

Our first result gives a general necessary condition. Let L C R™™ be any line,
MRS LCR™,

an affine-linear isomorphism onto this line, and \* : R[X,Y] — R[Z] the corre-
sponding map between the polynomial rings. Thus A\~!(Kj) is the basic closed
semi-algebraic subset of R defined by the set A*(.5).

Theorem 5.1 Suppose that (SMP) holds for Ts and \~'(Kg) is not compact.
Then \*(S) contains the natural generators of X\~ (Kg) (up to scaling by positive
reals).

Note: If \™*(Kg) is compact then Ty«(g) satisfies (). Thus, one can conclude that
Th~(s) satisfies (1) in any case.

Proof: ~ By Theorem 3.1, it suffices to prove that the (closed) preordering Ty« (s)
contains the natural generators of A= (Kg). To simplify the notation needed in the
proof, the coordinates of R™*! are arranged so that L is the Y-axis and A : R —
L C R™! is the isomorphism defined by y — (0,%). Thus, \* : R[X,Y] — R[Y] is
given by X; —» 0,i=1,...,n, Y — Y. If \"}(Kg) = R there is nothing to prove.
So assume that A™}(Kg) # R.

Case 1: Suppose that A71(Kg) contains a smallest element, say a. (The case of
a largest element is handled in exactly the same way.) The natural generator
belonging to a is the linear polynomial Y — a. It is claimed that Y — a belongs to
Ty-1(s)- For each 1 < n € N define b, = a — %, ¢p = b, —n. Then: (b,), increases
monotonically with limit a; (¢, ), decreases monotonically with limit —oo; for all
n, b, > ¢,. The interval [c,,b,] C L is compact and does not meet the closed set
Kg. Thus, the distance §,, = dist([c,, b,], Kg) is positive.

For each n, let E, be the ellipsoid with center %(bn + ¢,), one axis on the line
L, the other perpendicular to L. The half axis on L has length (b, — ¢,), the
perpendicular half axis has length §,,. The ellipsoid is given by the polynomial




The interior of the ellipsoid is the set
N(P,) = {(z,y) € R™" : Py(x,y) < 0}.

Every point of N (P, ) has a distance less than ¢, from the line segment [¢,,, b,], hence
N(P,) N Kg = . This means that P, is positive semidefinite on Kg. Each linear
functional Ly on R[Y] non-negative on T)«(gy lifts to a linear functional L; = LyoA*
on R[X, Y] non-negative on Ts. Since T satisfies (SMP), Lo(A\*(P,)) = L1(P,) > 0

for all such Lg. It follows that A*(P,) € T ffl(s) = Th+(s). One computes

. 4 1, 2b,, b2

1

bp—cn

Since

converges to 0 as n — oo one concludes that the sequence

(bn ; C"A*(Pn)>

of polynomials converges to Y —a. Once again, closedness of T)«(g) implies Y —a €
Th~(s)-

Case 2: Suppose that a,b € \™(Ks),a < b, (a,b) N A\ (Kg) = 0. Tt is claimed
that the natural generator (Y — a)(Y" — b) belongs to T)«(sy. The method of proof
is much the same as in Case 1; let ng € N be such that b —a > nlo For n > ng one

n

defines a,, = a + %, b, =b— % Then: a, < b,; a, | a; b, T b; the compact line
segment [a,, b,] does not meet Kg. Set ¢, = dist([an, b,), Ks), and let

ne () 56

2 i=1 n

Again, N(P,) is the interior of the associated ellipsoid E,, and N(P,) N Kg = 0.
Thus, P, > 0 on Kg. Again, since Ts satisfies (SMP) and T)-(g) is closed one gets
N(P,) € Th~(s). The sequence

(30— an) - x(20)

(Y -10+0) - (0 -a)
=Y? - (b+a)Y +ab= (Y —a)(Y — ).

Once again, since T)-(g) is closed the limit also belongs to Th«(g). O

n

converges to

For each a € R™, let L, = A\,(R), where )\, : R — R™"! is defined by y — (a,y).
The corresponding map X : R[X,Y] — R[Y] is given by X; — a;,Y — Y. The
fiber A;'(Ky) is the basic closed set in R defined by A*(S).

Theorem 5.1 and [Sc2, Th. 1] (see Theorem 1.5) combine to yield the following:
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Corollary 5.2 Let S C R[X, Y], where R[X, Y] denotes the polynomial ring in n+
1 variables Xy, ..., X, Y. Suppose the image of Kg under the projection (x,y) — x
is bounded. For each a € R", define A, : R — R™™! as above. Then:

(a) Ts satisfies (MP).

(b) The following are equivalent:

(i) Ts satisfies (SMP).

(ii) For each non-compact ;' (Ks), Mi(S) contains the natural generators for
M Y(Ks) (up to scalings by positive reals).

Proof:  (a) Since every polynomial non-negative on R is a sum of squares, (MP)
holds for each T sy, so (a) is immediate from [Sc2, Th. 1]. (b) The implication (i)
= (ii) follows from Theorem 5.1. (ii) = (i): To be able to apply [Sc2, Th. 1] we
must show that each T):(s) satisfies (SMP). For A, '(Kg) compact, this is always
the case. For A\;!(Kg) non-compact it is a consequence of assumption (ii). a

See Corollary 6.4 below for a module version of Corollary 5.2.

We are unable to prove that Corollary 5.2(b) holds with (SMP) replaced by (%).
However, we are able to prove the following weaker result:

Theorem 5.3 Let S C R[X,Y], where R[X,Y] denotes the polynomial ring in
n+ 1 vartables X4, ..., X,,,Y. Suppose the following conditions hold:

(a) There exists N such that N — || X||*> € Ts and

(b) For each non-empty \,' (Kg), N:(S) contains the natural generators for A\, (Ks)
(up to scaling by positive reals).

Then Ts satisfies (1), i.e., for each P € R[X,Y] such that P > 0 on Kg, there
exists Q) € R[X, Y] such that for all real € > 0, P + €Q € Tg.

See Corollary 5.5 below for a module version of Theorem 5.3.

Note: It follows from [Scl, Cor. 3] that condition (a) of Theorem 5.3 holds iff
there exist elements fi,..., f; € Ts N R[X] such that the subset Ky . ry of R" is
compact.

Proof: Let B = {a € R" : ||a]|* < N}. Suppose that P € R[X,Y] belongs to
T3, Writing P = 3% p;(X)Y? one has P, := \*(P) = X pi(a)Y' € Tfég(s) for
each a € B. Because of condition (b), Th+(s) = T;{%S) for each a. Thus, for each a
there is a presentation

7777

(4) Po= > ogiXi(s)™ o N (s)"
1€{0,1}?
(where S = {s1,...,s:} and the 0,,; € R[Y] are sums of squares). By assumption

(b) we may assume there is a uniform bound for the degrees of the sums of squares
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occuring in these representations that is independent from a. If A;1(Kg) # ) then

the degrees can be bounded by k by Theorem 4.1. For A\;'(Ks) = @ a uniform
bound exists by the note following Theorem 4.5. Pick any € > 0. For each a,

consider
Y gt e 8y P— Y, a0
1€{0,1}* i€{0,1}*

as polynomials in the variable Y with coefficients from R[X]. There is some large
even number D that bounds the Y —degrees of these polynomials and is independent
from a. Write

D D

i i d i i d

Z FgiS1 * 008 = Zpa,dY , P— Z T iST “a:+t 8 = Z GadY
d=0 d=0

1€{0,1}t 1€{0,1}t
Note that gu.o(a) = ... = gup(a) = 0 for each a € B. Hence there is an open
semi-algebraic neighborhood U, of a in R™ such that
D
€
Z QCL,d('r) < =
d=0 i 2

for every x € U,. By compactness of B, there is a finite subset £ of B such
that B C U,egpUs- On B there is a continuous semi-algebraic partition of unity

subordinate to this cover, say e,, a € FE, with 0 < e, < 1 and Y e,(x) = 1 for
acl
each x € B. Each e, has a nonnegative square root f,, which is also a continuous

semi-algebraic function. Using Stone—Weierstrass approximation on the compact
set B one finds polynomials F,, a € F, so close to the continuous semi-algebraic

functions f, that
€

> paalf = F)@) < =

acl

for every d = 0,...,D and every x € B. The polynomial P can be written in the
form P = P, + P, where

P = X (Zaa,iF(?)s?-...-s?ETg,

i€{0,1}* \a€lL

D D
P = YrYd=% (Z Qa,dFa2> yd
d=0

d=0 \ac€Fl

+§(Z%Aﬁfﬁﬂw+§<ZmAﬁ=¥0W-

d=0 \a€FE d=0 \a€F
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The choice of the approximations yields

ra@)| = | T aaf2@) + ¥ paa(f2 - F2)(@)|
acl acl

> paalf? — F2)(z)|

< | X guaf?@)| +
acl acl

< | gualo)| +

acl

T paalfl — F)(@)| <e

acl

for each x € B. But then [Scl, Cor. 3] implies that ¢ £ 74 € Tn_| x|} for every
d=0,...,D. The argument in [K-M, Th. 5.1 shows that

eY? + (e +7a)Y +e € (Y + 1)*Tiv—yxjey + (V2 + 1) Tiwv—px2y-
As in loc.cit., one adds () where
Q=2+Y4+3Y?4+Y3 43V 4+ .. 43YP 24 yP 4 ovP

to both sides of P = P; + P, and obtains

P+eQ= X <Zaa7iF5>s?-...-s?

i={0,1}* \a€lE
D D
+ X (e+r)YVi+ ¥ eV 4 (e+ 1) Y2+ eV € Ts.
d=0 d=0

d even d odd

Since the polynomial @) is independent from &, the proof is finished. ]

There is one case for which the results proved so far give even a necessary and
sufficient condition for (1) to hold:

Corollary 5.4 Let S C R[X,Y], where R[X,Y] denotes the polynomial ring in
n+ 1 vartables X1, ..., X,, Y. Suppose the following conditions hold:

(a) There exists N such that N — || X||?> € Ts and

(b) Each nonempty \;'(Ks) is unbounded.

Then the following conditions are equivalent:

(i) Ts satisfies condition (1).

(ii) For each non-empty \;*(Ks), \:(S) contains the natural generators for \; ' (Kg)
(up to scaling by positive reals).

If we look carefully at the proof of Theorem 5.3, we see that in fact we have proved
more than is stated: We have shown that, for each € > 0, P = P, + P,

P eTs and P+ eQ) € ZT{N_“X“Q}Y2k + ZT{N_”X”z}Y%(l + Y)2
k k
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We may not need all the various sorts of terms in Ts to represent P;. If S =
{s1,...,sx} and ¢; € {0,1}, > e; > 1, we need the term involving s{* ... si* only if
there exists a such that the \*(s;) with e; = 1 actually occur as (distinct) natural
generators of \;!(Kg). For example, if the hypothesis of Corollary 4.3 holds for
each non-empty fiber, then we can arrange things so P, € Mg.

Corollary 5.5 Let S C R[X,Y], where R[X,Y]| denotes the polynomial ring in
n + 1 variables X4, ..., X,, Y. Suppose the following conditions hold:

a) There exists N such that N — || X||?> € M.
(a)

(b) For each non-empty \,' (Kg), N:(S) contains the natural generators for \,'(Ks)
(up to scaling by positive reals).

(¢c) Each non-empty A\, (Ks) has the form (—oo, 00) or (—oo, p|, [q, ), (—oo, p]U
[q,00) (perhaps with a discrete point added) or |p, q|.

Then Mg satisfies (1), i.e., for each P € R[X,Y] such that P > 0 on Kg, there
exists Q) € R[X, Y] such that for all real e > 0, P + €Q € Mg.

6 Module Version of Schmiidgen’s Theorem

We prove the following module version of Schmiidgen’s Theorem 1.5 quoted in the
introduction:

Theorem 6.1 Let hy,...,hy € R[X]|. Suppose there exists N such that N —
Y4 h? € Ms. Denote by Vi, € R? the algebraic set associated to the R-algebra
R[A| := R[hq, ..., hg]. Suppose that the image of Kg under the map R" — Vj,, z —
(hi(z), ..., ha(x)), is dense in the set {z € V}, : g(2) > 0 for all g(h) € R[h]N Mg}.
If (SMP) (resp., (MP)) holds for Ms, for each X in the closed ball of radius N
about the origin in RY, then (SMP) (resp., (MP)) holds for Ms.

The density assumption in Theorem 6.1 is somewhat restrictive. At the same time,
this assumption holds in a variety of interesting cases: Consider the case d = 1.
Suppose h € R[X] is non-constant and bounded on Kg. Then Vj, is identified
with R and the closure of the image of Kg in V), is some disjoint union of closed
intervals, say UY_, [a;, b;], b;_1 < a;. Adding the natural generators b, — h, h — ay,
(h —bi—1)(h —a;), i = 2,...,k to S does not change Kg. Once this is done,
N — h% € My for N sufficiently large, and the density assumption of Theorem 6.1
holds. Similar remarks apply if d > 1 and hq, ..., hy € R[X] are bounded on Kg,
provided the closure of the image of K¢ in V) is a basic closed semi-algebraic set
in V}, (this latter condition is automatic if d = 1).

The proof of Theorem 6.1 follows along the same lines as the proof given in [Sc2].
We need two lemmas.
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Lemma 6.2 Suppose p € R[h], p > 0 on Kg. Then p+ e € Mg holds for all real
e > 0.

Proof:  The hypothesis N —X% , h? € Mg implies the quadratic module R[h]N Mg
is Archimedean in R[A]. Let z € V}, be such that g(z) > 0 for all g(h) € R[h]|N Ms.
Write p = f(h), f € R[Zy,...,Z4. By hypothesis, there is a sequence ) in
Kg, (hy(zW), ... hq(zP) — 2, so p(a) = f(hy(aW),... hq(z")) = f(2) as
j — oo. It follows that f(z) > 0 for any such z. By Jacobi’s generalization of the
Kadison-Dubois Theorem [J, Th. 4], this implies p + ¢ = f(h) + € € Mg for any
real € > 0. O

We use the notation of [Sc2]: L is a linear functional on C[X], L(Mg) > 0. Denote
by N the ideal in C[X] defined by N' = {p € C[X] : L(pp) = 0}. The algebra
Dy = C[X]/N comes equipped with an involution p + N +— p+ N and a scalar
product (p; + N,ps + N) := L(p1p,). Each p € C[X] defines a linear operator
7 (p) on Dp by 7 (p)(g+N) = pg+ N. We use the following easy version of [Sc2,
Prop. 2]:

Lemma 6.3 Ifp € C[h] then the operator wp(p) on Dy is bounded and ||wy(p)]| <
Ip|lx where ||p||r == sup{|p(z)| : z € Ks}.

Proof:  Using |71 (p)||* = ||72(pP)| and ||p||* = ||pP||, we are reduced to the case

p € R[A]. Fix € > 0 and let p* = ||p||% + ¢. By Lemma 6.2, p* — p* € Mg so, for
q € C[X], p’qq — p*qq = (p* — p*)qq € Mg. It follows that p?L(qq) > L(p*qq),
ie., p*llg + NI? > ||mr(p)(¢ + N)||>. Since ¢ € C[X] is arbitrary, this implies
p > |Im(p)|]. Since € > 0 is arbitrary, the result follows. O

It follows from Lemma 6.3 that the operators 7z (hy), ..., 7. (hg) are bounded. One
finishes the proof of Theorem 6.1 now, exactly as in [Sc2].

In terms of basic closed semi-algebraic subsets of cylinders with compact cross-
section, set-up as in Section 5, Theorem 6.1 yields the following:

Corollary 6.4 Let S C R[X,Y], where R[X,Y]| denotes the polynomial ring in
n + 1 variables X, ..., X,,Y. Suppose N — || X||?> € Ms and, for each x € R",
r ¢ ©(Kg), there exists g € Mg NR[X] such that g(x) < 0, where 7 : R"** — R"
denotes the projection (x,y) — x. Then:

(a) (MP) holds for Mg.

(b) If (SMP) holds for My:s) for each non-compact fiber \;'(Kg) then (SMP)
holds for Ms.
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7 Applications

In [K-M] the authors asked whether [K-M, Cor. 5.4] generalizes to sets of the form
K x L, K compact, L non-compact closed semi-algebraic in R (with the natural
description). We are now able to prove this. See [Po, Cor. 3] for another proof.

Denote by R[X, Y] the polynomial ring in n + 1 variables X7, ..., X,,,Y. Consider
a subset S ={g1,...,9s} of R[X,Y]| where the polynomials ¢1, ..., gs involve only
the variables X, ..., X,,, so Kg has the form K x R, K C R". We further assume
that K is compact. Given L closed semi-algebraic in R, let N' C R[Y] be the
natural set of generators for L. In this situation we have the following:

Corollary 7.1 Let S, := SUN (so Ks, = K x L). Then (1) holds for Ts, .

Proof: Immediate from Theorem 5.3. O

Our next application is to generalized polyhedra. Assume that Kg is the basic
closed semi-algebraic set in R™, m > 1, defined by S = {{1,...,0s}, where {q,... £,
are linear, so K is a closed polyhedron. If Kg is compact then, by [J-P, Th.
4.2], (1) holds for Mg. What if Kg is not compact? If Kg contains a cone of
dimension 2 then, by Theorem 1.2, (MP) fails for Ts. In [K-M] the authors ask
whether (1) holds in the remaining case, i.e., when Kg is not compact and does
not contain a cone of dimension 2. We are now in a position to settle this question
completely.

Lemma 7.2 Let P be a closed polyhedron in R™ and let a € P. Then P is compact
if and only if there is no half line starting at a and contained in P.

Lemma 7.3 Let P be a non-compact closed polyhedron in R™ and let a € P. Then
the following are equivalent:

(i) There are at most two half lines starting at a and contained in P.

(ii) There is a subset Sy of the set of linear polynomials defining P such that Kg,
18 a cylinder with compact cross-section.

The proofs of Lemmas 7.2 and 7.3 are elementary and will be omitted.

Theorem 7.4 Let P be a closed polyhedron in R™ defined by a finite set S of linear
polynomials.

(i) If P is compact then (}) holds for Ms.

(i) If P is not compact but does not contain a 2-dimensional cone then (f) holds
for Mg.

(i11) If P contains a 2-dimensional cone then (MP) fails for Ts.
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Proof: It only remains to prove (ii). We can assume m > 2. Set n = m — 1.
According to Lemmas 7.2 and 7.3, after a suitable affine change in coordinates,
there exists a subset S € S NR[Xy,...,X,] such that Kg, is a cylinder with
compact cross-section. The result follows, applying Corollary 5.5. The fact that
condition (a) of Corollary 5.5 holds follows by applying [J-P, Theorem 4.2] to the
compact polyhedron Kg, NR". a

8 Examples in the Plane

Example 8.1 Consider {Y — X?} C R[X,Y]. Kjy_xz; is the region above the
parabola Y = X? in R%. K (v—x2} does not contain a 2-dimensional cone. On the
other hand, the isomorphism

¢ : RZ _>R27 (xvy) = (Ivy_'IQ)v

carries Ky _y2y onto Ky} which does contain a 2-dimensional cone. By [K-M,
Th. 3.5] and Proposition 1.2, Tiyy = T, {“}‘)} 2Ty g, Applying the induced algebra
isomorphism

¢ RIX,Y] 5 RIX,Y], XX, Y >5Y— X2
yields Ty _x23 = T{ﬁ{}_xz} 2 T51g7 s0 T{y_xzy is closed and (MP) fails for Ty x2y.

Example 8.2 Let S5 ={X,1- X, Y - 1,1 - XY}, S5 ={X,1- X, XY —1}. By
Corollary 5.5, Mg, and Mg, satisfy condition (1).

Example 8.3 Let §; = {X,1 - X, Y2 - X3} S, = {X,1 - X,Y3 - X?}. By
Corollary 5.5, Mg, satisfies (1). By Theorem 5.1, T, does not satisfy (SMP). By
Corollary 6.4, Mg, does satisfy (MP).

In [K-S] the authors ask for examples where (SMP) holds but () does not hold,
and for examples where T4" £ Té‘ Although we are unable to settle this issue yet,
we note that TH* = T% does hold when n = 1. Also, in the special case where
S is a set of linear polynomials, 74" = T% holds when n = 2 (using Theorem 7.4
and [K-M, Th. 3.5]), and also when n = 3, except possibly in the case when Kg
contains a 2-dimensional cone but does not contain a 3-dimensional cone. What
happens in this exceptional case is not clear.

Also, in this regard, the following two examples are interesting.
Example 8.4 Let S = {X,Y,1 — XY}. The polynomial XY is bounded on Kg
and one checks that (SMP) holds for Tsy(xy—x —(xy—»), for each 0 < A < 1. Thus

by Theorem 1.5, (SMP) holds for Ts. It is not known if () holds for Ts. This
example is due to K. Schmiidgen.
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We note the following:

Proposition 8.5 Let S and S’ C R[X]| (any number of variables) and assume that
Ks = Kg. Assume that (SMP) holds for Ts and that S C T8, Then (SMP) holds
for Ts:.

But Tg}g = Tglg = Tin Tt follows that T;‘}g =T, O

Example 8.6 In Example 8.2, the set Kg, was defined using the set Sy = {X,1—
X, XY — 1}. But it can also be defined by the set S5 = {1 — X, Y, XY — 1}.
According to Theorem 1.5, (SMP) holds for Tg,. Is it true that (f) holds for 7,7
This would be true by Theorem 5.3 if we could show that X + N € Tg, for N
sufficiently large. Unfortunately, we have the following:

Claim 1: If N is a positive integer, then X + N ¢ Ts,. Assuming by way of
contradiction that X + N € Tg,, there is a representation

1
X+N= Y ol - X)Xy —1)Y*

iﬂj?k:O

with o;;, sums of squares in R[X,Y]. Since the variable Y does not occur on the
left hand side one concludes that o;;, = 0 if j + & > 1, hence

X—|—N:0'0+0'1(1—X),

where oq, 0y are sums of squares in R[X]. But then (14+01)(X+N) = oo+ (N+1)o7,
hence X + N is a sum of squares in R(X) — which is false.

On the other hand, we have:

Claim 2: X +¢eY € Tg, for every 0 < € € R. Note that X +¢Y = (X +2Y)+ (e —
%)Y € Ts, if 1 < n € N such that ﬁ < eand X + %Y € Ts,. Thus it suffices to
prove that there are arbitrarily large numbers n € N with nX +Y —1 € Ts,. The
proof is by induction on n.

n=1 (XY —1)(1-X)= XY —1— XY + X € Ts,. Adding X?Y € Ts, and
Y(1—X)eTs, onegets X+Y —1¢€Tg,.

n=n+1 n+1)X+Y -1-nX?-XY =nX+Y - 1)(1-X) € Tgs,.
Adding nX? € Ts,, XY —1 € Ts, and 1 € T, one obtains (n+1)X+Y —1 € Tg,.

By Claim 2, X € T és, so Tg, C Tég CcT ;7‘;‘ Using Proposition 8.5 this provides a
second proof that (SMP) holds for Ts,. The question of whether or not (f) holds
for 1s, remains open.
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9 Some Open Problems

1. In Theorem 5.3, is it possible to replace assumption (a) with the (apparently
weaker) assumption that there exists N such that N — ||X||> > 0 on Ks? Note: If
the answer is ‘no’ then we have an example where (SMP) holds for T but (1) fails
for Ts. This would answer Open Problem 3 in [K-M, Sect. 6].

2. In Theorem 5.3, are the strong assumptions (b) on the fibers actually necessary?
If they are necessary then again we have the answer to Open Problem 3 in [K-M].

3. Does the converse of Theorem 1.5 hold? This seems unlikely. By Theorem 5.1,
it is true when the fibers are linear. To the extent that the converse of Theorem
1.5 is true, it provides a way of studying the question of when (SMP) and (MP)
hold by induction on the dimension.

4. Supposen =2, 5 ={X,Y,1—- (X —-1)(Y —1)}. Does (SMP) hold for Ts? Note:
The only polynomials which are bounded on K¢ are the constants, so Theorem 1.5
does not apply in this case. This problem is due to K. Schmiidgen.

5. Is it true that if Kg = Kg, (1) holds for Ty and S C T, then (f) holds for T
(Compare to Proposition 8.5.) This seems unlikely.

6. For n = 1, does there exist a finite set S in R[.X| with Kg compact and Mg # Ts?
In particular, does there exist a finite set S in R[X | with K¢ compact, T saturated,
and Mg # Ts? These questions are of interest already in the case |S| = 2. Note:
If Kg is compact, then Mi® = Tglg, so Mg = T holds whenever Mg is closed.
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