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We introduce the notion of a logarithmic cross-section and show that the
power series field R((G)) admits such, for a large class of ordered abelian
groups G. We use this to construct models of real exponentiation which are
unions over countable chains of such power series fields. We show that this
construction is best possible in the following sense: There is no archimedean
ordered field k¥ and no ordered abelian group G # 0 such that k((G)) would
admit an exponential. We prove even stronger nonexistence results. These
results are based on a structure theorem for lexicographic products of ordered
sets.

1 Introduction

In [DR-MI-MK2], L. van den Dries, A. Macintyre and D. Marker modify an ap-
proach of Dahn and Géring ([D-G]) in order to construct nonarchimedean exponen-
tial fields which are models of real exponentiation, i.e., have the same elementary
properties as (R, exp).

In the present paper, we will give a simplified construction. Using some struc-
ture theory of nonarchimedean exponential fields, we eliminate one of the two
limit processes used in [DR-MI-MK2]. The so constructed models are unions over
countable chains of power series fields, each of them admitting a non-surjective
logarithm.

?my a Deutsche Forschungsgemeinschaft fellowship / Ne tocond “""é’{""“" v mppen
J partially supported by the Edmund Landau Center for research in Mathematical
Analysis, supported by the Minerva Foundation (Germany). Publication number 601

/ (D\l kel anthor ! 1282 avih wa |

/
)

1



2 KUHLMANN, KUHLMANN AND SHELAH

If k is an ordered field andﬁé # 01is an ordered abelian group, then the (“general-
ized”) power series field k((G)) admits at least one nonarchimedean order. Further,
it is real closed if and only if k is real closed and G is divisible. This provides a
very simple and elegant method of constructing nonarchimedean ordered real closed
fields. We show that this method is not available for exponential fields. Recall that
an exponential on the ordered field (K, <) is in particular an isomorphism between
its ordered additive group (K, +,0, <) and its multiplicative group (K>°,-,1, <) of
positive elements. In this paper, we will prove:

Theorem 1 Let k be an archimedean ordered field and G £ 0 be an ordered abelian
group. Then for every order < on the power series field K = k((G)),

(K,+,0,<) % (K>°,-,1,<) . (1)

In particular, K cannot be expanded to a model of the theory of the reals with
exponentiation.

If we drop the condition that k be archimedean, we can still prove that there is no
isomorphism (K, +,0,<) ~ (K>° - 1,<) which induces a similar isomorphism on
k (Theorem 12).

Theorem 1 shows that the construction of models of real exponentiation as
unions over chains of power series fields is the best possible among all that involve
power series fields. However, there is an “instant” construction producing models
of real exponentiation which are almost power series fields. If & is a regular un-
countable cardinal and the group G is suitably chosen, then the s-restricted power
series field K = k((G))x (which consists of all power series whose support has car-
dinality < ) will admit an exponential, by which we mean just an isomorphism

~(K,+,0,<) >~ (K>9,.,1,<). (G-has to be an exponential group, cf. [KS1], and

a k-restricted Hahn product). If G satisfies an additional condition (strong expo-
nential group, cf. [K-K1]), then k((G)).~ admits an exponential with which it is a
model of real exponentiation. We will consider this and related constructions in a
subsequent paper. In Remark 16 below, we will describe how to obtain «-restricted
power series fields with exponentials as unions over chains of length «.

In Section 2 of this paper, we will recall some notions and summarize some
results from the papers [KS1] and [K-K1]. Then we define a logarithmic cross-
section of an ordered field (K, <) with natural valuation v and value group G = vK
to be an embedding h of GG into an additive group complement of the valuation
ring. Every exponential induces a logarithmic cross-section which is surjective (i.e.,
h(G) is an additive group complement to the valuation ring). A logarithmic cross-
section will be called strong if it satisfies vh(g) > ¢ for all ¢ € G, ¢ < 0. Suppose

that/an exponential field|( K, f) is{a model of restricted real exponentiation, that

is, (K, fljo,17) has the same elementdry properties as (R, exp |jo,1])- ‘tf—he-d Theorem 5
states that/ (K, f) is a model of real exponentiation if and only if f induces a
strong logarfithmic cross-section. From this, one obtains Corollary 7 which says
that a model of restricted real exponentiation can be turned into a model of real
exponentiation if and only if it admits a strong logarithmic cross-section which
is surjective. We show that, for a large class of groups G, the power series field
R((G)) admits a strong logarithmic cross-section.

Qrees



EXPONENTIATION IN POWER SERIES FIELDS 3

On the other hand, we prove Theorem 1 by showing that the power series
field k((G) does not admit any surjective logarithmic cross-section, and hence no
exponential. The key to this result is the fact that every group complement of
the valuation ring in k((G)) is a lexicographic product of ordered abelian groups.
Let us recall the definition of lexicographic products. Let I' and A,, v € T' be
totally ordered sets. For every v € ', we fix a distinguished element 0 € A, . The
support of (8,),er € [T er Ay is the set of all y € I for which é, # 0. We denote
it by support(a). As a set, we define H.cr A, to be the set of all (6,),er with
well ordered support. The lexicographic order on Hcr A, is defined as follows.
Given a = (&)yer and b = (&,)yer € Hoer A, observe that supp(a) U supp(d) is
wellordered. Let o be the least of all elements v € supp(a) U supp(b) for which
b, # 6, . Weset a <b:& 6,y <&, . Then (H,er A, <) is a totally ordered set,
the lexicographic product (or Hahn product) of the ordered sets A, . If all
A, are totally ordered abelian groups, then we can take the distinguished elements
0 to be the neutral elements of the groups A, . Defining addition on H.,er A,
componentwise, we obtain a totally ordered abelian group (H.cr A, +,0 <).

In Section 3, we prove the following

Theorem 2 Let I' and A, v € T be totally ordered sets without greatest element,
and fix an element 0 in every A, . Suppose that 1" is a cofinal subset of I' and
that : 1" — H.,er A, is an order preserving embedding. Then the image (I is not
convezr in H er A, .

If we drop the condition that I' has no greatest element, the situation changes
drastically. Suitably chosen ordered sets I', A., will even admit an isomorphism
I ~ H, cr A,. We will study this situation and related questions in a subsequent
paper [K-K-S].

In Section 3, we shall also apply Theorem 2 to show the nonexistence of surjec-
tive logarithmic cross-sections on the power series field k£((G)). A non-surjective
logarithmic cross-section on R((G)), in combination with the logarithm defined
on the valuation ring R[[G]] by the logarithmic power series, only gives rise to a
non-surjective logarithm, defined on all positive elements of R((G)). By. taking
the union over a suitable countable ascending chain of such power series fields, we
obtain a surjective logarithm. This is done in Section 4. For the case of models of
the theory Thn(exp) of the reals with exponential function and restricted analytic
functions, we will prove:

Theorem 3 Fuvery model (K, f) of Tan(exp) can be elementarily embedded in a
model (K, , f.) of Tan(exp) which is a countable union of power series fields.

In a subsequent paper [K-K2], we will consider the exponential rank of an ex-
ponential field. It is defined to be the order type of the ordered set of all valuations
coarser than the natural valuation whose residue fields carry an induced exponen-
tial. Our construction given in Section 4 below will be used in [K-K2] to show
the existence of exponential fields with arbitrary given exponential rank. Cf. also
Remark 16 in Section 4.
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2 Preliminaries on left logarithms

Let G be a totally ordered abelian group. Recall that the set of archimedean classes
of all nonzero elements of G is endowed with a total ordering given by the rule that
[a] < [8] if |a| > |b|. The chain thus obtained is the rank of G. The natural
valuation vg on G is the surjective map which associates to every element a # 0
its archimedean class [a]. Thus, the rank of G will be denoted by vgG. Similarly,
given a totally ordered field K, we consider the natural valuation v on its additive
group (K,+,0,<). In this case, the rank carries an extra structure: it forms a
totally ordered abelian group G (denoted by vK) if endowed with the addition
[a] + [8] := [ab]. The natural valuation is now a field valuation, with value group
G. The valuation ring R = {a € K | va > 0} is the convex hull of Q in K. The
valuation ideal I = {a € K | va > 0} consists of all elements whose absolute
value is smaller than all positive rationals. Such elements are called infinitesimals.
Their inverses, i.e. the elements a € K of value va < 0, are those whose absolute
value is bigger than all rationals. Such elements are called infinite.

Like field valuations, also group valuations satisfy the triangle inequality and
the law vg(—g) = vgg. For more information on natural valuations, see [KS1].
Here, let us mention only the following fact. If g;,9, € G<® = {g € G | g < 0},
then vgg: < vggs says that |gi| > |g2|, hence it implies that ¢, < g2 . Analogously,
the natural valuation v of an ordered field K acts on its negative elements. This
yields

a,be K°° Aa>b = va<wb. (2)

For an arbitrary valued field (K, v), its value group will be denoted by vK and
its residue field will be denoted by Kv or by K. In this paper, K will always be
a real closed field with natural valuation v, valuation ring R and value group G.
The natural valuation of G will be denoted by vg. Further, #”° := {a € K |
va = 0 A a > 0} denotes the set of positive units in K. It is a convex subgroup
of (K>°,-,1,<). Recall that we have the following representations for (K, +,0, <)
and (K>°,-,1,<) (see [KS1], Lemma 3.4 and Theorem 3.8). The former admits a
representation as a lexicographic product

(K,+,0,<) ~ AIl (R, +,0,<) " (3)

where A is an arbitrary group complement of R in (K,+). Endowed with the
restriction of the ordering, it is unique up to isomorphism. The archimedean com-
ponents of A are all isomorphic to the ordered additive group of K, and its rank
is the ordered set G<°.

An analogous representation of (K>°,-,1, <) can be given:
(K% -,1,<)~BIO U, 1,<) (4)

where B is an arbitrary group complement of &4>° in (K,-). Endowed with the
restriction of the ordering, it is again unique up to isomorphism. Moreover, there
is something special about B: In view of (2) and the fact that v(—a) = va, the
map

(K>°,,1,<) — (G,+,0,<), a — —va =va" (5)
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is a surjective group homomorphism preserving <, with kernel 4>°. We find that
every complement B is isomorphic to (G, +,0, <) through the map ~v.

Every isomorphism (K, +,0,<) =~ (K>°,-,1, <) of ordered groups gives rise to
an isomorphism

[ (K, +,0,<) = (K>°-,1,<), (6)

which also satisfies f(R) = U>% and f(I) = 1+ (cf. [KS1]). Such an isomorphism f
will be called an exponential on K. The inverse of an exponential is a logarithm.
We see that f decomposes into an isomorphism

fR: (R7+,07<) - (u>07" 1’<)
of ordered groups, on the one hand, and an isomorphism
fLZ A—- B

of ordered groups, on the other hand. Such an isomorphism fg is called a right

exponential, whereas an isomorphism fg is a left exponential. Conversely, in

view of (3) and (4), a right and a left exponential can be put together to obtain

an exponential of K. (The indices “L” and “R” refer to the left hand summand

resp. the right hand summand of the lexicographic products (3) and (4)). The

inverse f;! of a left exponential will be called a (surjective) left logarithm.
Through the isomorphism —v, every isomorphism

h: (G,+,0,<) — A

gives rise to a surjective left logarithm h o —v. Conversely, given a surjective left
logarithm f; !, the map fi' o (—v)~! is such an isomorphism k. That is, there is
a one to one correspondence between surjective left logarithms and isomorphisms
of G onto A.

Since we are interested in models of real exponentiation, the constructed expo-
nentials have to satisfy certain conditions. We employ a theorem of J.-P. Ressayre
[RE], which can be stated as follows:

Theorem 4 (J.-P. Ressayre)
Let (K, <) be a real closed ordered field and let f : (K,+,0,<) ~ (K>°,-1,<).
If (K, f) is a model of restricted real exponentiation and if f satisfies the axiom
scheme

rT>n

2 = f(z)> 2" (n € N), (7)

then (K, f) is a model of real exponentiation.

This result still holds if one adds restricted analytic functions to (K, f) and (R, exp),
cf. [DR-MI-MK1], (4.10).

Because of the condition “z > n?”, axiom scheme (7) is void for infinitesimals.
That is, it gives information only in the case of vx < 0. It holds in the case vz =0
if the exponential f induced by f on K satisfies (7) in the place of f (e.g. if f is
the usual exp on K = R), the proof is simple, see e.g. [K-K1], Lemma 2.10.
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Now we have to consider the case of vz < 0. In this case, “z > n?” holds
for all n € N if only z is positive. Restricted to K \ R, axiom scheme (7) is thus
equivalent to the assertion

ve<0Az>0 = VneN: f(z)>2". (8)

But “Vn € N : f(z) > &™” means that f(z) is infinitely bigger than z in the
ordered multiplicative group (K>°,-,1,<). Through the isomorphism f~', this is
equivalent to z being infinitely bigger than f~!(z) in (K, +,0 <), or in other words,
vf~!(z) > vz. Hence, (8) is equivalent to

v <0Az>0 = vf'(z)>vzx. (9)

(Observe that the condition “vz < 0 A = > 0” implies that f~!(z) exists and that
vf~(z) <0.)

Now every x € K>° can be written as z = b- ¢ where b € B and ¢ € 4>, and
ve = vb. Then vf~(z) = v(f~1(b) + f~(c)) = vf~(b) since ¢ € U>° implies that
vf~(c) >0 > vf(b). So (9) holds if and only if it holds for f;, in the place of f.

Hence, (9) is equivalent to

t€BAz>0 = vfi'(z)>vz. (10)

With ¢ = vz and the isomorphism A = fi' o (—v)™ : G — A, and in view

of (=v)'(vz) = 27! and vf7'(z7!) = v(—f;'(z)) = vf;'(x), condition (10)
translates to
vh(g) > g forallge G<°. (11)

In view of Ressayre’s Theorem, we have proved the following:

Theorem 5 Let f be an exponential on (K,<) such that (K, f) is a model of
restricted real exrponentiation. Then (K, f) is a model of real exponentiation if and

only if (10) holds, or equivalently, if and only if (11) holds.

Here again, the result still holds if one adds restricted analytic functions.

Remark 6 The following holds:

If on a nonarchimedean ordered field (K, <), an isomorphism (6) satisfies f(a) > a
for all infinite elements a € K>°, then it satisfies f(a) > a™ for all infinite elements
a € K>° and all n € N.

Indeed, f(a) > a implies vf(a) < va. Suppose that vf(a) = va for some infinite
a € K (recall that va < 0). By assumption, f(a/2) > a/2, which yields that
vf(a/2) < v(a/2). But then, va = vf(a) = vf(a/2)? = 2vf(a/2) < 2v(a/2) =
2va < va, a contradiction. Hence, vf(a) < va and thus f(a) > a™ for all infinite
elements a € K>° and all n € N.

In view of the above theorem, it is natural to ask for the existence of isomor-
phisms h satisfying equation (11). Not every real closed field will admit such an
isomorphism. For instance, if G is a countable divisible ordered agelian group, then
the real closed power series field R((G)) does not admit such an isomorphism, since
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every additive group complement to the valuation ring is uncountable (having R
as its components, cf. the next section).

So, we will rather start by asking for an embedding h of the value group G into
an additive complement to the valuation ring. Such an embedding will be called a
logarithmic cross-section. If in addition it satisfies condition (11), then we call
it a strong logarithmic cross-section. Every logarithmic cross-section h gives
rise to a not necessarily surjective left logarithm f;' = h o —v, and vice versa.
Then h is surjective if and only if f;' is. Following the terminoloy introduced
in [K-K1], a left logarithm f;' (respectively, left exponential f1) satisfying (10)
will be called a strong left logarithm (respectively, strong left exponential).
Hence, h is strong if and only if f7* is.

If a real closed field K admits a surjective strong logarithmic cross-section,
then it admits a strong left exponential fr. If it also admits some exponential
with which it is a model of restricted real exponentiation, then we let fr be the
right part of this exponential. Note that fljo1] = (fr)|jo,1) for every exponential f
since [0,1] C R. So we can put f, and fr together to obtain an exponential f such
that (K, f) is a model of restricted real exponentiation. By Theorem 5, (K, f) is
then a model of real exponentiation. We have proved:

Corollary 7 If an exponential field is a model of restricted real exponentiation and
admits a surjective strong logarithmic cross-section, then it admits an exponential
with which it is a model of real exponentiation.

Now recall that every embedding (resp. isomorphism) of ordered abelian groups
induces canonically an embedding (resp. isomorphism) of their ranks as ordered sets
(c.f. [KS1)). In particular, such an embedding h induces an embedding /& such that
the following diagram commutes, i.e. b is a lifting of & :

h
A G
v (el
G<0 h ’Uc;G

and we have

Lemma 8 For every g € G<°,

h(vgg) > g <= vh(g)>g.
That is, h is a strong logarithmic cross-section if and only if

h(vag) > g forall g€ G<°. (12)

If  is an isomorphism, then so is f (in this case, it is just the inverse of a
“group exponential” as defined in [KS1]).
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Note that every ordered abelian group admits an embedding s : vgG — G<°
of ordered sets such that vg o s is the identity on vgG (for a € vsG, we just have
to set sa = g where ¢ € G<° is an arbitrary element of value vgg = a). We will
call such a map a group cross-section of the valued group (G,vg). It can be
used to get

Lemma 9 Let G be any ordered abelian group such that voG admits an automor-
phism ( satisfying (o > « for all a € vgG. Then for every group cross-section s
of G, the embedding h := so(: vgG — G<° will satisfy condition (12).

Indeed, vgiz(vcg) = (vgg > vgg and thus a fortiori ﬁ(v(;g) > g if g € G<°.
Note that there are plenty of groups satisfying the hypothesis of the lemma. For
instance, this is the case if vgG is isomorphic to an arbitrary nontrivial ordered
abelian group, as an ordered set.

Now the question arises whether an embedding (resp. isomorphism) h can be
lifted to an embedding (resp. isomorphism) h. (Cf. the related notion of “lifting
property” as used in [K-K1].) Such a lifting always exists if A is rich enough, i.e.
if it is a Hahn product. This in turn is the case if the field K is a suitable power
series field.

Let & be an archimedean ordered real closed field. If G is an arbitrary ordered
abelian group, then the power series field K := k((G)) is a formally real field, and
it is real closed if and only if G is divisible (which we shall always assume here).
Further, K carries a canonical valuation v which associates to every formal power
series the minimum of its support. It also carries a natural ordering < such that
v is the natural valuation of the ordered field (K, <). The residue field of (K,v)
is k, and its value group is G. The valuation ring R of (K,v) is the power series
ring k[[G]] which consists of all formal power series whose support is a subset of
G2°={g9€G|g=0}.

Here, we can take the additive group complement A of the valuation ring R to
be the ordered ring k((G<°)) := {a € k((G)) | support(a) C G<°}. As an ordered
abelian group, it is canonically isomorphic to Hg<o(k, +,0). For the case of k = R,
we can show:

Theorem 10 Assume that the rank vgG of the ordered abelian group G admits an
automorphism ( satisfying Ca > a for all a € vgG. Then the power series field
R((G)) admits a strong logarithmic cross-section.

Proof:  According to Lemma 9, we can choose an embedding h: veG — G<°
which satisfies condition (12). Note that A is archimedean-complete (that is, it is
maximal and all its components are R). Hence by Hahn’s embedding theorem, the
embedding h of vgG into G<® = vA lifts to an embedding % of G into A. Moreover,
since h(vgg) > g, Lemma 8 shows that vh(g) > ¢ for all g € G<°, as required. O

Remark 11 More generally, the power series field £((G)) admits a logarithmic
cross-section if and only if G is divisible and every archimedean component of G
embeds in the ordered additive group of k.

In the next section we will show that the logarithmic cross-sections of k((G))
cannot be surjective, that is, they give rise only to non-surjective logarithms.
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3 Lexicographic products and logarithmic cross-
sections

In this section, we wish to prove and apply Theorem 2.

Proof of Theorem 2: Let us assume that I" and A,, v € T are totally ordered
sets, and let us fix an element 0 in every A, . Let us further assume that no A, has
a greatest element, so that we can choose maps 7,: A, — A, such that 7,6 > §
for all 6 € A,. For every well ordered set S C T and every d = (d,) er € H er A,
we set

d, if~v¢S8

d@ S = (d))yer whered, ;:{ rd, fyES.

Observe that the support of d @ S is contained in support(d) U S and thus, it is
again well ordered. Further, if 5,5’ C T are well ordered sets (or empty), then

SCS > daS<da s . (13)

Now suppose that I' has no greatest element, IV is a cofinal subset of I' and
uI" > H,er A, is an order preserving embedding such that the image (I" is
convex in H,er A,,. We wish to deduce a contradiction.

By induction on n € N, we define elements 7((,") € I". We choose an arbitrary
’)’(()1) € I". Having already constructed ’y((,n), we carry through the following induction
step. Since I' has no greatest element, the same holds for I", and there is some
o™ € T" such that 7((,") < o™, Hence, L'y(()") < ™, Let B™ € T be the least

element, of support(ey{™ ) U support(ta™) for which

(L’y(gn))ﬁ(n) < (La(n))ﬁ(n) .

Since I' has no greatest element and I" is a cofinal subset, we can choose 73”“) el”
such that g < 4§~

Let us observe the following fact. If § C I' is a well ordered set with least
element 4"V, then

M < A B S < 1™ (14)

Indeed, (4" @ S = (47(()n))g for every 8 < 7", In particular, since 8™ <

n+1
o,

(38" @ )t = (98 pm < (1™ ) gy

which implies the second inequality of (14). The first inequality of (14) follows
from (13).

The image of I'" in H,er A, being convex, (14) yields that also :3{™ & S lies in
this image. Thus, :~1(:7{™ @ ) is a well defined element of I".

Suppose now that for some ordinal number p > 1 we have chosen elements

™ eI, v < p, n €N, such that for every fixed n, the sequence (y("),., is

strictly increasing. Then we set

A=l o (Y |y < pd) e T
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for every n € N. If A < p, then {y{"V | v < A} G {+{"V) | v < u} and thus,
7§n) < 4" by (13). We see that for every ordinal number u, the sequences (7{™),<,,

m
can be extended. Thus, we obtain strictly increasing sequences of arbitrary length.
This is a contradiction since their length is bounded by the cardinality of I". This

contradiction completes the proof of Theorem 2. a

Now we wish to apply Theorem 2 to logarithmic cross-sections of (K, <). Sup-
pose that w is a coarsening of v, that is, its valuation ring R, contains the
valuation ring R of v (we do not exclude equality) and its value group G = wK is
the quotient of G by a convex subgroup. We set 4% := {a € K | wa =0 A a > 0}.
Then (K>°,-,1,<)/U2° ~ G as ordered groups. This isomorphism is induced by the
map —w which has convex kernel 2>°. Note that every group complement of 2°
with its induced order is isomorphic to the ordered group (K>°,-,1,<)/U2° and
thus to G. If f is an exponential on K then we will say that f is compatible with
wif f(Ry) =U° and f(I,) = 1+ 1, . Such an exponential induces an exponential
fw: (Kw,+,0,<) = (Ry/IL,,+,0,<) — U°/1 + 1,,-,1,<) = (Kw>°,-,1,<)
on the residue field Kw. It also induces an (order preserving) isomorphism of any
given group complement of R, onto a group complement of ¢>° and thus also an
isomorphism onto G.

Now assume that K = k((G)) is a power series field (k not necessarily archime-
dean) and that w is its canonical valuation. Then w is henselian (cf. [RI] or [KF4]).
Consequently, w is compatible with every order on K (cf. [KN-WR]). It follows
that w is a coarsening of v. We will say that f is a compatible exponential of
k((G)) if f is an exponential which is compatible with w.

In the power series field K = k((G)), one of the complements for the valuation
ring R, = k[[G]] is the power series ring k((G<°)). As an ordered group, it is
isomorphic to the Hahn product Hg<o(k,+,0,<). Consequently, a compatible
exponential of K would induce an isomorphism between Hg<o(k, +,0,<) and G.
This in turn would give rise to an embedding of G<° in Hg<o (&, +, 0, <) with convex
image. By virtue of Theorem 2, this is impossible. So we have proved:

Theorem 12 Let k be an ordered field and G # 0 an ordered abelian group. Let
< be any order on the power series field K = k((G)). Then (K, <) does not admit
any compatible exponential. )

If k is archimedean ordered, then w coincides with the natural valuation v. In
this situation, every exponential is compatible already by its definition, cf. Sec-
tion 2. There we have also mentioned that every isomorphism (K,+,0,<) ~
(K>°,-,1,<) gives rise to an exponential. Consequently, Theorem 1 follows from
Theorem 12. In other words,

Corollary 13 If k is an archimedean ordered field and G a nontrivial ordered
abelian group, then k((G)) admits no surjective logarithmic cross-section.

A little additional argument may show that the attempt to construct an ex-
ponential power series field fails “by far”. For our attempt to construct an expo-
nential power series field k((G)) over an archimedean field k, we would certainly
choose a group G which is a Hahn product of the form Hr(k,+,0,<) with T
having no greatest element (otherwise, we could not expect it to be isomorphic to



EXPONENTIATION IN POWER SERIES FIELDS 11

H<o(k,+,0,<)). In this case, every logarithmic cross-section h yields an embed-
ding of the rank T of G = Hr(k,+,0, <) in the rank G<° of Hg<o(k, +,0, <). By
Theorem 2, no final segment I of I' can have a convex image under this embedding.
This means: every interval (a,0) in G contains an element (8 such that va # 3 for
every a € h(G). In other words: there are infinite elements arbitrarily near to 0
whose archimedean classes are disjoint from h(G). In this sense, every logarithm
on k((G)) is highly non-surjective.

The foregoing argument in fact shows that the group G does not admit a sur-
jective group cross-section. That is, it is not an exponential group in the sense of
[KS1] and can thus not be the natural value group of an exponential field. Further
consequences of Theorem 2 for exponential groups will be stated in [KS2].

Remark 14 I. Kaplansky [KA] has shown that a valued field is maximal (i.e.,
admits no proper immediate extensions) if and only if every pseudo Cauchy se-
quence admits a limit. The same principle was proved by 1. Fleischer [F] for valued
abelian groups. In [KF4], it is proved for certain classes of valued modules. At the
first glimpse one might believe that this principle holds for all (reasonable) valued
structures. But the nonarchimedean exponential fields with their natural valuation
constitute a counterexample to this principle. This is seen as follows.

There are maximal naturally valued exponential fields (i.e., they do not admit
proper immediate extensions to which also the exponential extends). In fact, it can
be shown that these are precisely the exponential fields whose natural valuation v
is complete: On the one hand, it was remarked in [KS1] that if (L,v) D (K,v) is
immediate and the exponential extends from K to L, then (K, v) is dense in (L, v).
On the other hand, if (K, v) is dense in (L, v), then an exponential of K extends to
L by continuity. Hence, the completion of a nonarchimedean exponential field with
respect to its natural valuation is the maximal immediate extension as a naturally
valued exponential field. But by our nonexistence result, it cannot be a power series
field. On the other hand, Kaplansky has also shown in [KA] that a valued field
(K, w) of residue characteristic 0 is a power series field with canonical valuation w
if and only if every pseudo Cauchy sequence admits a limit. (Note that the natural
valuation has residue characteristic 0 since the residue field is ordered.) Hence,
every maximal naturally valued exponential field admits pseudo Cauchy sequences
without a limit, or in other words, it is not maximal as a valued field.

Another counterexample is given by contraction groups with their natural val-
uation. (Contraction groups are the natural value groups of exponential fields with
a peculiar map induced by the exponential - for their definition, see [K-K1]. They
have been studied in detail in [KF1] and [KF2].) Here, the situation is even more
rigid. Every such group is maximal as a naturally valued contraction group. But
by an application of Theorem 2, it can be shown that naturally valued contraction
groups cannot be Hahn products. By virtue of Hahn’s Embedding Theorem and
Fleischer’s result it follows that they must admit pseudo Cauchy sequences without

a limit. For details, see [KS2] or [KF3].

For the conclusion of this section, we wish to generalize Theorem 12 a bit
further. First, we observe that under the hypothesis of Theorem 12 one can prove
that there is not even an exponential which is compatible with some nontrivial
coarsening of w. To see this, we use Kaplansky’s results mentioned in the foregoing
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remark. Since K is assumed to be a power series field with canonical valuation w,
it follows that (K, w) is maximal (as a valued field). If w' is a coarsening of w,
then also (K, w’) is maximal (cf. [RI], or [KF4]). Since w has residue characteristic
0, the same holds for w'. Hence K can also be written as a power series with
canonical valuation w’, and from Theorem 12 it follows that no exponential can be
compatible with w’, provided that w’ is nontrivial.

We have seen that we can actually talk about maximal valuations instead of
power series fields. This leads to the following reformulation of Theorem 12: If the
ordered field K admits an exponential f, then there is no nontrivial coarsening of
its natural valuation v which is marimal and with which f is compatible.

We prove the following generalization:

Theorem 15 Let f be an exponential on the ordered field K and w a coarsening
of the natural valuation v of K such that f is compatible with w. Then there is no
coarsening W of w such that the valuation W = w/w induced by w on the residue
field K is nontrivial and (Ko, ®) is mazimal.

Proof: Suppose to the contrary that there is a coarsening w of w such that
W = w/W is nontrivial and (Kw,®W) is maximal. Since @ is a coarsening of w, we
have that R, C Rg. Let A be a group complement of R, in R; and A a group
complement of Ry in (K, +,0,<). Then the lexicographic product AIIA is an
group complement to R, in (K,+,0,<). Further, f induces an isomorphism A
from ¢ = wK onto A Il A as ordered groups.

By general valuation theory, the value group of W is isomorphic to a nontriv-
ial convex subgroup G of G. Since (Kw,w) is maximal, it is isomorphic to the
power series field Kw((G)) since Kw = (K®)w/® is the residue field of (K, ®).

Consequently, A is isomorphic to a Hahn product Ha<o(Kw,+,0,<). Hence,

we obtain an embedding of the nontrivial convex subgroup H := G NhAHA) of
g in H§<0(Kw, +,0,<). Under this embedding, the image of H<° is convex in

H§<0(Kw, +,0,<). But H<° is a final segment of G<°. We have obtained a con-
tradiction to Theorem 2, which proves our theorem. a

4 Going to the limit

Using the above Theorem 10, we shall now construct nonarchimedean models of
real exponentiation which are countable unions of power series fields. Indeed, a
common method to obtain surjectivity of a map is to construct the union over a
suitable countably infinite chain of fields. In the following, we will apply such a
construction to strong logarithmic cross-sections.

¢ Construction of the left exponential.

To get started, let G be as in Theorem 10. Set Go := and Ky = R((Gy)). Let Ag
be a group complement of R[[Go)] in Ko and hg : Go — Ay a strong logarithmic
cross-section of Ky. Now assume that we have already constructed G,_;, K,_1,
A, _, and the strong logarithmic cross-section

h’n‘l: Gn—l - An—l
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i.e. satisfying that
vha_1(g) > g forallge G2 . (15)

Since G,,_1 is isomorphic to a subgroup of A,_; through h,_;, we can take G, to
be a group containing G,_; as a subgroup and admitting an isomorphism A, onto
A,_; which extends h,_; . We set K, := R((G,)). Hence, K,,_; C K, canonically
(the elements of K,_; being those elements of K, whose support is a subset of
Gn-1). Further, we choose a group complement A, for the valuation ring R[[G.]]
such that A, contains A,_;. In this way, h, appears as an embedding of G, into
A,, which extends h,_;. We show that h, is again a strong logarithmic cross-
section. For ¢ € G, , the image h,(g) lies in A,_1, and vhy(g) lies in its value
set GS9,. Consequently, in (15) we may replace g € G52, by vh,(g) for g € G°.
But vh,_1(vha(g)) > vh,(g) implies hn_1(vha(g)) > ha(g), because h,(g) <0 and
hn—1(vhn(g)) < 0. Since h, extends h,_; , this may be read as hn(vhn(g)) > hn(9)-
Since h,, is order preserving, this in turn implies vh,(g) > ¢. Thus, we have proved
that (15) holds with n in the place of n — 1.

By our induction on n, we obtain a chain of fields K, , n € N. Now we take
K, := Upen K and kg, := Upen hn. Also the groups G, form a chain, and their
union G, := Unen Gn is the value group of K, . Similarly, the group complements
A, form a chain, and their union A, := U,enAn is a group complement for the
valuation ring R[[G ]} in K, . By construction, we have A,_1 = h,(Gr) for all n.
Consequently, h, : G, — A, is surjective. Moreover, h,, satisfies property (11).
It follows that the surJectlve map fr. := (h,0—v)"!is a left exponential satisfying
condition (10).

e Construction of the right exponential.
Let n € N and a be an element of the valuation ring R[{G,]] of K,,. Then we can
write a = r + ¢ with r € R and ve > 0. We set

o0

6
fR,n( —exp z_' 3

=0

note that the second factor is again an element of R[[G,]]. This definition yields that
(K, , frn) is a model of restricted real exponentiation; this follows from Corollary
(2.11) of [DR-MI-MK1]. Further, frn41 is immediately seen to be an extension
of frn, and since also (Kny1, frRnt1) is a model of restricted real exponentia-
tion, it follows from Wilkie’s theorem on the model completeness of the restricted
exponential function (cf. [W]) that

(](n ’ fR,nl[O,l]) C (I(n+l ’ fR,TL+1|[O,1])

is an elementary extension. Setting fr. := Upen fRn, We obtain that (K., frw)
is the union over an elementary chain and thus is itself a model of restricted real

exponentiation. Moreover, our definition of the fg, yields that fgr, coincides with
exp on the subfield R of K|,

Now we let f, be the exponential on K, which is induced by fr. and fr .
Then f, satisfies (7), and in view of fruljo1] = fuljp,1], We see that (K, , f.) is a
model of restricted real exponentiation. From Theorem 4 we conclude that (K, , f.)
is a model of real exponentiation. This completes our construction.
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Note that for every n € N, the two homomorphisms A, o —v and fg}, induce a
non-surjective logarithm ¢, of the power series field K, . The surjective logarithm
¢, := f7' is equal to the union U,enfn -

Remark 16

1) The smallest groups G satisfying the conditions of Theorem 10 have rank
veG = Z. If we start with such a group, then the constructed exponential field
will have the following property. Let a; be any positive infinite element. Define
by induction an4; = f(@s) for n € N. Then the sequence (ay)nen is cofinal in K.
This property is equivalent to the condition that there is no nontrivial coarsening
of v with which f is compatible. We say that v has exponential rank 1 (with
respect to f). For details, see [K-K2].

2) The above construction can be iterated in order to obtain unions over chains
indexed by an arbitrary limit ordinal k. If A < & is a limit ordinal and we have
constructed G,, K,, A, and h, for every v < A, then we take for G, K and h)
the respective unions in the same manner as before. If A < &, then we replace
K, by R({(G))), which by virtue of Theorem 1 is a proper extension of U,<x K, .
We choose a group complement A, to its valuation ring R[[G]] which contains
Uy<r A, . Thus, k) is a non-surjective logarithmic cross-section of K with image
in A . The induction step for successor ordinals works as before.

If k is a regular cardinal, then the exponential field (K, f.) obtained by this
construction is almost a power series field. In fact, it is the restricted power series
field R((G,))«. Indeed, since « is assumed to be regular and G = U,<x G., every
power series with support of cardinality < & is already an element of R((G,)) = K,
for some v < k. Hence, it lies in Kx = U, <. K, .

3) In our construction, we have worked with non-surjective logarithms on power
series fields R((G)). In [K-K-S] we will show that for every archimedean ordered
field k there are (arbitrarily large) strong exponential groups G such that k((G))
admits a non-surjective exponential. By a union over an infinite ascending chain
of power series fields similar to our above construction, one can obtain surjectivity
of the exponential.

Now let (K, f) be a model of T,u(exp), and set G = vK. By [DR-MI-MK1],
R((G)) is a model of the theory T,y of the reals with restricted analytic functions.
Moreover, there is an embedding of K in R((G)) which respects the restricted
analytic functions. Now the left logarithm of K induces canonically a strong loga-
rithmic cross-section hg on Ko = R((G)). We continue the construction as above.
The so obtained exponential f, on K, extends f. By [DR-MI-MK1], the embed-
ding of (K, f) in (K, , f.) is elementary. This proves Theorem 3. (In the same
way, one can use the fields (K, f) described in the foregoing remark.)
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