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Explicit construction of exponential-logarithmic
power series *

— preliminary version —

Franz-Viktor and Salma Kuhlmann

12. 1. 1997

In this note, we give an explicit construction of nonarchimedean models of real ex-
ponentiation which are contained in power series fields. In contrast to the construction
given by van den Dries, Macintyre and Marker in [D-M-M2], our construction uses only
one limit process.

Recent developments in the model theory of exponential fields have shown that in
certain respects, the logarithm plays a more basic role than the exponential. And in
fact, every power series field R((G)) carries a non-surjective logarithm (which cannot be
surjective, as is shown in [K-K-S}). In [D-M-M2], a first limit process is employed to
obtain a field with non-surjective exponential, and then a second (inverse) limit process
renders the exponential surjective. Reversing the approach, we start with a non-surjective
logarithm on a power series field and get it surjective by taking the union over an ascending
chain of power series fields.

Apart from being simpler, our approach facilitates computations in the constructed
models. Moreover, it exhibits the relation between order automorphisms of the value
groups and the growth rates of the constructed exponentials. In particular, our construc-
tion can be used to provide models of arbitrary exponential rank, in the sense of [K-K1].
It also allows to obtain on one and the same real closed field K several exponentials of
distinct exponential ranks, all of them making K into a model of real exponentiation.
This contrasts the fact that the order and hence also the rank of a real closed field is
uniquely determined.

A special case of our construction provides a model with similar propertles as the
model R((¢))*F constructed in [D-M-M2]. We denote this model by R((t))FL. (We do
not know whether both models are isomorphic, but this does not seem unlikely.) We show
how to obtain truncation closed embeddings in R((¢))EL of the Hardy fields considered in
[D-M-M2]. We also show how to endow R((¢))EL with derivations.

*This paper was written while the second author was supported by the Deutsche Forschungsgemein-
schaft.



1 Construction of a basic logarithm

We will first construct the exponential-logarithmic power series together with a “basic
logarithm” which is an isomorphism from the positive multiplicative group onto the ad-
ditive group. Its inverse will satisfy all necessary axioms in order to obtain a model of
real exponentiation, except for the growth axiom which we will cite in the next section.
We will then modify the basic logarithm in order to obtain also the right growth.

Let T' be any totally ordered set. Then RT will denote the Hahn product with index
set I' and components R, that is, all maps from I to R with well-ordered support. R is
an ordered abelian group. For every v € I', we will denote by 1, the map which sends
v to 1 and every other element to 0. (1, is the characteristic function of the singleton
{a}.) Note that the map [ 3 v — —1, € RY is an order preserving embedding of I' in
(RN ={geR"|g<0}.

For g € R, we have that r, := g(y) € R for every vy € T. Instead of viewing g as a
map, let us work with the more suggestive expression g = 3, ¢ ry1,; although this sum
may be infinite, it has a canonical interpretation in the Hahn product RF.

For G an ordered abelian group, R((G)) will denote the {generalized) power series
field with coefficients in R and exponents in G. As an ordered abelian group, this is
just R®. When we work in R((G)), we will write 9 instead of 1,. Hence, every element
of R({(G)) can be written in the form ¥ cq 7yt with r, € G and well-ordered support
{g € G| ry # 0}. (In [D-M-M2], the notation R((¢%)) is used instead of R((G)).)

In [D-M-M1], a canonical way is described of how to make R((G)) into a model of the
theory of the reals with restricted analytic functions (via defining the functions on R{[G]]
by using their Taylor expansions.) In this way, one in particular obtains the function
log sending the 1-units (the elements of the form 1 + ¢ where ¢ is an infinitesimal, i.e.,
ve > 0) onto the additive subgroup of all infinitesimals. For positive units u € R[[G]],
we write @ = (1 + ¢)r with ve > 0 and 0 < r € R. Then log is extended by setting
logu = log(1 + €) + logr, where logr is the natural logarithm of r in R. We obtain a
monomorphism log from the units of R[[G]] onto R{{G]]. The restriction of log™" to [-1,1]
coincides with the restricted analytic function on R((G)) corresponding to the natural exp
of the reals.

Let G = RI. Then R((G)) carries a basic non—surjectwe logarithm, which we denote
by log, and define as follows. Take a € R((G)) positive and write a = ut? with u € R[[G]]
a unit and g € G. Then for any homomorphism log from the positive multiplicative to
the additive group, we must have that "

log a = log(ut?) = logu + log t? .

For every logarithm log that we will introduce, we define logu as discussed above. It
remains to give appropriate definitions for logt9. We will do this first for our basic
logarithm log, . We choose it such that it leaves the elements ¢ ™!~ fixed:

logyt™ =t717, (1)

For every appropriate logarithm log, we want to have that logt™ = rlogt? for every
r € R and g € G, and that log is sort of “ultrametrically continuous”. This leads to the
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following definition:

ifg=)_r,l,, then log,t? := Y gl
fa vel ~vel

ut?! — logu + log, t?

g

§ ~ Ina straightforward way it is checked that
1 &

H

|

is an order preserving monomorphism from the positive multiplicative group to the addi-
tive group. However, it is obviously not surjective: if g € G<° is not of the form g = —1.,,
. then #7 is not in the image of log, . In other words, for g € G<, #¢ is in the image of log,
if and only if g is in the image of the embedding of I in G<° given by v ~ —1, . Hence,
we have to enlarge I' to get every t? into the image. Via the embedding, we can view T
“as a subset of the totally ordered set G<°. We thereby indentify y with g = —1, € G<°
“and consequently, we can reinterprete (1) as

logyt™'s = t¢ foreveryge c G<°. (2)

e take [ := G<? to be our enlarged index set. The inclusion I' C I induces a canonical
lusion G = R ¢ R" =: G'. We extend the logarithm to the units of R[[G"] by the
" same definition as before. It remains to define log,¢?' for ¢ € RT \ RF. We set

logot™ = t* foreverygeI'=G<°c G'<°. (3)
the same spirit as before we define, for every ¢’ € G:
ifg= > ryly, then log,t* := D> —rgt?. (4)
geG<O geEG<O

Ihis shows that every element of R((G)) with support in G<° is in the image of log,. Since
S0 every element of R[[G]] is already in the image of log, on R((G)), we obtain that
element of R((G)) is in the image of log, on R((G’)). But again, if ¢ € G'<°\ G,
en 9’ is not in the image of log, .

‘We will make log, surjective by taking the union over an ascending chain of power
ies fields. We start our construction with an arbitrary totally ordered set [, and the
ered group Gy := R™ in the place of ' and G. Having constructed I, and G, = R,
. =0, =G°DOrl,and Goy1 =G, = Rf*+' > G, and extend log, as given
by (3) and (4). Finally, we set K := Un>o R((Gn)). Since every element of R((G,)) lies in
R((Gn+1)) ), we find that log, is surjective on K. The restricted analytic structure of
ery R((G,)) carries over to the union. With this structure, K is a model of the theory
e reals with restricted analytic functions.

~ If we define G := Unso Gn , then K C R((G)). In particular, t¢ € K for every g € G.
Bl’ot K is not itself a power series field. In fact, it cannot be, in view of the result of
[K-K-5].
- Finally, let us note that for g,h € G,

g<h<0 = -1, €«h<0. (5)

€ Write g < h < 0ifg < h <0and VYn € N: g < nh.) To see this, assume that
R'€ @, = R™, write h = ¥ cr, 741 and let 7o be minimal with r., # 0. Then h is
chimedean equivalent to -1, ,and g € —1,, < 0. Therefore, g < v in ['n4+; and thus,
RS =1y, <0in Gn41. Hence also -1, €« h <0 in Gpy; .

'.F'
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2 Logarithms with appropriate growth rate

Suppose that we have a map exp on K which is an isomorphism from the additive group
onto the positive multiplicative group of K and whose restriction to [—1, 1] makes K into
a model of restricted real exponentiation. Then by Ressayre’s Theorem, exp makes K
into a model of real exponentiation if and only if it satisfies the axiom

(GA) z>m? = expz > z" (m e N).

In [D-M-M1}, Ressayre’s Theorem is extended as follows: if K is a model of the reals with
restricted analytic functions, if exp |[_;1] coincides with the restricted analytic function
corresponding to the natural exp of the reals, and if exp satisfies (GA), then (K, exp) is
a model of the reals with restricted analytic functions and (unrestricted) exponentiation.
We need the following valuation theoretical interpretation of (GA). Its easy proof is given

in [K-K1].

Lemma 2.1 With the assumptions on ezp as above, aziom (GA) is satisfied if and only
if for all positive infinite z, expz > z™ for all m € N. This in turn is equivalent to

vz<0Az2>0 = vz<vlogz<0. (6)

We have that vt~'s = —1, and vlog,t~1s = vt9 = g. Let go be the smallest element in
the support of g. If g < —1,,, then —1, « —1, < 0 and thus, -1, €K g < 0. If g > -1,
then —1,, < —1, < 0 and thus, ¢ « —1; < 0. This shows that log, does not satisfy
criterion (6).

To remedy this deficiency, we start our construction with a totally ordered set I’y
which admits at least one increasing order automorphism ¢. (By this we mean an order
automorphism o such that oy > v for all ¥ € I.) For the most basic construction, take
['v=7Zand oy:=v+1. . ‘

Every increasing order automorphism o of a totally ordered set I lifts in a canonical
way to an order automorphism '

Z Tyly = Z Tyloy
R ~

of RF. We note that

> ryl, <0 implies that Sl <0 1yl <0,
v v ¥

In particular, the induced automorphism is an increasing order automorphism of (RF)<C.
It extends the automorphism induced by —1, — —1,, on the image of I in (R")<°. Hence
by induction on n, every increasing order automorphism of Iy induces an increasing
order automorphism of I',;; extending the one on I',. We obtain an increasing order
automorphism ¢ of Un0 I'n = Uny0 G5® = (Un0 G»)<® = G<°. Now we define '

log, ¢ := log,t’? . . (7)




Since o is strictly increasing, it follows that —1, < —1,, < 0. Hence,

ifg =Y rl, <0, then ¢ Kog =) relyy <0 (8)
9 9
and ,
if ¢ =) ryl,, then log,t? = > -t 9)
9 9
Let go be the minimal element in the support of ¢’. Then vt? = ¢ is archimedean

comparable to —1,. On the other hand, vlog, t9 = vy, —rgt?? = vt’® = ogo. By
(8), go < ogo < 0. By (5), it follows that ~1,, < ogo < 0, and therefore also vt &
vlog, t < 0. This proves that log, satisfies criterion (6). Hence, exp, := log;! makes K
into a model of real exponentiation with restricted analytic functions. ’

e Construction with I'o = Z

If we start With [p = Z and o(z) = z + 1, then it follows by induction on the I'; that the
sequence oy, k € N, is cofinal in U, ', for every v € U, . This yields that for every
positive infinite element a € K, the sequence logta, k € N, is c01n1t1a1 in the set of positive
infinite elements. This in turn yields that for every positive infinite element a € K, the
sequence exp” a, k € N, is cofinal in K. In other words, (K, exp,) has exponential rank 1,
in the sense of [K-K1]. For later use, we denote this model by R((¢))®* and its exponential
and logarithm simply by exp and log. Let us note that by construction,

vy €Ty = logt™'r = 71+, (10)

e Construction with other Iy

We have shown that every increasing order automorphism of I'o gives rise to a logarithm
with an appropriate growth rate. Essentially different order automorphisms will yield
essentially different growth rates. In fact, the order automorphism o determines the
exponential rank of (K,exp,), cf. [K-K1]. For example, the lexicographic product 'y =
Z x Z has two essentially different increasing order automorphisms: o; : (m,n)
(m+1,n) and 03 : (m,n) — (m,n + 1). While the sequence of(m,n), k € N, is cofinal
in Ty for every (m,n) € I, this is never the case for o2. It turns out that (K,exp,,)
has exponential rank 1, while (K, exp,,) has exponential rank Z. However, both are
models of the reals w1th exponentiation. We conclude: there are real closed fields which
can be models of the reals with exponentiation, for two or more exponentials of distinct
exponential rank. It is not difficult to provide ordered sets [y with any fixed cardinality of
essentially different increasing order automorphisms. So there is no limit on the number
of distinct exponential ranks that can be realized at the same time.

Let us add an even more intriguing observation. Even if we start with I'o = {1}, we can
obtain countably infinitely many exponentials with distinct exponential rank which turn
K into a model of real exponentiation. Indeed, in modification of our above construction,
one can let [', play the role of 'y and construct log, on R((G,)). There, we already have
the index set I, at hand, which admits at least n essentially different increasing order
automorphisms. We leave the details to the reader.

Finally, we note:



Remark 2.2 On the last page of their paper [D-S}], van den Dries and Speisegger mention
that there is a natural way to expand the power series field R((G)), for divisible G, into
a structure for all convergent generalized power series. Since K is just the union over the
ascending chain of power series R((G,)), all G, divisible, this structure carries over to K.

3 Truncation closed embeddings

In [K-K2], we showed that truncation closed embeddings of Hardy fields in logarithmic-
exponential power series are not needed to derive the main results of the paper [D-M-
M2]. Nevertheless, we wish to show in this section how a truncation closed embedding of
H(Ranexp) in (R((¢))FE, exp) can be achieved. More generally, we will show this for all
of its subfields LEx(z), where £ € H(Ran,exp) is positive infinite and F is chosen as in
[K-K2]. See [K-K2] for the notation and the properties of LEx(z).

According to Theorem 4.6 of [K-K2|, we write LEx(z) in the form R(z; | 1 € I)*
with vz;, i € I, rationally independent, and with log™ z, m > 0, among the z;. Now
we choose some v € Iy and send z to t™!7. By Lemma 3.1 a) of [D-M-M2], the image
R(t~17) of R(z) in R((¢))E” is truncation closed. Further, (10) shows that log™ z has to
be sent to =17+, By induction on m and Lemma 3.1 a) of [D-M-M2], it follows that the
image R(t~17+m | m > 0) of R(log™ z | m > 0) in R((¢))®* is truncation closed.

By Lemma 3.1 b) and Lemma 3.3 of [D-M-M2] we know that if L C H(Ran,exp) is
already embedded in R((t))EL with a truncation closed image, then also L*” has trunca-
tion closed image in R((¢))EL. Therefore, it only remains to consider the images for the
remaining z;’s. Recall that our construction given in [K-K2] leaves us some freedom in
the choice of the z;’s. In particular, if z; comes in as exp a, with a in an already con-
structed. rF-closed field L, but expa ¢ L, and if a = a’ + b with vb > 0, then expb € L
and thus, we can replace z; by expa’. Assume that we have already an embedding ¢ of
L in R((t))FL, with truncation closed image (L. Then expta ¢ L. Now ca is a power
series, and we can write ta = a}, + by where vby > 0 and af, is a power series with negative
support. Since +L is truncation closed, aj,bp € tL, and we can write a = o’ 4+ b with
al = wa’, bp = ¢b and vb > 0. By what we said above, we may replace z; by expa’. This
has to be sent to exp aj. Since aj is a power series with negative support, exp ag is of the
form t9, by construction. As before, we conclude that the image (+L)(t? Y of L(z:)™ is
truncation closed. By transfinite induction on the z,’s, one now obtains an embedding of
LEr(z) = R(z; | i € I)*” in R((¢))EF with truncation closed image.

Let us note:

Remark 3.1 As in [D-M-M2], let i(z) denote the compositional inverse of the function
zlog z. Since vz lies in the first field R((Go)) of our ascending chain of power series fields,
so does ¢i(z). This follows from the expression derived for i(z) in the proof of Theorem 4.8
of [D-M-M2], and the fact that already R((Go)) is rFsq-closed and closed under log.



DY rt? = pI Y (11)
9

ver Dt~9 is uniquely determined by D¢, it thus suffices to define Dt? for all
Further, if a,b € K such that a = logb, then Db is uniquely determined by
versely. In view of (4), (3) and (11) it thus suffices to define Dt~1s for all
ut if —1, € Gn41 then g € G, and log t~1s = t% with-og € G,. Hence to
for —1, € Gn41, it suffices to define it for —1, € G, . By induction, we find
fices to define Dt~ for v € [y = Z. In view of (10), it suffices to define Dt~ 17
. v € [p = Z. We pick one, say v, and set Dt~'w = 1. This determines the
n D on K uniquely.
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