Logarithmic Cross-Sections of Real Closed
Fields *

Franz-Viktor and Salma Kuhlmann

14. 11. 1994

Abstract

We introduce the notion of a logarithmic cross-section and show that the
power series field R((G)) admits such, for a large class of groups G. We
discuss necessary and sufficient conditions for the existence of an exponential
power series field. We show that it is equivalent to the existence of a certain
lexicographic ordering, and construct an ordering that is quite close to the
required one. Finally, we show how to use logarithmic cross-sections of power
series fields to define surjective logarithms on countable limits.

1 Introduction

This paper is a continuation of the work developed in the papers [KS] and [K-
K]. However, we shall now concentrate mainly on exponential fields having the
same elementary properties as (R, exp). We shall make intensive use of Ressayre’s
axiomatization of the theory of (R,exp) over that of (R,exp |jo,1j) (the theory of
restricted real exponentiation).

In Section 2, we recall some notions and summarize some results from the
previous papers [KS] and [K-K]. We will define a logarithmic cross-section of an
ordered field (K, <) with natural valuation v and value group G' = vK to be an
embedding % of G into an additive group complement to the valuation ring, and we
will call it strong if it satisfies vh(g) > g for all g € G, g < 0. Suppose that an expo-
nential field (K, f) is a model of restricted real exponentiation, that is, (K, flo,1])
has the same elementary properties as (R, exp|pq)). Then Theorem 2 states that
(K, f) is a model of real exponentiation, that is, it has the same elementary proper-
ties as (R,exp), if and only if f induces a strong logarithmic cross-section. From
this, one obtains Corollary 3 which says that a model of restricted real exponen-
tiation can be turned into a model of real exponentiation if and only if it admits a
strong logarithmic cross-section which is surjective (i.e. h(G) is an additive group
complement to the valuation ring).

*This paper was written while the second author was supported by a research grant from the
university of Heidelberg.



In Section 3, we discuss the problem of constructing a power series field that is
a model of real exponentiation. The search for an exponential power series field is
interesting because it could provide a good notion of “maximal exponential field”,
possibly also giving an idea for a definition of “henselian exponential field”. Moreo-
ver, an exponential power series field would give us the possibility of applying the
strong properties of spherically complete fields in the investigation of exponential
terms.

It follows from earlier work done in [KS] that an exponential power series field
with real coefficients exists if and only if a totally ordered set I' exists such that
for the Hahn product RF, the ordered set (R")<° is isomorphic to I'. We construct
a I’ which is very close to satisfying the required condition (Theorem 7).

We end Section 3 by showing that, for a large class of groups G, the power
series field R((G)) admits a strong logarithmic cross-section. In combination with
the logarithm defined on the valuation ring by the logarithmic power series, it gives
rise to a (non-surjective) logarithm defined on all positive elements of R((G)).

As an application, we shall give in Section 4 a construction of non archimedean
models of real exponentiation. Similar constructions were already given by Dahn
and Goéring, and later modified in [D-M-M2]. Our construction is different in so
far as it exploits the existence of the (non surjective) logarithm at the first step,
and requires only one limit process in order to make the logarithm surjective.

2 Preliminaries on left logarithms

Let G be a totally ordered abelian group. Recall that the set of archimedean
classes of all nonzero elements of GG is endowed with a total ordering given by the
rule that [a] < {[8] if |a| > |b]. The chain thus obtained is the rank of . The
natural valuation vg on G is the surjective map which associates to every element
a # 0 its archimedean class [a]. Thus, the rank of G will be denoted by vgG.
Similarly, given a totally ordered field K, we consider the natural valuation v on
its additive group (K,+,0,<). In this case, the rank carries an extra structure:
it forms a totally ordered abelian group G (denoted by vK) if endowed with the
addition [a] + [b] := [ab]. The natural valuation is now a field valuation, with
value group vK. Throughout this paper, the natural valuations of the appearing
fields will be denoted by v, and the natural valuations of their value groups will be
denoted by vg. Like field valuations, group valuations satisfy v(—g) = v(g) and
the triangle inequality. For more information on natural valuations, see [KS]. Here,
let us mention only the following fact. If g, ,g0 € G<° = {g € G | g < 0}, then
veg1 < Vg2 says that |g1| > |gz|, hence it implies that ¢; < g2 (analogously, the
natural valuation of an ordered field acts on its negative elements). The residue
field of (K, v) will be denoted by K. For the rest of the paper, K will denote a real
closed field with natural valuation v, valuation ring O and value group G. For a
group G, the symbol G<° will denote the totally ordered set of negative elements
of the group. Further, #>° := {a € K | va = 0 A a > 0} denotes the set of
positive units in K. It is a convex subgroup of (K>°,-,1,<). Recall that we have
the following representations for the ordered groups (K, +,0,<) and (K>°,-,1, <)
(see [KS], Lemma 3.4 and Theorem 3.8). The former admits a representation as a



lexicographic product
(K,+,0,<) x AII(O,+,0,<) (1)

where A is an arbitrary group complement of O in (K,+). Endowed with the
restriction of the ordering, it is unique up to isomorphism. The archimedean com-
ponents of A are all isomorphic to the ordered additive group of K, and its rank
is the ordered set G<°.

An analogous representation of (K>°,-,1, <) can be given:
(K>°,-,1,<) = BIO(U°-,1,<) (2)

where B is an arbitrary group complement of %> in (K,-). Endowed with the
restriction of the ordering, it is again unique up to isomorphism. Moreover, there
is something special about B: For a,b € K>°, we have a > b = va < vb. Hence,
the map

(K>°,-,1,<) — (G,+,0,<), a — —va=va"" (3)
is a surjective group homomorphism preserving <, with kernel >0 We find that
every complement B is isomorphic to (G, +,0, <) through the map —v.

Recall that an exponential f on K is an isomorphism of ordered groups
f: (K7+’07 <) — (K>0"’17<) y (4)

s.t. f(©) = U>°. The inverse of an exponential is a logarithm. We see that f
decomposes into an isomorphism f, of the ordered additive group (O, +,0, <) onto
the ordered multiplicative group (4>°, -, 1, <) on the one hand, and an isomorphism

fi:A— B

on the other hand. Such an isomorphism f, is called a right exponential, whereas
an isomorphism f; is a left exponential. Conversely, in view of (1) a right and a
left exponential can be put together to obtain an exponential of K. (The indeces
“1" and “r” refer to the left hand summand resp. the right hand summand of the
lexicographic products (1) and (2) ). The inverse fi* of a left exponential will be
called a (surjective) left logarithm.

Through the isomorphism —v, every isomorphism

h: (G,+,0,<) = A

gives rise to a surjective left logarithm h o —v. Conversely, given a surjective left
logarithm f;!, the map f' o (—v)~! is such an isomorphism h. That is, there is
a one to one correspondence between surjective left logarithms and isomorphisms
of G' onto A.

Since we are interested in models of real exponentiation, the constructed expo-
nentials have to satisfy certain conditions. We employ a theorem of J.-P. Ressayre
[R], which can be stated as follows:

Theorem 1 (J.-P. Ressayre)

Let (K, <) be a real closed ordered field and let f : (K,+,0,<) ~ (K>°,-,1,<).
If (K, f) is a model of restricted real exponentiation and if f satisfies the aziom
scheme

‘ :L'>n2

= fz)>2" (neN), (5)

then (K, f) is a model of real exponentiation.
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This result still holds if one adds restricted analytic functions to (K, f) and (R, exp),
cf. [D-M-M1], (4.10).

Because of the condition “z > n?”, axiom scheme (5) is void for infinitesimals.
That is, it gives information only in the case of vz < 0. It holds in the case vz =0
if the exponential f induced by f on K satisfies (5) in the place of f (e.g. if fis
the usual exp on K = R), the proof is simple, see e.g. [K-K], Lemma 2.10.

Now we have to consider the case of vz < 0. In this case, “c > n?” holds
for all n € N if only z is positive. Restricted to K \ O, axiom scheme (5) is thus
equivalent to the assertion

vx<0Az>0 = VneN: f(z)>z". (6)

But “Vn € N: f(z) > z"” means that f(z) is infinitely bigger than z in the
ordered multiplicative group (K>°,-,1,<). Through the isomorphism f~!, this is
equivalent to  being infinitely bigger than f~!(z) in (K, +,0 <), or in other words,
vf~!(z) > vz. Hence, (6) is equivalent to

v <0Az>0 = vf ' (z)>vz. (7

(Observe that the condition “vz < 0 A > 0” implies that f~'(z) exists and that
vfz) <0.)

Now every & € K>° can be written as z = b- ¢ where b € B and ¢ € #>°, and
ve = vb. Then vf~(z) = v(f~1(b) + f~1(c)) = vf~(b) since ¢ € U>° implies that
vf~(c) 2 0 > vf~1(b). So (7) holds if and only if it holds for f; in the place of f.

Hence, (7) is equivalent to
t€BAzT>0 = vfi'(z)>vzx. (8)

With ¢ = vz and the isomorphism A = f' o (—v)"!: G — A, and in view of
(—v)Y(vz) = 27! and vfi }(z7!) = v(—f7'(z)) = vf(z), condition (8) transla-
tes to

vh(g) >g forallge G<°. (9)

In view of Ressayre’s Theorem, we have proved the following:

Theorem 2 Let f be an exponential on (K, <) such that f satisfies (5) on K,
and such that (K, f) is a model of restricted real exponentiation. Then (K, f) is a
model of real exponentiation if and only if (8) holds, or equivalently, if and only if

(9) holds.

Here again, the result still holds if one adds restricted analytic functions.

Remark The following holds: .

If on a nonarchimedean ordered field (K, <), an isomorphism ({) satisfies f(a) > a
for all infinitely big elements a € K>°, then it satisfies f(a) > a™ for all infinitely
big elements a € K>° and all n € N. ‘

Indeed, f(a) > a implies vf(a) < va. Suppose that vf(a) = va for some infinitely
big ¢ € K (note that va < 0). By assumption, f(a/2) > a/2, which yields that
vf(a/2) < v(a/2). But then, va = vf(a) = vf(a/2)® = 2vf(a/2) < 2v(a/2) =
2va < va, a contradiction. Hence, vf(a) < va and thus f(a) > a™ for all infinitely
big elements a € K”° and all n € N.



In view of the above theorem, it is natural to ask for the existence of isomor-
phisms h satisfying equation (9). Not every real closed field will admit such an
isomorphism. For instance, if G is a countable divisible ordered agelian group,
then the real closed power series field R((G)) does not admit such an isomorphism,
since every additive group complement to the valuation ring is uncountable (having
R as its components, cf. our remarks subsequent to Theorem 6 below).

So, we will rather start by asking for an embedding h of the value group G into
an additive complement to the valuation ring. Such an embedding will be called a
logarithmic cross-section. If in addition it satisfies condition (9), then we call
it a strong logarithmic cross-section. Every logarithmic cross-section h gives
rise to a not necessarily surjective left logarithm f;™' = h o —v, and vice versa.
Then h is surjective if and only if f;' is. Following the terminoloy introduced in
[K-K], a left logarithm f;™' (respectively, left exponential f;) satisfying (8) will be
called a strong left logarithm (respectively, strong left exponential). Hence,
h is strong if and only if f;' is.

If a real closed field K admits a surjective strong logarithmic cross-section,
then it admits a strong left exponential f;. If it also admits some exponential with
which it is a model of restricted real exponentiation, then we let f, be the right
part of this exponential. Note that fljo,1; = (f;)ljo,1) for every exponential f since
[0,1] € O. So we can put f; and f, together to obtain an exponential f such that
(K, f) is a model of restricted real exponentiation. By Theorem 2, (K, f) is then
a model of real exponentiation. We have proved:

Corollary 3 If an exponential field is a model of restricted real exponentiation and
admits a surjective strong logarithmic cross-section, then it admits an exponential
with which it s a model of real exponentiation.

Now recall that every embedding (resp. isomorphism) of ordered abelian groups
induces canonically an embedding (resp. isomorphism) of their ranks as ordered sets
(c.f. [KS]). In particular, such an embedding h induces an embedding h such that
the following diagram commutes, i.e. h is a lifting of A:

h
A G
v vG
h
G<0 UgG

and we have

Lemma 4 For every g € G<°,

h(vgg) > g <= vh(g)>g.



That is, k is a strong logarithmic cross-section if and only if
h(vag) > g forallge G<°. (10)

If h is an isomorphism, then so is A (in this case, it is just the inverse of a
“group exponential” as defined in [KS]).

Note that every ordered abelian group admits an embedding s : vgG — G<°
of ordered sets such that vg o s is the identity on vgG (for a € vaG, we just have
to set sa = g where ¢ € G<V is an arbitrary element of value vgg = a). We will
call such a map a group cross-section of the valued group (G,vg). It can be
used to get

Lemma 5 Let G be any ordered abelian group such that veG admits an automor-
phism o satisfying oo > a for all « € vgG. Then for every group cross-section s
of G, the embedding h := so o : vgG — G<° will satisfy condition (10).

Indeed, veh(vgg) = oveg > veg and thus a fortiori h(veg) > g if ¢ € G<°,
Note that there are plenty of groups satisfying the hypothesis of the lemma. For
instance, this is the case if vgG is isomorphic to an arbitrary nontrivial ordered
abelian group, as an ordered set.

Now the question arises whether an embedding (resp. isomorphism) h can be
lifted to an embedding (resp. isomorphism) h. (Cf. the related notion of “lifting
property” as used in [K-K].) Such a lifting always exists if A is rich enough, i.e. if
it is a Hahn product. This in turn is the case if the field K is a power series field.
We will discuss this special case in the next section.

3 The case of power series fields over the reals

If G is an arbitrary ordered abelian group, then the power series field K := R((G))
is a formally real field, and it is real closed if and onmly if G is divisible (which
we shall always assume here). Further, K carries a canonical valuation v which
associates to every formal power series the minimum of its support. It also carries a
natural ordering < such that v is the natural valuation of the ordered field (K, <).
The residue field of (K, v) is R, and its value group is G. The valuation ring O of
(K, v) is the power series ring R[[G]] which consists of all formal power series whose
support is a subset of G2° = {g € G | ¢ > 0}. On O, the exponential and all other
analytic functions can be defined by means of their associated power series. Then,
K together with the restrictions of these functions to the interval [0,1] will have
the same elementary properties as R together with the corresponding restricted
functions (cf. [D-M-M1], Corollary 2.11). Let us denote the exponential defined
on O by f.. The problem is whether f, can be extended to an exponential f on
the whole field in such a way that (K, f) is a model of real exponentiation, or in
other words, whether there exists a strong left exponential (or equivalently, a strong
surjective left logarithm). As we have seen in the last section, the answer is negative
in general. Even for the existence of a mere left exponential, a very restrictive
necessary and sufficient condition on the value group is imposed. Let us derive this
condition from the results of the last section. In the following, let R! denote the
Hahn product with coefficients in R and exponents in the totally ordered set I'. In
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the case of the power series field K, we can take the additive group complement
A of the valuation ring to be the ordered ring {a € R((G)) | support(a) C G<°},
which is canonically isomorphic to RE*’. We have shown in the last section that
K admits a left exponential f; if and only if there exists a surjective logarithmic
cross-section h, and that f; is strong if and only if A is.

Theorem 6 The field R((G)) admits an exponential if and only if there is an
isomorphism

h: G~REY . (11)

of ordered groups (which in view of A = R is a surjective logarithmic cross-
section). If in addition h is strong, that is, satisfies condition 9, then R((G))
admits a strong left exponential and thus also an exponential with which it is a
model of real exponentiation.

(Cf. [K-K], Corollary 2.22.) As it is the case for Ressayre’s Theorem, the latter
result still holds if one adds restricted analytic functions.

Let us write I := vgG. Condition (11) of the theorem implies the existence
of an embedding A : ' — G<°. But it also implies that G is isomorphic to R'.
Consequently, condition (11) implies the existence of an isomorphism

h:T ~ (RN<°

of ordered sets. Conversely, if such an ordered set, I is given, then G := R" satisfies
I' ~ G<° and thus G = R" ~ R%". Under the isomorphism @ ~ R, the group
valuation vg is equal to the canonical minimum support valuation of R* (which is
defined as above for power series fields). Hence by virtue of Lemma 4, h is strong
if and only if h satisfies that A(minsupport(g)) > g for every g € (R")<°.

The existence of such a totally ordered set I' is unknown. However, we have a
construction that is amusingly near to the wanted result:

Theorem 7 There is an ordered set T' such that (RV)<C is order isomorphic to T.

To construct T, we set T’y := RS® and T'pyq := (R™)2° for n € N. Since R° has
a maximal element, R can be viewed as a convex subgroup of R™. By induction,
it is shown that RT~ is a convex subgroup of R'™. This proves that I, is a final
segment of I'yq. Now we let I' := ,cny[n. Since every I'y, is a final segment
of T', every wellordered subset S of I is already contained in some T',, (just take
n such that the first element of S lies in I';). Hence, an element of (R')S? with
support S is actually an element of ',y = QRF")SO. This fact gives rise to an order
isomorphism of (R')S? onto T. Its inverse A is an order isomorphism I' ~ (R')<°
which satisfies A(min support(g)) > g for every 0 # g € RF. This is seen as follows.
In view of our identification of {g € (R")<° | support(g) C I',} with T'ny;, we can
consider A to be the identity. Now if minsupport(g) € T'y\T'n_1 , then g € Tya\T' .
Since I'y, is a final segment of ', 41 , it follows that minsupport(g) > g.

If A denotes the subset of I' which contains all but the maximal element of T',
then A is an order isomorphism from A onto (RF)<C. This isomorphism induces an
order embedding of (R®)<? into A. Conversely, there is an order embedding of A
into (R*)<°. However, we do not know whether both sets are order isomorphic.
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Remark To find I' ~ (RY)<C, it is actually sufficient to construct I' such that
R ~ T. Indeed, I will then be an ordered group and RT will be an ordered field.
But it can be shown that for every ordered field K, we have that K<® ~ K as
ordered sets. Thus also (R')<° ~ T' as required.

Since we do not know any I' ~ (R")<°, we do not know a group G with property
(11). In fact, we can construct groups G which admit isomorphisms h : vgG —
G<° that satisfy condition (10) (cf. [K-K] and [KF1]), but the construction method
is not capable of producing groups which are Hahn products. Consequently, we do
not know whether there exist exponential power series fields. Let us summarize
what remains open:

Open Problems Do there exist exponential power series fields? Do there exist ex-
ponential power series fields which are models of real exponentiation? Equivalently,
do there exist ordered sets T such that I' ~ (RY)<°. If so, can an isomorphism h
be constructed which satisfies h(min support(g)) > g for every g € (RF)<°?

However, we can prove:

Theorem 8 Assume that the rank vgG of the ordered abelian group G admils an
automorphism o satisfying ca > « for all o € vgG. Then the power series field
R((G)) admits a (not necessarily surjective) strong logarithmic cross-section.

Proof:  According to Lemma 5, we can choose an embedding b : veG — G<°
which satisfies condition (10). Note that A is archimedean-complete (that is, it is
maximal and all its components are R). Hence by Hahn’s embedding theorem, the
embec}ding h of veG into G<° = v A lifts to an embedding h of G into A. Moreover,
since h(vgg) > g, Lemma 4 shows that vh(g) > ¢ for all ¢ € G<°, as required. O

As an application of this last theorem, we shall construct in the next section
nonarchimedean models of real exponentiation, which are not power series fields,
but countable unions of power series fields. Indeed, a common method to obtain
surjectivity of a map is to construct the union over a suitable countably infini-
te chain of fields. In the following, we will apply such a construction to strong
logarithmic cross-sections.

4 Going to the limit

In [D-M-M2], L. van den Dries, A. Macintyre and D. Marker modify the method of
Dahn and Géring for the construction of nonarchimedean exponential fields which
are models of real exponentiation. We will give an alternative modification. Using
the results of the last section, we eliminate one of the two limit processes used in
[D-M-M2].

e Construction of the left exponential. )

To get started, let Gp and Ko = R({(Go)) be as in Theorem 8. Let Ag be a group
complement of R[[Go]] in Ko and hy : Go — Ay a logarithmic cross-section of
Ky. Now assume that we have already constructed G,_;, K,-1, A,—; and the
logarithmic cross-section

hpo1: Guoy — A,y



i.e. satisfying that
vhn_1(g9) > g forallge G2, . (12)

Since Gy, is isomorphic to a subgroup of A, _; through h,_;, we can take G, to
be a group containing G,_; as a subgroup and admitting an isomorphism A, onto
A, _; which extends h,_;. We set K, := R((G,)). Hence, K,_; C K, canonically
(the elements of K,_; being those elements of K, whose support is a subset of
Gr-1). Further, we choose a group complement A, for the valuation ring R[[G]]
such that A, contains A,_;. In this way, h, appears as an embedding of G,, into
A, which extends h,_;. We show that h, is again a logarithmic cross-section.
For ¢ € G, , the image h,(g) lies in A,_;, and vh,(g) lies in its value set G<°,.
Consequently, in (12) we may replace g € G<°, by vh,(g) for ¢ € G°. But
Vhy—1(vhn(g)) > vhy(g) implies hy_1(vhn(g)) > hn(g), because h,(g) < 0 and
hy-1(vhs(g)) < 0. Since h, extends h,_1, this may be read as hn(vh,(g)) > hn(g)-
Since h,, is order preserving, this in turn implies vh,(g) > g. Thus, we have proved
that (12) holds with n in the place of n — 1.

By our induction on n, we obtain a chain of fields K, , n € N. Now we take
Ko = Unen Kn, fo := Unenfn and hy, := Upenbn. Also the groups G, form
a chain, and their union G, := Upen Gr 1s the value group of K, . Similarly,
the group complements A, form a chain, and their union A, := U,enA, is a
group complement for the valuation ring R[[G,]] in K, . By construction, we have
A,y = hy(G,) for all n. Consequently, h, : G, — A, is surjective. Moreover,
h. satisfies property (9). It follows that the surjective map fi, := (hy, 0 —v)"!is a
left exponential satisfying condition (8).

e Construction of the right exponential.
Let n € N and a be an element of the valuation ring R[[G,]] of K, . Then we can
write a = r + € with r € R and ve > 0. We set

0061

frnla) = exp(r) - 3 5

= !
note that the second factor is again an element of R[[G,]]. This definition yields that
(K, frn) is a model of restricted real exponentiation; this follows from Corollary
(2.11) of [D-M-M1]. Further, f, .41 is immediately seen to be an extension of f; .,
and since also (Kp41, frnt1) is @ model of restricted real exponentiation, it follows
from Wilkie’s theorem on the model completeness of the restricted exponential

function (cf. [W1]) that

(Kn, frnloa) C (Knt1s frmatlp)

is an elementary extension. Setting f.. := Upen frn, We obtain that (K, , f,.)
is the union over an elementary chain and thus is itself a model of restricted real

exponentiation. Moreover, our definition of the f,, yields that f, . coincides with
exp on the subfield R of K, .

Now we let f, be the exponential on K, which is induced by f;, and f, . . Then
f. satisfies (5), and in view of f,,|j01] = fulp,], we see that (K, f.) is a model
of restricted real exponentiation. From Theorem 1 we conclude that (K, , f,) is a
model of real exponentiation. This completes our construction.



Our construction actually gives a little bit more. If (K, f) is a model of real
exponentiation, then it admits a strong logarithmic cross-section h. If we set Go :=
vK and embed K in the power series field Ko := R((G)), then h will still be a strong
logarithmic cross-section of Ky. Now our construction will yield an extension
(K., f,) of (K, f). By Wilkie’s Theorem on the model completeness of (R, exp),
[W2], this embedding is elementary. We have proved:

Corollary 9 Every model (K, f) of real ezponentiation can be elementaridy em-
bedded in a model (K, , f.) which is a countable union of power series fields.
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