REAL ALGEBRAIC GEOMETRY LECTURE NOTES PART II: POSITIVE POLYNOMIALS (Vorlesung 29b - für 09/02/2023)

SALMA KUHLMANN

Contents

1. APPLICATION OF SPSS TO THE MOMENT PROBLEM (continued)

Lemma 1.1. (Lemma 2.11 of last lecture) Let $L : \mathbb{R}[X] \to \mathbb{R}$ be a linear functional and denote by

$$
\tau:\mathbb{N}_0^n\to\mathbb{R}
$$

the corresponding multisequence (i.e. $\tau(\underline{k}) := L(\underline{X}^{\underline{k}}) \ \forall \ \underline{k} \in \mathbb{N}_0^n$
Fix $g \in \mathbb{R}[X]$. Then $L(h^2 g) > 0$ for all $h \in \mathbb{R}[X]$ if and only $\binom{n}{0}$. Fix $g \in \mathbb{R}[X]$. Then $L(h^2 g) \ge 0$ for all $h \in \mathbb{R}[X]$ if and only if the multisequence $g(E)$ _τ is psd.

Proof. Compute:

1.
$$
L(\underline{X}^l g) = \sum_{\underline{k} \in \overline{Z}_{+}^n} a_{\underline{k}} \tau(\underline{k} + \underline{l}) = g(E)_{\tau}(\underline{l})
$$
; for all $\underline{l} \in \mathbb{N}_0^n$.
\nThus if $h = \sum_i c_i \underline{X}^{\underline{k}_i} \in \mathbb{R}[\underline{X}]$ then $h^2 = \sum_{i,j} c_i c_j \underline{X}^{\underline{k}_i + \underline{k}_j}$.
\n2. So, $L(h^2 g) = L[(\sum_{i,j} c_i c_j \underline{X}^{\underline{k}_i + \underline{k}_j}) g] = \sum_{i,j} c_i c_j L(\underline{X}^{\underline{k}_i + \underline{k}_j} g)$
\n
$$
= \sum_{[by 1,1]} \sum_{i,j} g(E)_{\tau}(\underline{k}_i + \underline{k}_j) c_i c_j.
$$

Theorem 1.2. (Schmüdgen's NNSS) (Reformulation in terms of moment sequences) Let $K = K_S$ compact, $S = \{g_1, \ldots, g_s\}$ and $\tau : \mathbb{N}_0^n \to \mathbb{R}$ be a given multisequence. Then τ is a K-moment sequence if and only if the multisequences multisequence. Then τ is a *K*-moment sequence if and only if the multisequences $(g_1^{e_1} \dots g_s^{e_s})(E)_{\tau} : \mathbb{N}_0^n \to \mathbb{R}$ are all psd for all $(e_1, \dots, e_s) \in \{0, 1\}^s$. $(g_1^{e_1})$ $g_1^{e_1} \dots g_s^{e_s}$ $(E)_\tau : \mathbb{N}_0^n \to \mathbb{R}$ are all psd for all $(e_1, \dots, e_s) \in \{0, 1\}^s$.

Next we reformulate question (1) in 2.4 of Lecture 15 in terms of Hankel matrices and bilinear forms.

2. SCHMUDGEN'S NNSS, HANKEL MATRICES AND BILINEAR FORMS ¨

We want to understand $L(h^2g) \ge 0$; $h, g \in \mathbb{R}[\underline{X}]$ in terms of Hankel matrices.

Definition 2.1. A real symmetric $n \times n$ matrix *A* is **psd** if $x^T A x \ge 0 \forall x \in \mathbb{R}^n$. An $\mathbb{N} \times \mathbb{N}$ symmetric matrix (say) *A* is psd if $x^T A x \ge 0 \forall x \in \mathbb{R}^n$ and $\forall n \in \mathbb{N}$.

Definition 2.2. Let $L \neq 0; L : \mathbb{R}[X] \longrightarrow \mathbb{R}$ be a given linear functional. Fix $g \in \mathbb{R}[X]$. Consider symmetric bilinear form:

$$
\langle , \rangle_g : \mathbb{R}[\underline{X}] \times \mathbb{R}[\underline{X}] \to \mathbb{R}
$$

$$
\langle h, k \rangle_g := L(hkg) ; h, k \in \mathbb{R}[\underline{X}]
$$

Denote by S_g the N×N real symmetric matrix with $\underline{\alpha\beta}$ -entry $\langle \underline{X}^{\underline{\alpha}}, \underline{X}^{\underline{\beta}} \rangle_g \forall \underline{\alpha}, \underline{\beta} \in \mathbb{N}_0^n$ $\frac{n}{0}$ i.e. the <u>α</u>β-entry of S_g is $L(\underline{X}^{\underline{\alpha}+\underline{\beta}} g)$.

Example. Let $g = 1$, then

$$
\langle \underline{X}^{\underline{\alpha}}, \underline{X}^{\underline{\beta}} \rangle_1 = L(\underline{X}^{\underline{\alpha} + \underline{\beta}}) := s_{\underline{\alpha} + \underline{\beta}}.
$$

More generally, if $g = \sum a_{\gamma} \underline{X}^{\gamma}$ then

$$
\langle \underline{X}^{\underline{\alpha}}, \underline{X}^{\underline{\beta}} \rangle_{g} = L \Big(\sum_{\gamma} a_{\underline{\gamma}} \, \underline{X}^{\underline{\alpha} + \underline{\beta} + \underline{\gamma}} \Big) = \sum_{\underline{\gamma}} a_{\underline{\gamma}} \, s_{\underline{\alpha} + \underline{\beta} + \underline{\gamma}} \; .
$$

Proposition 2.3. Let *L*, *g* be fixed as above. Then the following are equivalent:

- 1. $L(\sigma g) \ge 0 \ \forall \ \sigma \in \sum \mathbb{R}[\underline{X}]^2$.
- 2. $L(h^2 g) \geq 0 \forall h \in \mathbb{R}[\underline{X}].$
- 3. \langle , \rangle_g is psd (i.e. $\langle h, h \rangle_g \ge 0$ for all $h \in \mathbb{R}[\underline{X}]^2$).

```
4. S g is psd.
```
Proof. (1) \Leftrightarrow (2) is clear. Since $\langle h, h \rangle_g = L(h^2 g)$, (2) \Leftrightarrow (3) is clear.
(3) \Leftrightarrow (4) is also clear. $(3) \Leftrightarrow (4)$ is also clear.

2.4. Example. (Hamburger) Let $n = 1$. A linear functional $L : \mathbb{R}[X] \to \mathbb{R}$ comes from a Borel measure on $\mathbb R$ if and only if $L(\sigma) \ge 0$ for every $\sigma \in \sum \mathbb R[X]^2$.

Proof. From Haviland we know *L* comes from a Borel measure iff $L(f) \geq 0$ for every $f(X) \in \mathbb{R}[X]$, $f \ge 0$ on R. But Psd(R) = $\sum \mathbb{R}[X]^2$ (by exercise in Real
Algebraic Geometry course in WS 2009-10). So the condition is clear Algebraic Geometry course in WS 2009-10). So the condition is clear.

Remark 2.5. We can express Hamburgers's Theorem via Hankel matrix *S ^g* with *g* = 1 the constant polynomial since *n* = 1, so (for *i*, *j* ∈ N) the *i j*th coefficient of S_1 is S_2 \cdots *i* $I(Y^{i+j})$ *S*₁ is $s_{i+j} = L(X^{i+j}).$

Hence, S_1 = $\begin{pmatrix} s_0 & s_1 & s_2 & \dots & s_n \end{pmatrix}$ s_1 s_2 ... $s_2 \ldots$ \ddots λ $\begin{array}{c} \hline \end{array}$ is psd.

END OF RAG I IN WISE 2022/2023

2.1. REFORMULATION OF SCHMÜDGEN'S SOLUTION TO THE MOMENT PROBLEM IN TERMS OF HANKEL MATRICES

2.6. Let $S = \{ g_1, \ldots, g_s \} \subseteq \mathbb{R}[\underline{X}]$ and $K_S \subseteq \mathbb{R}^n$ is compact. A linear functional *L* on $\mathbb{R}[\underline{Y}]$ is represented by a Borel measure on *K* iff the $2^S \mathbb{N} \times \mathbb{N}$ Hankel matrices on $\mathbb{R}[X]$ is represented by a Borel measure on *K* iff the $2^S \mathbb{N} \times \mathbb{N}$ Hankel matrices *S g e*1 1 ... *g es s* [|](*e*¹, . . . , *^es*) ∈ {0, ¹} *s* are psd, where *S ^g* := [*L*(*X* α+β *^g*)]α,β ; α, β [∈] ^N *n* .

3. FINITE SOLVABILITY OF THE *K*- MOMENT PROBLEM

Definition 3.1. Let *K* be a basic closed semi-algebraic subset of \mathbb{R}^n .

- 1. The *K*-moment problem (KMP) is finitely solvable if there exists *S* finite, $S \subseteq \mathbb{R}[X]$ such that:
	- (i) $K = K_S$, and
	- (ii) \forall linear functional *L* on $\mathbb{R}[X]$ we have: $L(T_S) \ge 0 \Rightarrow L(Psd(K)) \ge 0$ (equivalently, (iii) $L(T_S) \ge 0 \Rightarrow \exists \mu : L = \int d\mu$).
- 2. We shall say *S* solves the KMP if (i) and (ii) (equivalently (i) and (iii)) hold.

$$
(16:10/06/10)
$$

3.2. Schmüdgen's solution to the KPM for *K* compact b.c.s.a. Let $K \subseteq \mathbb{R}^n$ be a compact basic closed semi-algebraic set. Then *S* solves the KMP for any finite description *S* of *K* (i.e. for all finite $S \subseteq \mathbb{R}[X]$ with $K = K_S$).

One can restate the condition "*S* solves the *K*-Moment problem" via the equality of two preorderings. We shall adopt this approach throughout:

Definition 3.3. Let $T_s \subseteq \mathbb{R}[X]$ be a preordering. Define the **dual cone** of T_s :

 $T_S^v := \{L \mid L : \mathbb{R}[\underline{X}] \to \mathbb{R} \text{ is a linear functional}; L(T_S) \geq 0\}$,

and the double dual cone:

$$
T_S^{\text{vv}} := \{ f \mid f \in \mathbb{R}[\underline{X}]; L(f) \ge 0 \ \forall \ L \in T_S^{\text{v}} \}.
$$

Lemma 3.4. For $S \subseteq \mathbb{R}[X]$, *S* finite:

- (a) $T_S \subseteq T_S^{\text{vv}}$
- (b) $T_S^{\text{vv}} \subseteq \text{Psd}(K_S)$.

Proof. (a) Immediate by definition.

(b) Let $f \in T_S^{\text{vv}}$. <u>To show:</u> $f(\underline{x}) \ge 0 \ \forall \ \underline{x} \in K_S$.

Now every $\underline{x} \in \mathbb{R}^n$ determines an \mathbb{R} -algebra homomorphism

 $e_{v_x} := L_{\underline{x}} \in \text{Hom}(\mathbb{R}[\underline{X}], \mathbb{R}); L_{\underline{x}}(g) = e_{v_x}(g) := g(\underline{x}) \ \forall \ g \in \mathbb{R}[\underline{X}],$

this $L_{\rm x}$ is in particular a linear functional.

Moreover we claim that $L_x(T_s) \geq 0$ for $x \in K_s$. Indeed if $g \in T_s$ then $L_x(g) = g(x) \ge 0$ for $x \in K_S$.

So, by assumption on *f* we must also have $L_x(f) \ge 0$ for $x \in K_S$, i.e. $f(x) \geq 0$ for all $x \in K_S$ as required.

 \Box

We summarize as follows:

Corollary 3.5. For finite $S \subseteq \mathbb{R}[X]$:

$$
T_S \subseteq T_S^{\text{vv}} \subseteq \text{Psd}(K_S).
$$

Corollary 3.6. (Reformulation of finite solvability) Let $K \subseteq \mathbb{R}^n$ be a b.c.s.a. set and $S \subseteq \mathbb{R}[X]$ be finite. Then *S* solves the KMP iff

(ij) $T_S^{\text{vv}} = \text{Psd}(K)$.

Proof. Assume (ii) of definition 3.1, i.e. $\forall L : L(T_S) \geq 0 \Rightarrow L(Psd(K)) \geq 0$, and show (jj) i.e. $T_S^{\text{vv}} = \text{Psd}(K)$: Let $f \in \text{Psd}(K)$. <u>Show</u> $f \in T_S^{\text{vv}}$ i.e. show $L(f) \ge 0 \ \forall \ L \in T_S^{\text{v}}$. Assume $L(T_S) \ge 0$. Then by assumption $L(Psd(K)) \ge 0$. So, $L(f) \ge 0$ as required. Conversely, assume (ii) and show (ii): Let $L(T_S) \ge 0$, i.e. $L \in T_S^{\vee}$. <u>Show</u> $L(Psd(K)) \ge 0$, i.e show $L(f) \ge 0 \ \forall \ f \in \text{Psd}(K)$. Now [by assumption (jj)] $f \in \text{Psd}(K) \Rightarrow f \in T_S^{\text{vv}} \Rightarrow L(f) \ge 0 \ \forall \ L \in T_S^{\text{vv}}$. D

We shall come back later to T_S^{vv} and describe it as closure w.r.t. an appropriate topology.

4. HAVILAND'S THEOREM

For the proof of Haviland's theorem (2.5 of lecture 15), we will recall Riesz Representation Theorem.

Definition 4.1. A topological space is said to be Hausdorff (or seperated) if it satisfies

(H4): any two distinct points have disjoint neighbourhoods, or

 (T_2) : two distinct points always lie in disjoint open sets.

Definition 4.2. A topological space χ is said to be **locally compact** if $\forall x \in \chi \exists$ an open neighbourhood $\mathcal{U} \ni x$ such that $\overline{\mathcal{U}}$ is compact.

Theorem 4.3. (Riesz Representation Theorem) Let χ be a locally compact Hausdorff space and $L : \text{Cont}_c(\chi, \mathbb{R}) \to \mathbb{R}$ be a positive linear functional i.e. $L(f) \geq 0 \forall f \geq 0$ on χ . Then there exists a unique (positive regular) Borel mea-

sure μ on χ such that $L(f)$ = $\int f d\mu \ \ \forall \ f \in \text{Cont}_c(\chi, \mathbb{R})$, where $\text{Cont}_c(\chi, \mathbb{R}) :=$

the ring (R-algebra) of all continuous functions $f : \chi \to \mathbb{R}$ (addition and multipli-
cation defined pointwise) with compact support i.e., such that the set supp(f) :cation defined pointwise) with compact support i.e. such that the set $supp(f)$:= ${x \in \chi : f(x) \neq 0}$ is compact.

Definition 4.4. *L* positive means:

$$
L(f) \ge 0 \,\forall\ f \in \text{Cont}_{C}(\chi, \mathbb{R}) \text{ with } f \ge 0 \text{ on } \chi.
$$