REAL ALGEBRAIC GEOMETRY LECTURE NOTES PART II: POSITIVE POLYNOMIALS

(Vorlesung 29a - für 09/02/2023)

SALMA KUHLMANN

Contents

- 1. Schmüdgen's Nichtnegativstellensatz
- 2. Application of Schmüdgen's Positivstellensatz to the moment problem 2

1

- 1. SCHMÜDGEN'S NICHTNEGATIVSTELLENSATZ AND LINEAR FUNCTIONALS ON $\mathbb{R}[X]$
- **1.1. Schmüdgen's Nichtnegativstellensatz**: Let K_S be a compact basic closed semi algebraic set and $f \in \mathbb{R}[\underline{X}]$. Then

$$f \ge 0$$
 on $K_S \Rightarrow \forall \epsilon \text{ real}, \epsilon > 0 : f + \epsilon \in T_S$.

Corollary 1.2. Let $K = K_S$ be a compact basic closed semi algebraic set and $L : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ be a linear functional with L(1) = 1. Then

$$\underbrace{L(T_S) \ge 0}_{\text{(i.e. } L(f) \ge 0 \ \forall \ f \in T_S)} \Rightarrow \underbrace{L(\operatorname{Psd}(K_S)) \ge 0}_{\text{(i.e. } L(f) \ge 0 \ \forall \ f \ge 0 \ \text{on} \ K_S)}.$$

Proof. Let $f \in Psd(K_S)$ and assume $L(T_S) \ge 0$,

To show: $L(f) \ge 0$

By 1.1, $\forall \epsilon > 0$: $f + \epsilon \in T_S$

So, $L(f + \epsilon) \ge 0$ i.e. $L(f) \ge -\epsilon \ \forall \ \epsilon > 0$ real

$$\Rightarrow L(f) \ge 0.$$

We shall now relate this to the **problem of representation** of linear functionals via integration along measures (i.e. $\int d\mu$).

2. APPLICATION OF SPSS TO THE MOMENT PROBLEM

Let *X* be a locally compact Hausdorff topological space.

Definition 2.1. X is **locally compact** if $\forall x \in X \exists$ open \mathcal{U} in X s.t. $x \in \mathcal{U}$ and $\overline{\mathcal{U}}$ (closure) is compact.

Notation 2.2. $\mathcal{B}^{\delta}(X) := \text{set of Borel measurable sets in } X$ = the smallest family of subsets of X containing all compact subsets of X, closed under finite \bigcup , set theoretic difference $A \setminus B$ and countable \bigcap .

Definition 2.3. A **Borel measure** μ on X is a positive measure on X s.t. every set in $\mathcal{B}^{\delta}(X)$ is measurable. We also require our measure to be **regular** i.e. $\forall B \in \mathcal{B}^{\delta}(X)$ and $\forall \epsilon > 0 \exists K, \mathcal{U} \in \mathcal{B}^{\delta}(X), K$ compact, \mathcal{U} open s.t. $K \subseteq B \subseteq \mathcal{U}$ and $\mu(K) + \epsilon \geq \mu(B) \geq \mu(\mathcal{U}) - \epsilon$.

2.4. Moment problem is the following:

Given a closed set $K \subseteq \mathbb{R}^n$ and a linear functional $L : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ Question:

when does
$$\exists$$
 a Borel measure μ on K s.t. \forall $f \in \mathbb{R}[\underline{X}] : L(f) = \int f d\mu$? (1)

Necessary condition for (1):
$$\forall f \in \mathbb{R}[\underline{X}], f \ge 0 \text{ on } K \Rightarrow L(f) \ge 0$$
 (2)

in other words:
$$L(\operatorname{Psd}(K)) \ge 0$$
 (3)

Is this necessary condition also sufficient?

The answer is YES.

Theorem 2.5. (Haviland) Given $K \subseteq \mathbb{R}^n$ closed and $L : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ a linear functional with L(1) = 1:

$$\exists \mu \text{ as in } (1) \text{ iff } \forall f \in \mathbb{R}[X] : L(f) \ge 0 \text{ if } f \ge 0 \text{ on } K.$$

We shall prove Haviland's Theorem later. For now we shall deduce a corollary to SPSS.

Corollary 2.6. Let $K_S = \{\underline{x} \mid g_i(\underline{x}) \geq 0; i = 1, ..., s\} \subseteq \mathbb{R}^n$ be a basic closed semi-algebraic set and compact, $L : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$ a linear functional with L(1) = 1. If

$$L(T_S) \ge 0$$
, then $\exists \mu$ positive Borel measure on K s.t. $L(f) = \int_{K_S} f d\mu \ \forall \ f \in \mathbb{R}[\underline{X}].$

Remark 2.7. Let $S = \{g_1, \dots, g_s\}.$

1. $L(T_S) \ge 0$ can be written as

$$L(h^2g_1^{e_1}\dots g_s^{e_s}) \ge 0 \ \forall \ h \in \mathbb{R}[\underline{X}], e_1, \dots, e_s \in \{0, 1\}.$$

- 2. Compare Haviland to Schmüdgen's moment problem, for compact K_S : we do not need to check $L(\operatorname{Psd}(K_S)) \ge 0$ we only need to check $L(T_S) \ge 0$.
- 3. Reformulation of question (1) (in 2.4) in terms of moment sequences:

Let $L: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}$, with L(1) = 1. Consider $\{\underline{X}^{\underline{\alpha}} = X_1^{\alpha_1} \dots X_n^{\alpha_n}; \underline{\alpha} \in \mathbb{N}_0^n\}$ a monomial basis for $\mathbb{R}[\underline{X}]$. So L is completely determined by the (multi)sequence of real numbers $\tau(\underline{\alpha}) := L(\underline{X}^{\underline{\alpha}})$; $\underline{\alpha} = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$, i.e. by the function $\tau: \mathbb{N}_0^n \longrightarrow \mathbb{R}$ is a function) and conversely, every such sequence determines a linear functional L:

$$L\Big(\sum_{\alpha} a_{\underline{\alpha}} \underline{X}^{\underline{\alpha}}\Big) := \sum_{\alpha} a_{\underline{\alpha}} \tau(\underline{\alpha})).$$

So, (1) (in 2.4) can be reformulated as:

Given $K \subseteq \mathbb{R}^n$ closed, and a multisequence $\tau = \tau(\underline{\alpha})_{\underline{\alpha} \in \mathbb{N}_0^n}$ of real numbers, $\exists \mu$ positive Borel measure on K s.t $\int_K \underline{X}^{\underline{\alpha}} d\mu = \tau(\underline{\alpha})$ for all $\underline{\alpha} \in \mathbb{N}_0^n$?

Definition 2.8. A function $\tau: \mathbb{N}_0^n \longrightarrow \mathbb{R}$ is a K-moment sequence if $\exists \mu$ positive borel measure on K s.t $\tau(\underline{\alpha}) = \int\limits_K \underline{X}^{\underline{\alpha}} d\mu$ for all $\underline{\alpha} \in \mathbb{N}_0^n$

So (1) can be reformulated as: given K and a function $\tau : \mathbb{N}_0^n \longrightarrow \mathbb{R}$, when is τ a K-moment sequence?

Definition 2.9. A function $\tau: \mathbb{N}_0^n \longrightarrow \mathbb{R}$ is called **psd** if

$$\sum_{i,j=1}^{m} \tau \left(\underline{k}_{i} + \underline{k}_{j}\right) c_{i} c_{j} \geq 0,$$

for $m \ge 1$, arbitrary distinct $\underline{k}_1, \dots, \underline{k}_m \in \mathbb{N}_0^n$; $c_1, \dots, c_m \in \mathbb{R}$.

Definition 2.10. Given $\tau: \mathbb{N}_0^n \longrightarrow \mathbb{R}$ a function and a fixed polynomial

 $g(\underline{X}) = \sum_{\underline{k} \in \mathbb{N}_0^n} a_{\underline{k}} \ \underline{X}^{\underline{k}} \in \mathbb{R}[\underline{X}].$ Define a new function $g(E)_{\tau} : \mathbb{N}_0^n \longrightarrow \mathbb{R}$ by

$$g(E)_{\tau}(\underline{l}) := \sum_{k \in \mathbb{N}_0^n} a_{\underline{k}} \, \tau(\underline{k} + \underline{l}); \text{ for any } \underline{l} \in \mathbb{N}_0^n.$$

Lemma 2.11. Let $L : \mathbb{R}[\underline{X}] \to \mathbb{R}$ be a linear functional and denote by

$$\tau: (\mathbb{N}_0)^n \to \mathbb{R}$$

the corresponding multisequence (i.e. $\tau(\underline{k}) := L(\underline{X}^{\underline{k}}) \ \forall \ \underline{k} \in (\mathbb{N}_0)^n$). Fix $g \in \mathbb{R}[\underline{X}]$. Then $L(h^2g) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$ if and only if the multisequence $g(E)_{\tau}$ is psd.