REAL ALGEBRAIC GEOMETRY LECTURE NOTES

PART II: POSITIVE POLYNOMIALS

(Vorlesung 28 - für 07/02/2023)

SALMA KUHLMANN

Contents

Rings of bounded elements
 Schmüdgen's Positivstellensatz

1. RINGS OF BOUNDED ELEMENTS

Let A be a commutative ring with 1, $\mathbb{Q} \subseteq A$ and M be a quadratic module $\subseteq A$.

Definition 1.1. Consider

$$B_M = \{ a \in A \mid \exists n \in \mathbb{N} \text{ s.t. } n + a \text{ and } n - a \in M \},$$

 B_M is called the **ring of bounded elements**, which are bounded by M.

Proposition 1.2.

- (1) M is an archimedean module of A iff $B_M = A$.
- (2) B_M is a subring of A.
- (3) $\forall a \in A, a^2 \in B_M \Rightarrow a \in B_M$.
- (4) More generally, $\forall a_1, \dots, a_k \in A$, $\sum_{i=1}^k a_i^2 \in B_M \Rightarrow a_i \in B_M \ \forall i = 1, \dots, k$.

Proof. (1) Clear.

(2) Clearly $\mathbb{Q} \subseteq B_M$ and B_M is an additive subgroup of A.

To show: $a, b \in B_M \Rightarrow ab \in B_M$

Using the identity

$$ab = \frac{1}{4}[(a+b)^2 - (a-b)^2],$$

we see that in order to show that B_M is closed under multiplication it is sufficient to show that: $\forall a \in A : a \in B_M \Rightarrow a^2 \in B_M$.

Let $a \in B_M$. Then $n \pm a \in M$ for some $n \in \mathbb{N}$. Now $n^2 + a^2 \in M$.

Also
$$2n(n^2 - a^2) = (n^2 - a^2)[(n+a) + (n-a)].$$

So,
$$(n^2 - a^2) = \frac{1}{2n} \Big[(n+a)(n^2 - a^2) + (n-a)(n^2 - a^2) \Big]$$

= $\frac{1}{2n} \Big[(n+a)^2(n-a) + (n-a)^2(n+a) \Big] \in M$.

So $(n^2 + a^2)$ and $(n^2 - a^2)$ both $\in M$. So by definition $a^2 \in B_M$. \square (2)

(3) Assume $a^2 \in B_M$. Say $n - a^2 \in M$, for some $n \in \mathbb{N}$, then use the identity:

$$(n \pm a) = \frac{1}{2} [(n-1) + (n-a^2) + (a \pm 1)^2] \in M.$$

So, $a \in B_M$. \square (3)

(4) If $\sum a_i^2 \in B_M$. Say $(n - \sum a_i^2) \in M$, then for all i, we have

$$(n - a_i^2) = (n - \sum_{j \neq i} a_j^2) + \sum_{j \neq i} a_j^2 \in M.$$

So,
$$a_i^2 \in B_M$$
 and so by (3), $a_i \in B_M$. \square (4)

Corollary 1.3. Let M be a quadratic module of $\mathbb{R}[\underline{X}]$. Then M is archimedean iff there exists $N \in \mathbb{N}$ such that

$$N - \sum_{i=1}^{n} X_i^2 \in M$$

Proof. (\Rightarrow) Clear by definition of archimedeanness.

 (\Leftarrow) First note that $\mathbb{R}_+ \subseteq M$ so, $\mathbb{R} \subseteq B_M$ $(B_M \text{ subring})$.

Also
$$N - \sum_{i=1}^{n} X_i^2$$
 and $N + \sum_{i=1}^{n} X_i^2 \in M$. Therefore by definition $\sum_{i=1}^{n} X_i^2 \in B_M$.

So (by Proposition 1.2) $X_1, \ldots, X_n \in B_M$. This implies $\mathbb{R}[X_1, \ldots, X_n] = B_M$ and so M is archimedean.

2. SCHMÜDGEN'S POSITIVSTELLENSATZ

Theorem 2.1. Let $S = \{g_1, \dots g_s\} \subseteq \mathbb{R}[\underline{X}]$. Assume that $K := K_S = \{\underline{x} \mid g_i(\underline{x}) \geq 0\}$ is compact. Then there exists $N \in \mathbb{N}$ such that

$$N - \sum_{i=1}^{n} X_i^2 \in T_S =: T.$$

In particular T is an archimedean preordering (by Corollary 1.3) and thus $\forall f \in \mathbb{R}[\underline{X}]: f > 0$ on $K_S \Rightarrow f \in T$.

Proof. [Reference: Dissertation, Thorsten Wörmann]

- K compact $\Rightarrow K$ bounded $\Rightarrow \exists k \in \mathbb{N}$ such that $\left(k \sum_{i=1}^{n} X_i^2\right) > 0$ on K.
- By applying the Positivstellensatz to above we get: $\exists p, q \in T$ such that $p\left(k \sum_{i=1}^{n} X_i^2\right) = 1 + q$. So, $p\left(k \sum_{i=1}^{n} X_i^2\right)^2 = (1 + q)\left(k \sum_{i=1}^{n} X_i^2\right)$. So, $(1 + q)\left(k \sum_{i=1}^{n} X_i^2\right) \in T$.
- Set $T' = T + \left(k \sum_{i=1}^{n} X_i^2\right) T$. By Corollary 1.3, T' is an archimedean preordering. Therefore $\exists m \in \mathbb{N}$ such that $(m-q) \in T'$; say: $m-q = t_1 + t_2 \left(k \sum_{i=1}^{n} X_i^2\right)$ for some $t_1, t_2 \in T$.
- So, $(m-q)(1+q) = t_1(1+q) + t_2\left(k \sum_{i=1}^n X_i^2\right)(1+q) \in T$. So $(m-q)(1+q) \in T$.
- Adding

$$(m-q)(1+q) = mq - q^2 + m - q \in T,$$
(1)

$$\left(\frac{m}{2} - q\right)^2 = \frac{m^2}{4} + q^2 - mq \in T. \tag{2}$$

yields

$$\left(m + \frac{m^2}{4} - q\right) \in T.$$
(3)

• Multiplying (3) by $k \in T$, and adding $\left(k - \sum_{i=1}^{n} X_{i}^{2}\right)(1+q) \in T$ and $q\left(\sum_{i=1}^{n} X_{i}^{2}\right) \in T$, yields $k\left(m + \frac{m^{2}}{4} - q\right) + \left(k - \sum_{i=1}^{n} X_{i}^{2}\right)(1+q) + q\left(\sum_{i=1}^{n} X_{i}^{2}\right) \in T$ i.e. $km + k\frac{m^{2}}{4} + k - \sum_{i=1}^{n} X_{i}^{2} \in T$ i.e. $k\left(\frac{m}{2} + 1\right)^{2} - \sum_{i=1}^{n} X_{i}^{2} \in T$ Set $N := k\left(\frac{m}{2} + 1\right)^{2}$.

2.2. Final Remarks on Schmüdgen's Positivstellensatz (SPSS):

1. Corollary (Schmüdgen's Nichtnegativstellensatz):

Let K_S be compact, $f \geq 0$ on $K_S \Rightarrow \forall \epsilon \text{ real}, \epsilon > 0 : f + \epsilon \in T_S$.

- 2. SPSS fails in general if we drop the assumption that "K is compact". For example:
 - (i) Consider n = 1, $S = \{X^3\}$, then $K_S = [0, \infty)$ (noncompact). Take f = X + 1. Then f > 0 on K_S . Claim: $f \notin T_S$, indeed elements of T_S have the form $t_0 + t_1 X^3$, where $t_0, t_1 \in \sum \mathbb{R}[X]^2$. We have shown before in Lecture 15, Example 2.4(1)(iii) that non zero elements of this preordering either have even degree or odd degree ≥ 3 .
 - (ii) Consider $n \geq 2, S = \emptyset$, then $K_S = \mathbb{R}^n$. Take strictly positive versions of the Motzkin polynomial

$$m(X_1, X_2) := 1 - X_1^2 X_2^2 + X_1^2 X_2^4 + X_1^4 X_2^2,$$

i.e. $m_{\epsilon} := m(X_1, X_2) + \epsilon$; $\epsilon \in \mathbb{R}_+$. Then $m_{\epsilon} > 0$ on $K_S = \mathbb{R}^2$, and it is easy to show that $m_{\epsilon} \notin T_S = \sum \mathbb{R}[\underline{X}]^2 \ \forall \epsilon \in \mathbb{R}_+$.

3. SPSS fails in general for a quadratic module instead of a preordering. [Mihai Putinar's question answered by Jacobi + Prestel in Dissertation of T. Jacobi (Konstanz)]

4. SPSS fails in general if the condition "f > 0 on K_S " is replaced by " $f \ge 0$ on K_S ".

Example (Stengle): Consider $n = 1, S = \{(1 - X^2)^3\}$, $K_S = [-1, 1]$ compact. Take $f := 1 - X^2 \ge 0$ on K_S but $1 - X^2 \notin T_S$. (This example has already been considered in Lecture 15, Example 2.4(1)(ii).

5. PSS holds for any real closed field but not SPSS:

Example: Let R be a non archimedean real closed field. Take $n = 1, S = \{(1 - X^2)^3\}$, then $K_S = [-1, 1]_R = \{x \in R \mid -1 \le x \le 1\}$. Take $f = 1 + t - X^2$, where $t \in R^{>0}$ is an infinitesimal element (i.e. $0 < t < \epsilon$, for every positive rational ϵ). Then f > 0 on K_S . We claim that $f \notin T_S$:

Let v be the natural valuation on R. So v(t) > 0. Now suppose for a contradiction that $f \in T_S$. Then

$$1 + t - X^2 = t_0 + t_1(1 - X^2)^3; t_0, t_1 \in \sum R[X]^2$$
 (1)

Let $t_i = \sum f_{ij}^2$; for i = 0, 1 and $f_{ij} \in R[X]$.

Let $s \in R$ be the coefficient of the lowest value appearing in the f_{ij} , i.e. $v(s) = \min\{v(a) \mid a \text{ is coefficient of some } f_{ij}\}.$

<u>Case I.</u> if $v(s) \geq 0$, then applying the residue map $\left(\theta_v \longrightarrow \overline{R} := \frac{\overline{\theta_v}}{\mathcal{I}_v};\right)$ defined by $x \longmapsto \overline{x}$, where θ_v is the valuation ring and \mathcal{I}_v is the valuation ideal to (1), we obtain

$$1 - X^2 = \overline{t_0} + \overline{t_1}(1 - X^2)^3$$

and since $\overline{t_i} = \sum \overline{f_{ij}}^2 \in \sum \mathbb{R}[X]^2$; i = 0, 1; we get a contradiction to Example 2.4(1)(ii) of Lecture 15.

<u>Case II.</u> if v(s) < 0. Dividing f by s^2 and applying the residue map we obtain

$$0 = \frac{\overline{t_0}}{s^2} + \frac{\overline{t_1}}{s^2} (1 - X^2)^3$$

(Note that $v(s^2) = 2v(s)$ is $\min\{v(a) \mid a \text{ is coefficient of some } f_{ij}^2\}$,

i.e. $v(s^2) \le v(a)$ for any such coefficient a, so $\frac{f_{ij}^2}{s^2}$ has coefficients with value ≥ 0 .)

So we obtain

$$0 = t'_0 + t'_1(1 - X^2)^3$$
, with $t'_0, t'_1 \in \sum \mathbb{R}[X]^2$ not both zero.

Since t_0', t_1' have only finitely many common roots in \mathbb{R} and $1 - X^2 > 0$ on the finite set (-1, 1), this is impossible. $\square(\text{claim})$

6. SPSS holds over archimedean real closed fields.