REAL ALGEBRAIC GEOMETRY LECTURE **NOTES** PART II: POSITIVE POLYNOMIALS $(Varlesung 28 - für 07/02/2023)$

SALMA KUHLMANN

Contents

1. RINGS OF BOUNDED ELEMENTS

Let A be a commutative ring with 1, $\mathbb{Q} \subseteq A$ and M be a quadratic module $\subseteq A$.

Definition 1.1. Consider

 $B_M = \{a \in A \mid \exists n \in \mathbb{N} \text{ s.t. } n + a \text{ and } n - a \in M\},\$

 B_M is called the **ring of bounded elements**, which are bounded by M .

Proposition 1.2.

(1) M is an archimedean module of A iff $B_M = A$.

- (2) B_M is a subring of A.
- $(3) \forall a \in A, a^2 \in B_M \Rightarrow a \in B_M.$

(4) More generally, $\forall a_1, \ldots, a_k \in A$, \sum k $i=1$ $a_i^2 \in B_M \Rightarrow a_i \in B_M \ \forall \ i = 1, \ldots, k.$

Proof. (1) Clear.

(2) Clearly $\mathbb{Q} \subseteq B_M$ and B_M is an additive subgroup of A.

$$
(14. \,\, 01/06/10
$$

To show: $a, b \in B_M \Rightarrow ab \in B_M$ Using the identity $ab =$ 1 $\left[(a + b)^2 - (a - b)^2 \right]$

4 we see that in order to show that B_M is closed under multiplication it is sufficient to show that: $\forall a \in A : a \in B_M \Rightarrow a^2 \in B_M$.

Let
$$
a \in B_M
$$
. Then $n \pm a \in M$ for some $n \in \mathbb{N}$. Now $n^2 + a^2 \in M$.
\nAlso $2n(n^2 - a^2) = (n^2 - a^2)[(n + a) + (n - a)]$.
\nSo, $(n^2 - a^2) = \frac{1}{2n} [(n + a)(n^2 - a^2) + (n - a)(n^2 - a^2)]$
\n $= \frac{1}{2n} [(n + a)^2(n - a) + (n - a)^2(n + a)] \in M$.
\nSo, $(n^2 + a^2) \text{ and } (n^2 - a^2) \text{ both } \in M$. So by definition $a^2 \in B$

So $(n^2 + a^2)$ and $(n^2 - a^2)$ both $\in M$. So by definition $a^2 \in B_M$. \square (2)

(3) Assume $a^2 \in B_M$. Say $n - a^2 \in M$, for some $n \in \mathbb{N}$, then use the identity:

So,
$$
a \in B_M
$$
.
$$
(n \pm a) = \frac{1}{2} [(n-1) + (n-a^2) + (a \pm 1)^2] \in M.
$$

(4) If $\sum a_j^2 \in B_M$. Say $(n - \sum a_j^2) \in M$, then for all *i*, we have $(n - a_i^2) = (n - \sum a_j^2) + \sum$ $j\neq i$ $a_j^2 \in M$. So, $a_i^2 \in B_M$ and so by (3), $a_i \in B_M$. \square (4)

Corollary 1.3. Let M be a quadratic module of $\mathbb{R}[X]$. Then M is archimedean iff there exists $N \in \mathbb{N}$ such that

$$
N - \sum_{i=1}^{n} X_i^2 \in M
$$

Proof. (\Rightarrow) Clear by definition of archimedeanness. (←) First note that $\mathbb{R}_+ \subseteq M$ so, $\mathbb{R} \subseteq B_M$ (B_M subring). Also $N-\sum_{n=1}^{\infty}$ X_i^2 and $N + \sum_{n=1}^N$ $X_i^2 \in M$. Therefore by definition \sum^n

 $i=1$ $i=1$ $i=1$ So (by Proposition 1.2) $X_1, \ldots, X_n \in B_M$. This implies $\mathbb{R}[X_1, \ldots, X_n] = B_M$ and so M is archimedean.

2. SCHMÜDGEN'S POSITIVSTELLENSATZ

 \Box

 $X_i^2 \in B_M$.

Theorem 2.1. Let $S = \{g_1, \ldots g_s\} \subseteq \mathbb{R}[\underline{X}]$. Assume that $K := K_S =$ $\{\underline{x} \mid g_i(\underline{x}) \geq 0\}$ is compact. Then there exists $N \in \mathbb{N}$ such that

$$
N - \sum_{i=1}^{n} X_i^2 \in T_S =: T.
$$

In particular T is an archimedean preordering (by Corollary 1.3) and thus $\forall f \in \mathbb{R}[\underline{X}]: f > 0 \text{ on } K_S \Rightarrow f \in T.$

Proof. [Reference: Dissertation, Thorsten Wörmann]

- K compact \Rightarrow K bounded \Rightarrow \exists k \in N such that $(k \sum_{i=1}^{n}$ $i=1$ X_i^2 > 0 on K.
- By applying the Positivstellensatz to above we get: $\exists p, q \in T$ such that $p(k-\sum_{n=1}^{n}$ $i=1$ $X_i^2 = 1 + q$. So, $p(k - \sum_{i=1}^{n}$ $i=1$ X_i^2 = $(1+q)(k-\sum_{i=1}^n)$ $i=1$ X_i^2 . So, $(1+q)(k-\sum_{i=1}^{n}X_{i}^{2}) \in T$. $i=1$
- Set $T' = T + (k \sum_{i=1}^{n}$ $i=1$ $(X_i^2)T$. By Corollary 1.3, T' is an archimedean preordering. Therefore $\exists m \in \mathbb{N}$ such that $(m - q) \in T'$; say: $m - q =$ $t_1 + t_2(k - \sum_{n=1}^{n}$ $\frac{i=1}{i}$ X_i^2 for some $t_1, t_2 \in T$.
- So, $(m-q)(1+q) = t_1(1+q) + t_2(k-\sum_{r=1}^{n}$ $i=1$ $X_i^2(1+q) \in T$. So $(m$ $q(1 + q) \in T$.
- Adding

$$
(m-q)(1+q) = mq - q^2 + m - q \in T,
$$
\n(1)

$$
\left(\frac{m}{2} - q\right)^2 = \frac{m^2}{4} + q^2 - mq \in T.
$$
 (2)

yields

$$
\left(m + \frac{m^2}{4} - q\right) \in T. \tag{3}
$$

• Multiplying (3) by
$$
k \in T
$$
, and adding $\left(k - \sum_{i=1}^{n} X_i^2\right)(1+q) \in T$ and
\n $q\left(\sum_{i=1}^{n} X_i^2\right) \in T$, yields
\n $k\left(m + \frac{m^2}{4} - q\right) + \left(k - \sum_{i=1}^{n} X_i^2\right)(1+q) + q\left(\sum_{i=1}^{n} X_i^2\right) \in T$
\ni.e. $km + k\frac{m^2}{4} + k - \sum_{i=1}^{n} X_i^2 \in T$
\ni.e. $k\left(\frac{m}{2} + 1\right)^2 - \sum_{i=1}^{n} X_i^2 \in T$
\nSet $N := k\left(\frac{m}{2} + 1\right)^2$.

2.2. Final Remarks on Schmüdgen's Positivstellensatz (SPSS):

- 1. Corollary (Schmüdgen's Nichtnegativstellensatz): Let K_S be compact, $f \geq 0$ on $K_S \Rightarrow \forall \epsilon$ real, $\epsilon > 0 : f + \epsilon \in T_S$.
- 2. SPSS fails in general if we drop the assumption that "K is compact". For example:

(i) Consider $n = 1$, $S = \{X^3\}$, then $K_S = [0, \infty)$ (noncompact). Take $f = X + 1$. Then $f > 0$ on K_S . Claim: $f \notin T_S$, indeed elements of T_S have the form $t_0 + t_1 X^3$, where $t_0, t_1 \in \sum_{i=1}^{\infty} \mathbb{R}[X]^2$. We have shown before in Lecture 15, Example $2.4(1)(iii)$ that non zero elements of this preordering either have even degree or odd degree $>$ 3.

(ii) Consider $n \geq 2, S = \emptyset$, then $K_S = \mathbb{R}^n$. Take strictly positive versions of the Motzkin polynomial

$$
m(X_1, X_2) := 1 - X_1^2 X_2^2 + X_1^2 X_2^4 + X_1^4 X_2^2,
$$

i.e. $m_{\epsilon} := m(X_1, X_2) + \epsilon$; $\epsilon \in \mathbb{R}_+$. Then $m_{\epsilon} > 0$ on $K_S = \mathbb{R}^2$, and it is easy to show that $m_{\epsilon} \notin T_S = \sum \mathbb{R}[\underline{X}]^2 \ \forall \epsilon \in \mathbb{R}_+$.

3. SPSS fails in general for a quadratic module instead of a preordering. [Mihai Putinar's question answered by Jacobi + Prestel in Dissertation of T. Jacobi (Konstanz)]

-
- 4. SPSS fails in general if the condition " $f > 0$ on K_S " is replaced by " $f > 0$ on K_S ".

Example (Stengle): Consider $n = 1, S = \{(1 - X^2)^3\}, K_S = [-1, 1]$ compact. Take $f := 1 - X^2 \geq 0$ on K_S but $1 - X^2 \notin T_S$. (This example has already been considered in Lecture 15, Example 2.4(1)(ii).

5. PSS holds for any real closed field but not SPSS:

Example: Let R be a non archimedean real closed field. Take $n =$ $1, S = \{(1 - X^2)^3\},\$ then $K_S = [-1, 1]_R = \{x \in R \mid -1 \le x \le 1\}.$ Take $f = 1 + t - X^2$, where $t \in R^{>0}$ is an infinitesimal element (i.e. $0 < t < \epsilon$, for every positive rational ϵ). Then $f > 0$ on K_S . We claim that $f \notin T_S$:

Let v be the natural valuation on R. So $v(t) > 0$. Now suppose for a contradiction that $f \in T_S$. Then

$$
1 + t - X^2 = t_0 + t_1(1 - X^2)^3; \ t_0, t_1 \in \sum R[X]^2 \tag{1}
$$

Let $t_i = \sum f_{ij}^2$; for $i = 0, 1$ and $f_{ij} \in R[X]$.

Let $s \in R$ be the coefficient of the lowest value appearing in the f_{ij} , i.e. $v(s) = \min\{v(a) \mid a \text{ is coefficient of some } f_{ij}\}.$

<u>Case I</u>. if $v(s) \geq 0$, then applying the residue map $(\theta_v \longrightarrow \overline{R}) := \frac{\theta_v}{\tau}$ \mathcal{I}_v ; defined by $x \mapsto \overline{x}$, where θ_v is the valuation ring and \mathcal{I}_v is the valuation ideal $\big)$ to (1), we obtain

$$
1 - X^2 = \overline{t_0} + \overline{t_1}(1 - X^2)^3
$$

and since $\overline{t_i} = \sum \overline{f_{ij}}^2 \in \sum \mathbb{R}[X]^2; i = 0, 1$; we get a contradiction to Example $2.4(1)(ii)$ of Lecture 15.

<u>Case II</u> if $v(s) < 0$. Dividing f by s^2 and applying the residue map we obtain

$$
0 = \frac{\overline{t_0}}{s^2} + \frac{\overline{t_1}}{s^2} (1 - X^2)^3
$$

(Note that $v(s^2) = 2v(s)$ is $\min\{v(a) \mid a \text{ is coefficient of some } f_{ij}^2\},$ i.e. $v(s^2) \le v(a)$ for any such coefficient a, so f_{ij}^2 $\frac{\partial^{j} y}{\partial s^{2}}$ has coefficients with value $\geq 0.$

So we obtain

 $0 = t'_0 + t'_1$ $t'_{1}(1-X^{2})^{3}$, with t'_{0} $v'_0, t'_1 \in \sum \mathbb{R}[X]^2$ not both zero. Since t_0 y'_0, t'_1 have only finitely many common roots in $\mathbb R$ and $1 - X^2 > 0$ on the finite set $(-1, 1)$, this is impossible. \square (claim)

6. SPSS holds over archimedean real closed fields.