REAL ALGEBRAIC GEOMETRY LECTURE NOTES

PART II: POSITIVE POLYNOMIALS

(Vorlesung 27 - für 02/02/2023)

SALMA KUHLMANN

Contents

1.	Archimedean modules	1
2.	Representation Theorem (Stone-Krivine, Kadison-Dubois)	2

1. ARCHIMEDEAN MODULES

Let A be a commutative ring, $\mathbb{Q} \subseteq A$, T a preprime.

Definition 1.1. Let M a T-module. M is archimedean if:

$$\forall \ a \in A, \exists \ N \geq 1, N \in \mathbb{Z}_+ \text{ s.t. } N+a, N-a \in M \ .$$

Proposition 1.2. Let T be a generating preprime, M a maximal proper T-module. Assume that M is archimedean. Then \exists a uniquely determined $\alpha \in \text{Hom}(A, \mathbb{R})$ s.t. $M = \alpha^{-1}(\mathbb{R}_+) = P_\alpha$. (In particular, M is an ordering, not just a semi-ordering.)

Proof. Let $a \in A$, define: cut $(a) = \{r \in \mathbb{Q} \mid r - a \in M\}$, this is an **upper cut** in \mathbb{Q} (i.e. final segment of \mathbb{Q}).

Claim 1: $\operatorname{cut}(a) \neq \emptyset$ and $\mathbb{Q} \setminus (\operatorname{cut}(a)) := \operatorname{L}(a) \neq \emptyset$, $(\operatorname{L}(a) \text{ is a lower cut in } \mathbb{Q})$.

Proof of claim 1. Since M is archimedean $\exists n \geq 1 \text{ s.t. } n-a \in M$, so $\operatorname{cut}(a) \neq \emptyset$. Also $\exists m \geq 1 \text{ s.t. } (m+a) \in M$.

If $-(m+1)-a \in M$, then adding we get $-1 \in M$, a contradiction (since M is proper). So we have $-(m+1)-a \notin M$, which implies that $-(m+1) \in L(a)$.

 \Box (claim 1)

Now define a map $\alpha: A \longrightarrow \mathbb{R}$ by

$$\alpha(a) := \inf \left(\operatorname{cut}(a) \right)$$

 α is well-defined by Claim 1.

Claim 2: $\alpha(1) = 1$, $\alpha(M) \subseteq \mathbb{R}_+$; $\alpha(a \pm b) = \alpha(a) \pm \alpha(b) \ \forall \ a, b \in A$ and $\alpha(tb) = \alpha(t) \ \alpha(b) \ \forall \ t \in T, b \in A$.

This is left as an exercise.

Claim 3:
$$\alpha(ab) = \alpha(a) \ \alpha(b) \ \forall \ a, b \in A$$

Proof of claim 3. T generating $\Rightarrow a = t_1 - t_2, t_1, t_2 \in T$

so,
$$\alpha(ab) = \alpha(t_1b - t_2b) = \alpha(t_1b) - \alpha(t_2b)$$

 $= \alpha(t_1)\alpha(b) - \alpha(t_2)\alpha(b)$ [by claim 2]
 $= (\alpha(t_1) - \alpha(t_2))\alpha(b) = \alpha(t_1 - t_2)\alpha(b) = \alpha(a)\alpha(b)$. \square (claim 3)

Claim 4:
$$\alpha^{-1}(\mathbb{R}_+) = M$$

Proof of claim 4. By Claim 2, $M \subseteq \alpha^{-1}(\mathbb{R}_+)$ so, by maximality of M and since $P_{\alpha} = \alpha^{-1}(\mathbb{R}_+)$ is an ordering it follows that $M = \alpha^{-1}(\mathbb{R}_+)$. \square

Corollary 1.3. Let A be a commutative ring with $\mathbb{Q} \subseteq A$, T an archimedean preprime, M a proper T-module. Then $\chi_M \neq \emptyset$.

Proof. Since T is archimedean, T is generating (because a = (n+a) - n, for $a \in A$) and M is a proper archimedean module (archimedean module because for an archimedean preprime T, every T-module is also archimedean). By Zorn's lemma extend M to a maximal proper archimedean T-module Q. Apply Proposition 1.2 to Q to get $\alpha \in \text{Hom}(A, \mathbb{R})$ such that $Q = \alpha^{-1}(\mathbb{R}_+)$. This implies $M \subseteq \alpha^{-1}(\mathbb{R}_+)$. So, $\alpha \in \chi_M$, which implies $\Rightarrow \chi_M \neq \emptyset$. \square

2. REPRESENTATION THEOREM (STONE-KRIVINE, KADISON-DUBOIS)

The following corollary (to Proposition 1.2 and Corollary 1.3) answers the question raised in the last lecture:

Corollary 2.1. (Stone-Krivine, Kadison-Dubois) Let A be a commutative ring with $\mathbb{Q} \subseteq A$, T an archimedean preprime in A, M a proper T-module. Let $a \in A$ and

$$\hat{a}: \chi \to \mathbb{R}$$
 defined by $\hat{a}(\alpha) := \alpha(a)$

If $\hat{a} > 0$ on χ_M , then $a \in M$.

Proof. Assume $\hat{a} > 0$ on χ_M , i.e. $\hat{a}(\alpha) > 0 \ \forall \ \alpha \in \chi_M$.

To show: $a \in M$

• Consider $M_1 := M - aT$

Since $\alpha(a) > 0 \ \forall \ \alpha \in \chi_M$, we have $\chi_{M_1} = \emptyset$ [because if $\alpha \in \chi_{M_1}$, then $\alpha(M_1) \subseteq \mathbb{R}_+$. So, $\alpha(-a) = -\alpha(a) \ge 0$. So, $\alpha(a) \le 0$, but $\alpha \in \chi_M$ so $\alpha(a) > 0$, a contradiction].

So (since M_1 is an archimedean T-module), we can apply Corollary 1.3 to M_1 to deduce that $-1 \in M_1$.

Write
$$-1 = s - at$$
, $s \in M, t \in T$
 $\Rightarrow at - 1 = s \in M$ (\star)

• Consider $\sum := \{r \in \mathbb{Q} \mid r + a \in M\}$

We **claim** that: $\exists \rho \in \Sigma$; $\rho < 0$

Once the claim is established we are done (with the proof of corollary) because

$$a = \underbrace{(a+\rho)}_{\in M} + \underbrace{(-\rho)}_{\in M} \in M .$$

<u>Proof of the claim</u>: First observe that $\sum \neq \emptyset$ (since $\exists n \geq 1$ s.t. $n+a \in T \subseteq M$, so $n \in \sum$).

Now fix $r \in \sum$, $r \ge 0$ and fix an integer $k \ge 1$ s.t $(k - t) \in T$

Write:
$$kr - 1 + ka = \underbrace{(k-t)}_{\in T} \underbrace{(r+a)}_{\in M} + \underbrace{(at-1)}_{\in M} + \underbrace{rt}_{\in M} \in M$$
 by (\star) .

Multiplying by $\frac{1}{k}$, we get

$$\left(r - \frac{1}{k}\right) + a \in M$$
, i.e. $\left(r - \frac{1}{k}\right) \in \sum$

Repeating we eventually find $\rho \in \sum$, $\rho < 0$.

Notation 2.2. For a quadratic module $M \subseteq \mathbb{R}[\underline{X}]$, set

$$K_M := \{ x \in \mathbb{R}^n \mid g(x) \ge 0 \ \forall \ g \in M \}.$$

Note that if $M = M_S$ with $S = \{g_1, \dots, g_s\}$, then $K_S = K_M$.

We have the following corollaries to Corollary 2.1. (Stone-Krivine, Kadison-Dubois):

Corollary 2.3. (Putinar's Archimedean Positivstellensatz) Let $M \subseteq \mathbb{R}[\underline{X}]$ be an archimedean quadratic module. Then for each $f \in \mathbb{R}[\underline{X}]$:

$$f > 0$$
 on $K_M \Rightarrow f \in M$.

Corollary 2.4. Let $A = \mathbb{R}[\underline{X}]$ and $S = \{g_1, \dots, g_s\}$. Assume that the finitely generated preordering T_S is archimedean. Then for all $f \in A$:

$$f > 0$$
 on $K_S \Rightarrow f \in T_S$.

Remark 2.5.

- 1. To apply the corollary we need a criterion to determine when a preordering (quadratic module) is archimedean.
- 2. T_S is archimedean \Rightarrow for $f = \sum X_i^2 : \exists N \text{ s.t. } N f = N \sum X_i^2 \in T_S$ $\Rightarrow N - \sum X_i^2 \ge 0 \text{ on } K_S.$
 - $\Rightarrow K_S$ is bounded. Also K_S is closed.
 - So T_S is archimedean implies K_S is compact.