REAL ALGEBRAIC GEOMETRY LECTURE NOTES PART II: POSITIVE POLYNOMIALS (Vorlesung 26 - für 31/01/2023)

SALMA KUHLMANN

Contents

1.	Schmüdgen's Positivstellensatz	1
2.	Representation theorem (Stone-Krivine, Kadison-Dubois)	1
3.	Preprimes, modules and semi-ordering in rings	3

1. SCHMÜDGEN'S POSITIVSTELLENSATZ

Theorem 1.1. Let $S = \{g_1, \ldots, g_s\}$ be a finite subset of $\mathbb{R}[X_1, \ldots, X_n]$ and $K_S \subseteq \mathbb{R}^n$ be a compact basic closed semi algebraic set. And let $f \in \mathbb{R}[\underline{X}]$ s.t. f > 0 on K_S . Then $f \in T_S$.

To prove this we first need the Representation Theorem:

2. REPRESENTATION THEOREM (STONE-KRIVINE, KADISON-DUBOIS)

Let A be a commutative ring with 1. Let

 $\chi := \operatorname{Hom}(A, \mathbb{R}) = \{ \alpha \mid \alpha : A \to \mathbb{R}, \alpha \text{ ring homomorphism} \}.$

Notation 2.1. If $M \subseteq A$ denote

$$\chi_M = \left\{ \alpha \in \chi \mid \alpha(M) \subseteq \mathbb{R}_+ \right\} \,.$$

Notation 2.2. For $a \in A$ define a map

$$\hat{a}: \chi \to \mathbb{R}$$
 by
 $\hat{a}(\alpha) := \alpha(a)$

Remark 2.3. Let $M \subseteq A$, with notations 2.1 and 2.2 we see that

$$\chi_M := \left\{ \alpha \in \chi | \ \alpha(M) \subseteq \mathbb{R}_+ \right\}$$
$$= \left\{ \alpha \in \chi | \ \alpha(a) \ge 0, \forall \ a \in M \right\}$$
$$= \left\{ \alpha \in \chi | \ \hat{a}(\alpha) \ge 0, \forall \ a \in M \right\}$$

So, χ_M is "the nonnegativity set" of M in χ .

Observation 2.4. $a \in M \Rightarrow \hat{a} \ge 0$ on χ_M , because if $\alpha \in \chi_M$, then $\hat{a}(\alpha) \ge 0$ (by definition).

Conversely, answer the question: for $a \in A$, if $\hat{a} > 0$ on $\chi_M \Rightarrow a \in M$?

Exkurs 2.5. One can view $\chi = \text{Hom}(A, \mathbb{R})$ as a topological subspace of (Sper(A), spectral topology) as follows:

1. Embedding of $\operatorname{Hom}(A, \mathbb{R})$ in $\operatorname{Sper}(A)$:

Consider the map defined by

$$\operatorname{Hom}(A,\mathbb{R}) \to \operatorname{Sper}(A)$$

$$\alpha \mapsto P_{\alpha} := \alpha^{-1}(\mathbb{R}_+),$$

where (recall that) $\text{Sper}(A) := \{P ; P \text{ is an ordering of } A\}.$

Then (i) this map is well defined i.e. $P_{\alpha} \subseteq A$ is an ordering.

- (ii) this map is injective : $\alpha \neq \beta \Rightarrow P_{\alpha} \neq P_{\beta}$.
- (iii) support $(P_{\alpha}) = \ker \alpha$.
- 2. Topology on χ :

Endow χ with a topology : for $a \in A$

$$U(\hat{a}) = \{ \alpha \in \chi \mid \hat{a}(\alpha) > 0 \}$$

is a subbasis of open sets. Then

- (iv) for $a \in A$, the map $\hat{a} : \chi \to \mathbb{R}$ is continuous in this topology.
- (v) in fact this topology on χ is the weakest topology on χ for which \hat{a} is continuous for all $a \in A$, i.e. if τ is any other topology on χ which makes all these maps \hat{a} (for $a \in A$) continuous then τ has more open sets than this weakest topology (i.e. $U(\hat{a})$ lies in τ).

(vi) this topology is also the topology induced on χ via the embedding $\alpha \mapsto P_{\alpha}$ giving Sper(A) the spectral topology [just use the fact that $\hat{a}(\alpha) > 0 \Leftrightarrow a \notin -P_{\alpha} \Leftrightarrow a >_{P_{\alpha}} 0$. Spectral topology: $U(a) = \{P ; a \notin -P\} = \{P \mid a >_P 0\}$].

Now we are back to the <u>question</u> (in Observation 2.4): for $a \in A$, does $\hat{a} > 0$ on $\chi_M \Rightarrow a \in M$?

Yes under additional assumptions on the subset M that we shall now study:

3. PREPRIMES, MODULES AND SEMI-ORDERINGS IN RINGS

Let A be a commutative ring with 1 and $\mathbb{Q} \subseteq A$. The concept of preordering generalizes in two directions:

(i) Preprimes

(ii) Modules (special case: quadratic modules)

Definitions 3.1. (1) A **preprime** is a subset T of A such that

 $T + T \subseteq T; \quad TT \subseteq T; \quad \mathbb{Q}_+ \subseteq T.$

(2) Let T be a preprime of A. $M \subseteq A$ is a T-module if

$$M + M \subseteq M; TM \subseteq M; 1 \in M$$
 (i.e. $T \subseteq M$).

[Note that in particular, a preprime T is a T-module.]

(3) A preprime T of A is said to be generating if T - T = A.

Note that if T is any preprime then T - T is already a subring of A because

$$(t_1 - t_2) + (t_3 - t_4) = (t_1 + t_3) - (t_2 + t_4)$$

$$(t_1 - t_2)(t_3 - t_4) = (t_1 t_3 + t_2 t_4) - (t_1 t_4 + t_2 t_3) .$$

Proposition 3.2. Every preordering T of A is a generating preprime.

Proof. (i) For
$$\frac{m}{n} \in \mathbb{Q}$$
: $\frac{m}{n} = \left(\frac{1}{n}\right)^2 mn = \underbrace{\frac{1}{n^2} + \ldots + \frac{1}{n^2}}_{\text{(mn-times)}}$
so $\mathbb{Q}_+ \subseteq T$.

(ii) For
$$a \in A$$
, $a = \left(\frac{1+a}{2}\right)^2 - \left(\frac{1-a}{2}\right)^2$.
So $A = T - T$.

Definitions 3.3. (1) A quadratic module is a *T*-module over the preprime $T = \sum A^2$.

- (2) A *T*-module *M* is **proper** if $(-1) \notin M$.
- (3) A semi-ordering M is a quadratic module such that moreover

$$M \cup (-M) = A; M \cap (-M) = \mathfrak{p}$$
 is a prime ideal in A.

Proposition 3.4.

(a) Suppose T is a generating preprime and M is a maximal proper T-module, then $M \cup (-M) = A$.

(b) Suppose T is a preordering and M a maximal proper T-module then $\mathfrak{p} = M \cap (-M)$ is a prime ideal.

(c) Therefore: if T is a preordering and M is a maximal proper T-module then M is a semi-ordering.

Proof. Similar to proof in the preordering case (a) Let $a \in A$, $a \notin M \cup (-M)$. By maximality of M, we have:

 $-1 \in (M + aT)$ and $-1 \in (M - aT)$.

Therefore, $-1 = s_1 + at_1$ and $-1 = s_2 - at_2$; for some $s_1, s_2 \in M$ and $t_1, t_2 \in T$.

This implies $-at_1 = 1 + s_1$ and $at_2 = 1 + s_2$.

So $-at_1t_2 = t_2 + s_1t_2$ and $at_2t_1 = t_1 + s_2t_1$.

So
$$0 = t_2 + t_1 + s_1 t_2 + t_1 s_2$$
.

So $-t_1 = t_2 + s_1 t_2 + t_1 s_2 \in M$.

Now since T is generating, pick $t_3, t_4 \in T$ such that $a = t_3 - t_4$, then

 $-1 = s_1 + at_1 = s_1 + (t_3 - t_4)t_1 = s_1 + t_1t_3 + t_4(-t_1) \in M$. This is a contradiction.

(b) $\mathfrak{p} = M \cap -M$. Clearly $\mathfrak{p} + \mathfrak{p} \subseteq \mathfrak{p}, -\mathfrak{p} = \mathfrak{p}, 0 \in \mathfrak{p}, T\mathfrak{p} \subseteq \mathfrak{p}$. Since $A = T - T \Rightarrow A\mathfrak{p} \subset \mathfrak{p}$. Thus \mathfrak{p} is an ideal. 4

So far we have only used that T is a generating preprime, <u>to show</u> that \mathfrak{p} is a prime ideal we need that T is preordering: Suppose $ab \in \mathfrak{p}, a \notin \mathfrak{p}$. Without loss of generality assume $a \notin M$. Now this implies: $-1 \in M + aT$, so -1 = s + at; $s \in M, t \in T$ $\Rightarrow -b^2 = sb^2 + ab^2t \in M + \mathfrak{p} \subseteq M$. Now since $b^2 \in T \subseteq M$, this implies $b^2 \in M \cap -M = \mathfrak{p}$. So we are reduced to showing: $b^2 \in \mathfrak{p} \Rightarrow b \in \mathfrak{p}$. Suppose $b^2 \in \mathfrak{p}, b \notin \mathfrak{p}$. Without loss of generality $b \notin M$. Thus -1 = s + bt, for some $s \in M$ and $t \in T$. So $1 + 2s + s^2 = (1 + s)^2 = (-bt)^2 = b^2t^2 \in \mathfrak{p} = M \cap -M$.

Thus $-1 = 2s + s^2 + \underbrace{(-b^2t^2)}_{(\in M)} \in M$, a contradiction since $-1 \notin M$.

(c) Clear.

Our next aim is to show that under the additional assumption: "M is archimedian", then a maximal proper module M over a preordering is an ordering not just a semi-ordering. This is crucial in proof of Kadison-Dubois.