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1. ALGEBRAIC INDEPENDENCE AND TRANSCENDENCE DEGREE

Definition 1.1. (Recall) Let E/F be a field extension:

(1) A C E is called algebraically independent over F if V ay,...,a, € A
there exists no nonzero polynomial f € F[X;,..., X,]s.t. f(a1,...,a,) =0.

(2) A C E is called a transcendence basis of E/F if A is a maximal subset

(w.r.t. inclusion) of F which is algebraically independent over F.

Lemma 1.2. Let E/F be a field extension.

(1) (Steinitz exchange) S C F' is algebraically independent over F iff V s €
S : s is transcendental over F(S — {s}) (the subfield of E generated by

S —{s}).

(2) S C E is a transcendence base for E/F iff S is algebraically independent
over F' and F is algebraic over F(5). O]

Theorem 1.3. The extension E/F has a transcendence base and any two
transcendence bases of E/F have the same cardinality.

Proof. The existence follows by Zorn’s lemma and the second statement uses
the Steinitz exchange lemma (above). O
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Definition 1.4. The cardinality of a transcendence base of E/F is called
the transcendence degree of E/F, denoted by trdegp(F).

2. KRULL DIMENSION OF A RING

Definition 2.1 Let A be a commutative ring with 1.

(1) A chain of prime ideals of A is of the form
{0} CpoCp1 C...Cpr & ... C A where p; are prime ideals of A.

(2) The Krull dimension of A, denoted by dim (A) is defined to be the
maximum k such that there is a chain of prime ideals of length k in A, i.e.
9o C 1 C ... C o [dim(A) can be infinite if arbitrary long chains].

Theorem 2.2. Let F be a field and I be any prime ideal in F'[X]. Then

o (55 (5 (25))

Recall 2.3. For S C F™
Z(S) ={f e FIX] | f(z) =0,V z €5}

is the ideal of polynomials vanishing on S.

Definition 2.4. Dimension of semi-algebraic sets C R": Let K C R"
be a semi-algebraic set. Then

dim (K) := dim(?%) :

In the last lecture, we proved the following proposition:

Proposition 2.5. Suppose n > 3. Let S = {g1,...,9s} be a finite subset of
R[X] such that int(Kg)# (). Then there exists f € R[X] such that f > 0 on
R™and f ¢ Ts .

This is just a special case of the following result due to Scheiderer:
Theorem 2.6. Let S be a finite subset of R[.X] and Kg C R" s.t. dimKg >
3. Then there exists f € R[X]; f >0 on R" and f ¢ T&s.

To deduce Proposition 2.5 using Theorem 2.6 it suffices to prove the following
lemma:
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Lemma 2.7. Let K C R" be a semi algebraic subset. Then
int(K) # ¢ = dim (K) =n

Proof. We claim that Z(K) = {0} :
fE€IL(K)= f=0on K= f=0onint (K)= f vanishes on a nonempty
——

(#¢)
open set = f =0 (by Remark 2.2 of lecture 2).

So, dim (K) = dim (R[X]) = trdegp(R(X) = n.

3. LOW DIMENSIONS

Proposition 3.1. Let n = 2, Kg C R? and Kg contains a 2-dimensional
cone. Then 3 f € R[X,Y]; f >0 onR?* f ¢ Tg.

Definition 3.2. (For n = 1) Let K be a basic closed semi algebraic subset
of R. Then K is a finite union of intervals.

The natural description S of K as a basic closed semi algebraic subset is
defined as

1. if a € R is the smallest element of K, then take X —a € S
2. if a € R is the greatest element of K, then take a — X € S
3. ifa,be K,a<b, (a,b) N K = ¢, then take (X —a)(X —b) € S

4. no other polynomial should be in S.

Proposition 3.3. Let K C R be a non-empty basic closed semi algebraic
subset and S is the natural description of K. Then V f € R[X]

f>0on K & feTs,

i.e. for every basic semi algebraic subset K of R, there exists a description
S (namely the natural) so that T is saturated.

Proposition 3.4. Let K C R be a non-compact basic semi algebraic subset
and S be a description of K. Then

Ty is saturated <> S" 2O S (up to a scalar multiple factor).

Remark 3.5. Summarizing:
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(1) dim(Kg) > 3 = Ty is not saturated.

(2) dim(Kg) = 2 = Ts can be or cannot be saturated (depending on the
geometry of K and S).

(3) dim(Kg) = 1 = Tg can be or cannot be saturated [but depends on K
and description S of K).

After all this discussion about positive polynomials, strictly positive poly-
nomials, we now want to show Schmiidgen’s Positivstellensatz:

Theorem 3.6. (Schmiidgen’s Positivstellensatz) Let S = {g1,...,¢s} be a
finite subset of R[X7,..., X,] and Kg C R" be a compact non-empty basic
closed semi algebraic set. And let f € R[X] s.t. f>0on Kg. Then f € Tgs.

Note that this holds for every finite description S of K.

To prove this we first need Representation Theorem (Stone-Krivine, Kadison-
Dubois), which will be proved in the next lecture.



