REAL ALGEBRAIC GEOMETRY LECTURE NOTES PART II: POSITIVE POLYNOMIALS (Vorlesung 24 - Gelesen am 24/01/2023)

SALMA KUHLMANN

Contents

1. RING OF FORMAL POWER SERIES

Definition 1.1. (Recall) Let $S = \{g_1, \ldots, g_s\} \subseteq \mathbb{R}[X_1, \ldots, X_n]$, then

 $\mathbf{K}_{\mathbf{S}} := \{ x \in \mathbb{R}^n \mid g_i(x) \ge 0 \ \forall \ i = 1, \dots, s \},\$

 $\mathrm{T}_{\textnormal{\textbf{S}}} \coloneqq \begin{cases} \end{cases}$ $e_1,...,e_s \in \{0,1\}$ $\sigma_e \, g_1^{e_1} \ldots g_s^{e_s} \mid \sigma_e \in \Sigma \mathbb{R}[\underline{X}]^2, e = (e_1, \ldots, e_s) \,$ is the preordering generated by S.

Proposition 1.2. Let $n \geq 3$. Let S be a finite subset of $\mathbb{R}[\underline{X}]$ such that $K_S \subseteq \mathbb{R}^n$ has non empty interior. Then $\exists f \in \mathbb{R}[\underline{X}]$ such that $f \geq 0$ on \mathbb{R}^n and $f \notin T_S$.

To prove proposition 1.2 we need to learn a few facts about formal power series rings:

Definition 1.3. $\mathbb{R}[[X]] := \mathbb{R}[[X_1, \ldots, X_n]]$ ring of formal power series in $\underline{X} = (X_1, \ldots, X_n)$ with coefficients in \mathbb{R} , i.e., $f \in \mathbb{R}[[\underline{X}]]$ is expressible uniquely in the form

 $f = f_0 + f_1 + \ldots,$

.

where f_i is a homogenous polynomial of degree i in the variables X_1, \ldots, X_n

Here:

- Addition is defined point wise, and
- multiplication is defined using distributive law:

$$
\left(\sum_{i=0}^{\infty} f_i\right)\left(\sum_{i=0}^{\infty} g_i\right) = (f_0g_0) + (f_0g_1 + f_1g_0) + (f_0g_2 + f_1g_1 + f_2g_0) + \ldots = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} (f_ig_j)\right)
$$

So, both addition and multiplication are well defined and $\mathbb{R}[[X]]$ is an integral domain and $\mathbb{R}[\underline{X}] \subseteq \mathbb{R}[[\underline{X}]]$.

Notation 1.4. Fraction field of $\mathbb{R}[[X]]$ is denoted by

$$
ff(\mathbb{R}[[\underline{X}]]):=\mathbb{R}((\underline{X})).
$$

The <u>valuation</u> $v : \mathbb{R}[[X]] \to \mathbb{Z} \cup {\infty}$ defined by:

$$
v(f) = \begin{cases} \text{ least } i \text{ s.t. } f_i \neq 0, \text{ if } f \neq 0\\ \infty, \text{ if } f = 0 \end{cases}
$$

extends to $\mathbb{R}((X))$ via

.

$$
v\bigg(\frac{f}{g}\bigg) := v(f) - v(g) .
$$

Lemma 1.5. Let $f \in \mathbb{R}[[\underline{X}]]$; $f = f_k + f_{k+1} + \ldots$, where f_i homogeneous of degree i, $f_k \neq 0$. Assume that f is a sos in $\mathbb{R}[[X]]$.

Then k is even and f_k is a sum of squares of forms of degree $\frac{k}{2}$.

Proof.
$$
f = g_1^2 + ... + g_l^2
$$
, and
\n $g_i = g_{ij} + g_{i(j+1)} + ...$, with $j = \min\{v(g_i) \; ; \; i = 1, ..., l\}$
\nThen $f_0 = ... = f_{2j-1} = 0$ and $f_{2j} = \sum_{i=1}^k g_{ij}^2 \neq 0$
\nSo, $k = 2j$.

1.6. Units in $\mathbb{R}[[\underline{X}]]$: Let $f = f_0 + f_1 + \dots$, with $v(f) = 0$ *i.e.* $f_0 \neq 0$. Then f factors as

 $f = a(1 + t);$ where $a \in \mathbb{R}^{\times}$,

 $t \in \mathbb{R}[[\underline{X}]]$ and $v(t) \geq 1$. Indeed, set $a := f_0 \in \mathbb{R} \setminus \{0\}; t := \frac{1}{f_0}(f_1 + f_2 + ...)$

Lemma 1.7. $f \in \mathbb{R}[[X]]$ is a unit of $\mathbb{R}[[X]]$ if and only if $f_0 \neq 0$ (i.e. $v(f) = 0$.

Proof:
$$
\frac{1}{1+t} = 1 - t + t^2 - \dots
$$
, for $t \in \mathbb{R}[[X]]$; $v(t) \ge 1$

is a well defined element of $\mathbb{R}[[X]]$.

So, if
$$
v(f) = 0
$$
, then $f = a(1 + t)$ with $a \in \mathbb{R}^\times$ gives
\n
$$
f^{-1} = \frac{1}{a} \frac{1}{(1+t)} \in \mathbb{R}[[\underline{X}]].
$$

Corollary 1.8. It follows that $\mathbb{R}[[\underline{X}]]$ is a local ring, with $I = \{f \mid v(f) \geq 1\}$ as its unique maximal ideal (the quotient is a field \mathbb{R}).

Lemma 1.9. Let $f \in \mathbb{R}[[X]]$ a positive unit, i.e. $f_0 > 0$. Then f is a square in $\mathbb{R}[[\underline{X}]]$.

Proof.
$$
f = a(1 + t)
$$
; $a \in \mathbb{R}, a > 0, v(t) \ge 1$
\n $\sqrt{f} = \sqrt{a}\sqrt{1 + t}$,
\nwhere $\sqrt{1 + t} := (1 + t)^{1/2} = 1 + \frac{1}{2}t - \frac{1}{8}t^2 + ...$ is a well defined element of
\n $\mathbb{R}[[\underline{X}]]$

<u>Remark:</u> For $u \in \mathbb{R}[[X]]$ with $v(u) > 0$ (i.e. $u(0) = 0$) and $\alpha \in \mathbb{R}$, one can define $(1+u)^{\alpha}$:= $+ \infty$ $n=0$ α_n $\frac{\alpha_n}{n!}u^n \in \mathbb{R}[[\underline{X}]]$ where $\alpha_n = \alpha(\alpha - 1)\cdots(\alpha - n + 1)$. Then $p_u : \alpha \to (1+u)^{\alpha}$ is a group morphism $(\mathbb{R}, +) \to (\mathbb{R}[[\underline{X}]], \times)$ with $p_u(1) = 1 + u.$

Lemma 1.10. Suppose $n \geq 3$. Then $\exists f \in \mathbb{R}[\underline{X}]$ such that $f \geq 0$ on \mathbb{R}^n and f is not a sum of squares in $\mathbb{R}[[X]]$.

Proof. Let $f \in \mathbb{R}[\underline{X}]$ be any homogeneous polynomial which is ≥ 0 on \mathbb{R}^n but is not a sum of squares in $\mathbb{R}[X]$ (by Hilbert's Theorem such a polynomial exists). Now by lemma 1.5 it follows that f is not sos in $\mathbb{R}[[X]]$.

Now we prove Proposition 1.2:

Proof of Proposition 1.2. Let $S = \{g_1, \ldots, g_s\}$

 \Box

• W.l.o.g. assume $g_i \neq 0$, for each $i = 1, \ldots, s$. So $g := \prod^s g_i \neq 0$ $\text{int}(K_S) \neq \emptyset \Rightarrow \exists p := (p_1, \ldots, p_n) \in \text{int}(K_S) \text{ with } g(p) \neq 0.$ Thus $q_i(p) > 0$ $\forall i = i, \ldots, s$.

• W.l.o.g. assume $p = 0$ the origin

(by making a variable change $Y_i := X_i - p_i$, and noting that $\mathbb{R}[Y_1, \ldots, Y_n] = \mathbb{R}[X_1, \ldots, X_n]$)

So $q_i(0,\ldots,0) > 0$ for each $i = i,\ldots,s$ (i.e. has positive constant term), that means $g_i \in \mathbb{R}[[\underline{X}]]$ is a positive unit in $\mathbb{R}[[\underline{X}]] \ \forall \ i = 1, \ldots, s$.

By Lemma 1.9 (on positive units in power series): $g_i \in \mathbb{R}[[X]]^2 \ \forall \ i = i, \ldots, s$. So the preordering T_S^A generated by $S = \{g_1, \ldots, g_s\}$ in the ring $A := \mathbb{R}[[\underline{X}]]$ is just $\Sigma \mathbb{R}[[\underline{X}]]^2$.

Now using Lemma 1.10 : $\exists f \in \mathbb{R}[\underline{X}], f \geq 0$ on \mathbb{R}^n but f is not a sum of squares in $\mathbb{R}[[\underline{X}]]$ (i.e. $f \notin \Sigma \mathbb{R}[[\underline{X}]]^2 = T_S^A$).

So
$$
f \notin T_S = T_S^A \cap \mathbb{R}[[\underline{X}]]
$$
. \square (Proposition 1.2)

Proposition 1.2 that we just proved is just a special case of the following result due to Scheiderer:

Theorem 1.11. Let S be a finite subset of $\mathbb{R}[\underline{X}]$ such that K_S has dimension ≥ 3 . Then $\exists f \in \mathbb{R}[\underline{X}]$; $f \geq 0$ on \mathbb{R}^n and $f \notin T_S$.

To understand this result we need a reminder about dimension of semi algebraic sets from B5.

2. ALGEBRAIC INDEPENDENCE

Let E/F be a field extension:

Definition 2.1. (1) $a \in E$ is algebraic over F if it is a root of some non zero polynomial $f(X) \in F[X]$, otherwise a is a **transcendental** over F.

(2) $\{a_1, \ldots, a_n\} \subseteq E$ is called **algebraically independent** over F if there is no nonzero polynomial $f(x_1, \ldots, x_n) \in F[X_1, \ldots, X_n]$ s.t. $f(a_1, \ldots, a_n) = 0$. In general $A \subseteq E$ is algebraically independent over F if every finite subset of A is algebraic independent over F.

(3) A transcendence base of E/F is a maximal subset (w.r.t. inclusion) of E which is algebraically independent over F .