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1. RING OF FORMAL POWER SERIES

Definition 1.1. (Recall) Let S = {¢1,...,9s} CR[Xq,...,X,], then
Kg := {xER” | gi(x) EOVZ':L...,S},

tee{ Y osa

e1,..,es€{0,1}
ordering generated by S.

0. € SRIX]% e = (ey,... ,es)} is the pre-

Proposition 1.2. Let n > 3. Let S be a finite subset of R[.X] such that
Kg C R" has non empty interior. Then 3 f € R[X] such that f > 0 on R"
and f ¢ Ts .

To prove proposition 1.2 we need to learn a few facts about formal power
series rings:

Definition 1.3. R[[X]] := R[[X3,...,X,]] ring of formal power series
in X = (Xy,...,X,) with coefficients in R, i.e. , f € R[[X]] is expressible
uniquely in the form

f=hh+hHt+. .,

where f; is a homogenous polynomial of degree i in the variables X1,..., X,
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Here:
e Addition is defined point wise, and

e multiplication is defined using distributive law:

( > fi) ( > gi> = (fogo)+(fogr+frg0)+(fogat frogitfago)+. .. = ) |
= =0 k=0

So, both addition and multiplication are well defined and R[[X]] is an integral
domain and R[X] C R[[X]] .
Notation 1.4. Fraction field of R[[X]] is denoted by
FFRIX]]) == R((X).

The valuation v : R[[X]] — Z U {oc} defined by:

least i s.t. f; #0 ,if f #0

v(f) = :

00 Jf f=0

extends to R((X)) via

Lemma 1.5. Let f € R[[X]]; f = fx + fe41 + ..., where f; homogeneous of
degree i, fr # 0. Assume that f is a sos in R[[X]].

Then k is even and fj, is a sum of squares of forms of degree &

5.
Proof. f=¢?+ ...+ g7, and
Gi = Gij + Gij+1) + - .., with j =min{v(g;) ; 1 =1,...,1}

k
Then fo=...= fojo1 =0and fo; = > g, #0

i=1
So, k=2j. O
1.6. Units in R[[X]]: Let f = fo+ fi+... , with v(f) =0 i.e. fo #0.

Then f factors as
f=a(l+t); wherea e R*,

t € R[[X]] and v(t) > 1. Indeed, set a := fo € R\ {0}; t:= %(fl +fo+...)
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Lemma 1.7. f € R[[X]] is a unit of R[[X]] if and only if fo # 0 (i.e.
v(f)=0).

1
Proof: e 1—t4+t*—. . fort e R[X]]; v(t)>1
is a well defined element of R[[X]].

So, if v(f) =0, then f = a(l +t) with a € R* gives

=il Ry 0

T a1+t

Corollary 1.8. Tt follows that R[[X]] is a local ring, with I = {f | v(f) > 1}
as its unique maximal ideal (the quotient is a field R).

Lemma 1.9. Let f € R[[X]] a positive unit, i.e. fo > 0. Then f is a square
in RI.X]].
Proof. f=a(l+1t); a € R,a>0,v(t) >1
Vi=Vavl+t,
1 1
where V14t := (1+t)Y2 =1+ Qt — gtz + ... 1is a well defined element of
R{[X]]
0
Remark: For u € R[[X]] with v(u) > 0 (i.e. u(0) = 0) and a € R, one can
+o00
define (1 +u)* := ) 2" € R[[X]] where o, = a(a —1)---(a —n +1).
n=0
Then p, : @ = (1 + w)® is a group morphism (R,+) — (R[[X]], x) with
pu(l) =1+ w.

Lemma 1.10. Suppose n > 3. Then 3 f € R[X] such that f > 0 on R"
and f is not a sum of squares in R[[X]] .

Proof. Let f € R[X] be any homogeneous polynomial which is > 0 on R"
but is not a sum of squares in R[X] (by Hilbert’s Theorem such a polynomial
exists). Now by lemma 1.5 it follows that f is not sos in R[[X]] . O

Now we prove Proposition 1.2:

Proof of Proposition 1.2. Let S = {g1,...,9s}
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e W.lo.g. assume ¢g; Z0, foreachi=1,...,s. So g:= Hgi Z=0
i=1

int(Kg) #0 = 3 p:= (p1,...,pn) € int(Kg) with g(p) # 0.

Thus gi(p) >0Vi=1i,...,5 .

e W.lLo.g. assume p =0 the origin

(by making a variable change Y; := X; — p; , and noting that
RYy, ..., Y] =R[Xq,..., X, )

So ¢;(0,...,0) >0 foreachi=14,...,s (i.e. has positive constant term),
that means ¢; € R[[X]] is a positive unit in R[[X]]Vi=1,...,s .
By Lemma 1.9 (on positive units in power series): g; € R[[K]f Vi=1i,...,s.

So the preordering Ts” generated by S = {g1,...,gs} in the ring A := R[[X]]
is just ZR[[X]]%

Now using Lemma 1.10 : 3 f € R[X], f > 0 on R" but f is not a sum of
squares in R[[X]] (i.e. f ¢ XR[[X]]?=T4%) .

So f¢Ts=T¢NR[[X]] . O(Proposition 1.2)

Proposition 1.2 that we just proved is just a special case of the following
result due to Scheiderer:

Theorem 1.11. Let S be a finite subset of R[X] such that Kg has dimension
>3. Then 3 feR[X];f>0onR"and f ¢ Ts .

To understand this result we need a reminder about dimension of semi
algebraic sets from B5.

2. ALGEBRAIC INDEPENDENCE
Let E/F be a field extension:

Definition 2.1. (1) a € E is algebraic over F if it is a root of some non
zero polynomial f(X) € F[X], otherwise a is a transcendental over F.

(2) {ai,...,a,} C E is called algebraically independent over F if there is
no nonzero polynomial f(xy,...,z,) € F[Xy,...,X,]s.t. f(a1,...,a,) =0.
In general A C F is algebraically independent over F' if every finite subset
of A is algebraic independent over F'.

(3) A transcendence base of E/F is a maximal subset (w.r.t. inclusion)
of E which is algebraically independent over F'.



