REAL ALGEBRAIC GEOMETRY LECTURE **NOTES** PART II: POSITIVE POLYNOMIALS (Vorlesung 23 - Gelesen am 19/01/2023)

SALMA KUHLMANN

Contents

1. PROOF OF HILBERT'S THEOREM (Continued)

Theorem 1.1. (Recall) (Hilbert) $\sum_{n,m} = \mathcal{P}_{n,m}$ iff

- (i) $n = 2$ or
- (ii) $m = 2$ or
- (iii) $(n, m) = (3, 4)$.

And in all other cases $\sum_{n,m} \subsetneq \mathcal{P}_{n,m}$.

We have shown one direction (\Leftarrow) of Hilbert's Theorem (1.1 above), i.e. if $n = 2$ or $m = 2$ or $(n, m) = (3, 4)$, then $\sum_{n,m} = \mathcal{P}_{n,m}$. To prove the other direction we have to show that:

$$
\sum_{n,m} \subsetneq \mathcal{P}_{n,m} \quad \forall (n,m) \text{ s.t. } n \ge 3, m \ge 4 \ (m \text{ even}) \text{ with } (n,m) \neq (3,4). \tag{1}
$$

Hilbert showed (using algebraic geometry) that $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$. This is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$ and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$, then

 $\sum_{n,m} \subsetneq \mathcal{P}_{n,m}$ for all $n \geq 3, m \geq 4$ and $(n,m) \neq (3,4)$, $(m \text{ even}).$

Proof. Clearly, given $F \in \mathcal{P}_{n,m} \setminus \sum_{n,m}$, then $F \in \mathcal{P}_{n+j, m} \setminus \sum_{n+j, m}$ for all $j \geq 0$.

Moreover, we claim: $F \in \mathcal{P}_{n,m} \setminus \sum_{n,m} \Rightarrow x_1^{2i} F \in \mathcal{P}_{n,m+2i} \setminus \sum_{n,m+2i} \forall i \geq 0$ Proof of claim: Assume for a contradiction that

for
$$
i = 1
$$
 $x_1^2 F(x_1, ..., x_n) = \sum_{j=1}^k f_j^2(x_1, ..., x_n),$

then L.H.S vanishes at $x_1 = 0$, so R.H.S also vanishes at $x_1 = 0$. So $x_1|f_j \forall j$, so $x_1^2|f_j^2 \forall i$. So, R.H.S is divisible by x_1^2 . Dividing both sides by x_1^2 we get a sos representation of F, a contradiction since $F \notin \sum_{n,m}$.

So we just need to show that: $\sum_{3,6} \subsetneq \mathcal{P}_{3,6}$, and $\sum_{4,4} \subsetneq \mathcal{P}_{4,4}$.

Hilbert described a method (non constructive) to produce counter examples in the 2 crucial cases, but no explicit examples appeared in literature for next 80 years.

In 1967 Motzkin presented a specific example of a ternary sextic form that is positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM

Proposition 2.1. The Motzkin form

$$
M(x, y, z) = z^6 + x^4y^2 + x^2y^4 - 3x^2y^2z^2 \in \mathcal{P}_{3,6} \setminus \sum_{3,6}.
$$

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with $a_1 = z^6, a_2 = x^4y^2, a_3 = x^2y^4$ and $n = 3$, clearly gives $M \ge 0$.

Degree arguments give M is not a sum of squares \Box

Lemma 2.2. (Arithmetic-geometric inequality I) Let $a_1, a_2, \ldots, a_n \geq 0$; $n \geq 1$. Then

$$
\frac{a_1+a_2+\ldots+a_n}{n}\geq (a_1a_2\ldots a_n)^{\frac{1}{n}}.
$$

Lemma 2.3. (Arithmetic-geometric inequality II) Let $\alpha_i \geq 0$, $a_i \geq 0$; $i = 1, \ldots, n$ with $\sum_{n=1}^{n}$ $i=1$ $\alpha_i = 1$. Then

$$
\alpha_1 a_1 + \ldots + \alpha_n a_n - a_1^{\alpha_1} \ldots a_n^{\alpha_n} \ge 0
$$

3. ROBINSON'S METHOD (1970)

In 1970's R. M. Robinson gave a ternary sextic based on the method described by Hilbert, but after drastically simplifying Hilbert's original ideas. He used it to construct examples of forms in $\mathcal{P}_{4,4} \setminus \sum_{4,4}$ as well as forms in $\mathcal{P}_{3,6} \setminus \sum_{3,6}$.

This method is based on the following lemma:

Lemma 3.1. A polynomial $P(x, y)$ of degree at most 3 which vanishes at eight of the nine points $(x, y) \in \{-1, 0, 1\} \times \{-1, 0, 1\}$ must also vanish at the ninth point.

Proof. Assign weights to the following nine points:

$$
w(x,y) = \begin{cases} 1, & \text{if } x, y = \pm 1 \\ -2, & \text{if } (x = \pm 1, y = 0) \text{ or } (x = 0, y = \pm 1) \\ 4, & \text{if } x, y = 0 \end{cases}
$$

Define the weight of a monomial as:

$$
w(x^k y^l) := \sum_{i=1}^9 w(q_i) x^k y^l(q_i) , \text{ for } q_i \in \{-1, 0, 1\} \times \{-1, 0, 1\}
$$

Define the weight of a polynomial $P(x, y) = \sum$ k, l $c_{k,l} x^k y^l$ as:

$$
w(P) := \sum_{k,l} c_{k,l} w(x^k y^l) \quad \text{for } c_{k,l} \in \mathbb{R}.
$$

Claim 1: $w(x^k y^l) = 0$ unless k and l are both strictly positive and even. Proof of claim 1: Let us compute the monomial weights

• if $k = 0, l \geq 0$: then we have

$$
w(xkyl) = 1 + (-1)l + 1 + (-1)l + (-2) + (-2)(-1)l = 0
$$

- if $l = 0, k \geq 0$: then similarly we have $w(x^k y^l) = 0$, and
- if $k, l > 0$: then we have

$$
w(x^k y^l) = 1 + (-1)^l + (-1)^k + (-1)^{k+l} = \begin{cases} 0, & \text{if either } k \text{ or } l \text{ is odd} \\ 4, & \text{otherwise} \end{cases}
$$

Claim 2:
$$
w(P) = \sum_{i=1}^{9} w(q_i)P(q_i)
$$

Proof of claim 2:
$$
w(P) := \sum_{k,l} c_{k,l} w(x^k y^l) = \sum_{k,l} c_{k,l} \sum_{i=1}^{9} w(q_i) x^k y^l(q_i)
$$

$$
= \sum_{i=1}^{9} w(q_i) \sum_{k,l} c_{k,l} x^k y^l(q_i) = \sum_{i=1}^{9} w(q_i) P(q_i)
$$

$$
\Box \text{ (claim 2)}
$$

Now, claim 1 and definition of $w(P) \Rightarrow$ if $deg(P(x, y)) \leq 3$ then $w(P) = 0$.

Also, from claim 2 we get:

$$
P(1,1) + P(1,-1) + P(-1,1) + P(-1,-1) + (-2)P(1,0) + (-2)P(-1,0) + (-2)P(0,1) + (-2)P(0,-1) + 4P(0,0) = 0
$$

Now verify that if $P(x, y) = 0$ for any eight (of the nine) points, then we are left with $\alpha P(x, y) = 0$ (for some $\alpha \neq 0$) at the ninth point.

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form

 $R(x, y, z) = x^6 + y^6 + z^6 - (x^4y^2 + x^4z^2 + y^4x^2 + y^4z^2 + z^4x^2 + z^4y^2) + 3x^2y^2z^2$ is psd but not a sos, i.e. $R \in \mathcal{P}_{3,6} \setminus \sum_{3,6}$.

Proof. Consider the polynomial

$$
P(x, y) = (x2 + y2 - 1)(x2 - y2)2 + (x2 - 1)(y2 - 1)
$$
 (2)
Note that $R(x, y, z) = Ph(x, y, z) = z6P(x/z, y/z)$.

By our observation: P_h is psd iff P psd; P_h is sos iff P is sos,

We shall show that $P(x, y)$ is psd but not sos.

Multiplying both sides of (2) by $(x^2 + y^2 - 1)$ and adding to (2) we get:

$$
(x2 + y2)P(x, y) = x2(x2 - 1)2 + y2(y2 - 1)2 + (x2 + y2 - 1)2(x2 - y2)2
$$
 (3)

From (3) we see that $P(x, y) \geq 0$, i.e. $P(x, y)$ is psd.

Assume
$$
P(x, y) = \sum_{j} P_j(x, y)^2
$$
 is sos

 $\text{deg}P(x, y) = 6$, so $\text{deg}P_j \leq 3 \forall j$.

By (2) it is easy to see that $P(0,0) = 1$ and $P(x, y) = 0$ for all other eight points $(x, y) \in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}\$, therefore every $P_j(x, y)$ must also vanish at these eight points.

Hence by Lemma 3.1 (above) it follows that: $P_i(0,0) = 0 \ \forall j$. So $P(0,0) = 0$, which is a contradiction.

Proposition 4.2. The quarternary quartic $Q(x, y, z, w) = w^4 + x^2y^2 + y^2z^2 +$ $x^2z^2 - 4xyzw$ is psd, but not sos, i.e., $Q \in \mathcal{P}_{4,4} \setminus \sum_{4,4}$.

Proof. The arithmetic-geometric inequality clearly implies $Q \geq 0$.

Assume now that $Q = \sum$ j q_j^2 , $q_j \in \mathcal{F}_{4,2}$.

Forms in $\mathcal{F}_{4,2}$ can only have the following monomials:

 $(x^2,y^2,z^2,w^2,xy,xz,xw,yz,yw,zw$

If x^2 occurs in some of the q_j , then x^4 occurs in q_j^2 with positive coefficient and hence in $\sum q_j^2$ with positive coefficient too, but this is not the case.

Similarly q_j does not contain y^2 and z^2 .

The only way to write x^2w^2 as a product of allowed monomials is $x^2w^2 =$ $(xw)^2$.

Similarly for y^2w^2 and z^2w^2 .

Thus each q_j involves only the monomials xy, xz, yz and w^2 .

But now there is no way to get the monomial $xyzw$ from \sum j q_j^2 , hence a contradiction.

$$
\Box
$$

Proposition 4.3. The ternary sextic $S(x, y, z) = x^4y^2+y^4z^2+z^4x^2-3x^2y^2z^2$ is psd, but not a sos, i.e., $S \in \mathcal{P}_{3,6} \setminus \sum_{3,6}$.

