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1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Recall) (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 or

(ii) m = 2 or

(iii) (n,m) = (3, 4).

And in all other cases
∑

n,m ( Pn,m .

We have shown one direction (⇐) of Hilbert’s Theorem (1.1 above), i.e.
if n = 2 or m = 2 or (n,m) = (3, 4), then

∑
n,m = Pn,m. To prove the other

direction we have to show that:∑
n,m ( Pn,m ∀(n,m) s.t. n ≥ 3,m ≥ 4 (m even) with (n,m) 6= (3, 4).

(1)

Hilbert showed (using algebraic geometry) that
∑

3,6 ( P3,6 and
∑

4,4 ( P4,4.
This is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If
∑

3,6 ( P3,6 and
∑

4,4 ( P4,4, then

1
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∑
n,m ( Pn,m for all n ≥ 3,m ≥ 4 and (n,m) 6= (3, 4), (m even).

Proof. Clearly, given F ∈ Pn,m \
∑

n,m, then F ∈ Pn+j, m \
∑

n+j, m for all
j ≥ 0.

Moreover, we claim: F ∈ Pn,m \
∑

n,m ⇒ x2i1 F ∈ Pn, m+2i \
∑

n, m+2i ∀ i ≥ 0

Proof of claim: Assume for a contradiction that

for i = 1 x21F (x1, . . . , xn) =
k∑
j=1

f 2
j (x1, . . . , xn),

then L.H.S vanishes at x1 = 0, so R.H.S also vanishes at x1 = 0.

So x1|fj ∀ j, so x21|f 2
j ∀ i. So, R.H.S is divisible by x21. Dividing both sides

by x21 we get a sos representation of F , a contradiction since F /∈
∑

n,m . �

So we just need to show that:
∑

3,6 ( P3,6, and
∑

4,4 ( P4,4.

Hilbert described a method (non constructive) to produce counter examples
in the 2 crucial cases, but no explicit examples appeared in literature for next
80 years.
In 1967 Motzkin presented a specific example of a ternary sextic form that
is positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM

Proposition 2.1. The Motzkin form

M(x, y, z) = z6 + x4y2 + x2y4 − 3x2y2z2 ∈ P3,6 \
∑

3,6.

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with
a1 = z6, a2 = x4y2, a3 = x2y4 and n = 3, clearly gives M ≥ 0.

Degree arguments give M is not a sum of squares �

Lemma 2.2. (Arithmetic-geometric inequality I) Let a1, a2, . . . , an ≥ 0
; n ≥ 1. Then

a1 + a2 + . . .+ an
n

≥ (a1a2 . . . an)
1
n .

Lemma 2.3. (Arithmetic-geometric inequality II) Let αi ≥ 0, ai ≥ 0;

i = 1, . . . , n with
n∑
i=1

αi = 1.Then
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α1a1 + . . .+ αnan − aα1
1 . . . aαn

n ≥ 0

3. ROBINSON’S METHOD (1970)

In 1970’s R. M. Robinson gave a ternary sextic based on the method described
by Hilbert, but after drastically simplifying Hilbert’s original ideas. He used
it to construct examples of forms in P4,4 \

∑
4,4 as well as forms in P3,6 \

∑
3,6

.

This method is based on the following lemma:

Lemma 3.1. A polynomial P (x, y) of degree at most 3 which vanishes at
eight of the nine points (x, y) ∈ {−1, 0, 1} × {−1, 0, 1} must also vanish at
the ninth point.

Proof. Assign weights to the following nine points:

w(x, y) =


1 , if x, y = ±1

−2 , if (x = ±1, y = 0) or (x = 0, y = ±1)

4 , if x, y = 0

Define the weight of a monomial as:

w(xkyl) :=
9∑
i=1

w(qi)x
kyl(qi) , for qi ∈ {−1, 0, 1} × {−1, 0, 1}

Define the weight of a polynomial P (x, y) =
∑
k,l

ck,l x
kyl as:

w(P ) :=
∑
k,l

ck,l w(xkyl) for ck,l ∈ R.

Claim 1: w(xkyl) = 0 unless k and l are both strictly positive and even.

Proof of claim 1: Let us compute the monomial weights

• if k = 0, l ≥ 0: then we have

w(xkyl) = 1 + (−1)l + 1 + (−1)l + (−2) + (−2)(−1)l = 0

• if l = 0, k ≥ 0: then similarly we have w(xkyl) = 0, and

• if k, l > 0: then we have

w(xkyl) = 1+(−1)l+(−1)k+(−1)k+l =

{
0 , if either k or l is odd

4 , otherwise
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� (claim 1)

Claim 2: w(P ) =
9∑
i=1

w(qi)P (qi)

Proof of claim 2: w(P ) :=
∑
k,l

ck,l w(xkyl) =
∑
k,l

ck,l

9∑
i=1

w(qi)x
kyl(qi)

=
9∑
i=1

w(qi)
∑
k,l

ck,lx
kyl(qi) =

9∑
i=1

w(qi)P (qi)

� (claim 2)

Now, claim 1 and definition of w(P ) ⇒ if deg(P (x, y)) ≤ 3 then w(P ) = 0.

Also, from claim 2 we get:
P (1, 1)+P (1,−1)+P (−1, 1)+P (−1,−1)+(−2)P (1, 0)+(−2)P (−1, 0)+

(−2)P (0, 1) + (−2)P (0,−1) + 4P (0, 0) = 0

Now verify that if P (x, y) = 0 for any eight (of the nine) points, then we are
left with αP (x, y) = 0 (for some α 6= 0) at the ninth point. �

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form

R(x, y, z) = x6 +y6 + z6− (x4y2 +x4z2 +y4x2 +y4z2 + z4x2 + z4y2) + 3x2y2z2

is psd but not a sos, i.e. R ∈ P3,6 \
∑

3,6 .

Proof. Consider the polynomial

P (x, y) = (x2 + y2 − 1)(x2 − y2)2 + (x2 − 1)(y2 − 1) (2)

Note that R(x, y, z) = Ph(x, y, z) = z6P (x/z, y/z).

By our observation: Ph is psd iff P psd; Ph is sos iff P is sos,

We shall show that P (x, y) is psd but not sos.

Multiplying both sides of (2) by (x2 + y2 − 1) and adding to (2) we get:

(x2 + y2)P (x, y) = x2(x2− 1)2 + y2(y2− 1)2 + (x2 + y2− 1)2(x2− y2)2 (3)

From (3) we see that P (x, y) ≥ 0, i.e. P (x, y) is psd.

Assume P (x, y) =
∑
j

Pj(x, y)2 is sos

degP (x, y) = 6, so degPj ≤ 3 ∀ j.
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By (2) it is easy to see that P (0, 0) = 1 and P (x, y) = 0 for all other eight
points (x, y) ∈ {−1, 0, 1}2 \{(0, 0)}, therefore every Pj(x, y) must also vanish
at these eight points.

Hence by Lemma 3.1 (above) it follows that: Pj(0, 0) = 0 ∀ j.
So P (0, 0) = 0 , which is a contradiction. �

Proposition 4.2. The quarternary quartic Q(x, y, z, w) = w4+x2y2+y2z2+
x2z2 − 4xyzw is psd, but not sos, i.e., Q ∈ P4,4 \

∑
4,4 .

Proof. The arithmetic-geometric inequality clearly implies Q ≥ 0.

Assume now that Q =
∑
j

q2j , qj ∈ F4,2 .

Forms in F4,2 can only have the following monomials:

x2, y2, z2, w2, xy, xz, xw, yz, yw, zw

If x2 occurs in some of the qj, then x4 occurs in q2j with positive coefficient

and hence in
∑

q2j with positive coefficient too, but this is not the case.

Similarly qj does not contain y2 and z2.

The only way to write x2w2 as a product of allowed monomials is x2w2 =
(xw)2.

Similarly for y2w2 and z2w2.

Thus each qj involves only the monomials xy, xz, yz and w2.

But now there is no way to get the monomial xyzw from
∑
j

q2j , hence a

contradiction.
�

Proposition 4.3. The ternary sextic S(x, y, z) = x4y2+y4z2+z4x2−3x2y2z2

is psd, but not a sos, i.e., S ∈ P3,6 \
∑

3,6 .

�


