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1. PROOF OF HILBERT’S THEOREM (Continued)
Theorem 1.1. (Recall) (Hilbert) >° =P, iff
(i) n=2or
(i) m =2 or
(iii) (n,m) = (3,4).
And in all other cases >~ C P, .

nm =

We have shown one direction (<) of Hilbert’s Theorem (1.1 above), i.e.
ifn=2orm=2or (n,m)=(3,4), then > =P, To prove the other
direction we have to show that: 7
> C Pum Y(n,m) s.t. n>3,m >4 (m even) with (n,m) # (3,4).

n,m =

(1)

Hilbert showed (using algebraic geometry) that ) ;o C Psgand », , C Paa.
This is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If 3 ;¢ C Py and }_, , C Puy, then
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Yoo C P foralln>3,m>4 and (n,m) # (3,4), (m even).

n,m =

Proof. Clearly, given F' € P \ D for all

Jj=>0.
Moreover, we claim: F' € P, \>_, ., = T3 F € Py, mt2i \ Do, s Vi >0

Proof of claim: Assume for a contradiction that

then F' S 7Dn_|_j7 m \ Z

n,m’ n+j, m

k
fori=1 x%F(xl,...,mn):Zf]?(xl,...,xn),
=1

then L.H.S vanishes at 1 = 0, so R.H.S also vanishes at x; = 0.
So x1|f; ¥ j, so 27| f; ¥ i. So, R.H.S is divisible by 27. Dividing both sides
by x? we get a sos representation of F', a contradiction since F ¢ Ynm - U

So we just need to show that: Y .« C Py, and Y, , C Paa.

Hilbert described a method (non constructive) to produce counter examples
in the 2 crucial cases, but no explicit examples appeared in literature for next
80 years.

In 1967 Motzkin presented a specific example of a ternary sextic form that
is positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM
Proposition 2.1. The Motzkin form
M(z,y, 2) = 2%+ a*y® + 2%y* — 32%y?2% € Pag \ D g6

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with
a; = 2% ay = %2, a3 = 2%y* and n = 3, clearly gives M > 0.

Degree arguments give M is not a sum of squares Il
Lemma 2.2. (Arithmetic-geometric inequality I) Let a1, as,...,a, >0
:n > 1. Then

ay+as+ ...+ ay,
n

3=

> (aaz...ap)

Lemma 2.3. (Arithmetic-geometric inequality II) Let o; > 0, a; > 0;
1=1,...,n with Zai = 1.Then

=1
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aja; + ...+ aga, —ait.oooal >0

n

3. ROBINSON’S METHOD (1970)

In 1970’s R. M. Robinson gave a ternary sextic based on the method described
by Hilbert, but after drastically simplifying Hilbert’s original ideas. He used
it to construct examples of forms in Pyq\ >, , as well as forms in P36\ > 54

This method is based on the following lemma:

Lemma 3.1. A polynomial P(z,y) of degree at most 3 which vanishes at
eight of the nine points (z,y) € {—1,0,1} x {—1,0,1} must also vanish at
the ninth point.

Proof. Assign weights to the following nine points:
1, ife,y==+1
w(z,y) =< =2, if (x==x1,y=0)or (z =0,y = £1)
4 ifx,y=0

Define the weight of a monomial as:
9

w(zky!) = Zw(qi)xkyl(qi) , for ¢ €{-1,0,1} x {-1,0,1}

i=1
Define the weight of a polynomial P(z,y) = Z cry 2y as:
kel

w(P) = Z cry w(zkyh)  for ¢y € R

k.l
Claim 1: w(z*y") = 0 unless k and [ are both strictly positive and even.

Proof of claim 1: Let us compute the monomial weights

o if t =0,0 > 0: then we have
wahy) =1+ (1) '+ 1+ (=)' +(=2)+ (-2)(-1)'=0
e if | =0,k > 0: then similarly we have w(z*y') = 0, and
o if £, 1 > 0: then we have
0, if either k or [ is odd

w(zty') = 1+ (=1)'+ (=D +(=1)"" = { .
4 , otherwise
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O (claim 1)
9
Claim 2: w(P) = Zw(%)P(qZ’)
i=1
9
Proof of claim 2: w(P) := Z cry w(zhyh) = Z Ck,l Z w(q:)x*y (4:)
k.l k.l i=1
9 9
=> w(a) > emrty'(a) =D w(e)Pg:)
i=1 kol i=1
O (claim 2)

Now, claim 1 and definition of w(P) = if deg(P(z,y)) <3 then w(P) = 0.

Also, from claim 2 we get:
P(1,1)+P(1,-1)+P(—-1,1)+P(—1,-1)+(=2)P(1,0)+(—2)P(—1,0)+
(—2)P(0,1) + (—2)P(0,—1) +4P(0,0) =0

Now verify that if P(z,y) = 0 for any eight (of the nine) points, then we are
left with aP(x,y) = 0 (for some « # 0) at the ninth point. O

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form
R(z,y,2) = 2+ 95+ 25 — (aty? + 2422 + y'a? + 222 + 2422 + 219?) + 322922
is psd but not a sos, i.e. R € Pag\ Y 54 -
Proof. Consider the polynomial

Plz,y) = (a® +y* = D(@® —?)* + (@ - 1)(y* — 1) (2)
Note that R(z,y,z) = Py(z,y,2) = 2°P(x/z,y/z).
By our observation: P, is psd iff P psd; P, is sos iff P is sos,
We shall show that P(x,y) is psd but not sos.
Multiplying both sides of (2) by (2? + y? — 1) and adding to (2) we get:

(22 +y*) P(z,y) = 2*(2* = 1)* +y°(y* — 1)* + (2 +¢* = 1)*(2® = y*)* (3)
From (3) we see that P(x,y) > 0, i.e. P(x,y) is psd.

Assume P(z,y) = Z Pj(x,y)? is sos
J

degP(z,y) = 6, so degP; <3V j.
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By (2) it is easy to see that P(0,0) = 1 and P(x,y) = 0 for all other eight
points (z,y) € {—1,0,1}?\ {(0,0)}, therefore every P;(z,y) must also vanish
at these eight points.

Hence by Lemma 3.1 (above) it follows that: P;(0,0) =0V j.

So P(0,0) = 0, which is a contradiction. O

Proposition 4.2. The quarternary quartic Q(z,y, z,w) = w*+z2%y*+y?22+
2?2 — dxyzw is psd, but not sos, i.e., @ € Paa\ D4y -

Proof. The arithmetic-geometric inequality clearly implies ¢ > 0.
Assume now that Q = Z qu , @5 € Faa .
J

Forms in F, 2 can only have the following monomials:

2,2
LW XY, T2, TW, Y2, YW, ZW

2,2
$ ) y ) Z
If 2% occurs in some of the g;, then z* occurs in ¢? with positive coefficient

and hence in Z q? with positive coefficient too, but this is not the case.

Similarly ¢; does not contain y* and 22.
The only way to write z?w? as a product of allowed monomials is z2w? =
(zw)?.

Similarly for y?w? and z?w?.

Thus each g; involves only the monomials zy, xz, yz and w?.

But now there is no way to get the monomial zyzw from quz-, hence a

J
contradiction.

O

Proposition 4.3. The ternary sextic S(z,y, z) = aty?+y*22+ 2422 — 3229?22
is psd, but not a sos, i.e., S € Psg\ D g4



