REAL ALGEBRAIC GEOMETRY LECTURE **NOTES** PART II: POSITIVE POLYNOMIALS (Vorlesung 22 - Gelesen am 17/01/2023)

SALMA KUHLMANN

Contents

1. Proof of Hilbert's theorem 1

1. PROOF OF HILBERT'S THEOREM (Continued)

Theorem 1.1. (Hilbert) $\sum_{n,m} = \mathcal{P}_{n,m}$ iff

- (i) $n = 2$ or
- (ii) $m = 2$ or
- (iii) $(n, m) = (3, 4)$.

In lecture 21 (Theorem 3.2) we showed the proof of (Hilbert's) Theorem 1.1 part (iii), i.e. for ternary quartic forms: $\mathcal{P}_{3,4} = \sum_{3,4}$ using generalization of Krein-Milman theorem (applied to our context), plus the following lemma:

Lemma 1.2. Let $T(x, y, z) \in \mathcal{P}_{3,4}$. Then \exists a quadratic form $q(x, y, z) \neq 0$ s.t. $T \geq q^2$, i.e. $T - q^2$ is psd.

Proof. Consider three cases concerning the zero set of T.

Case 1. $T > 0$, i.e. T has no non trivial zeros.

Let

$$
\phi(x, y, z) := \frac{T(x, y, z)}{(x^2 + y^2 + z^2)^2}, \forall (x, y, z) \neq 0.
$$

Let $\mu := \inf_{\mathbb{S}^2} \phi \geq 0$, where \mathbb{S}^2 is the unit sphere.

Since \mathbb{S}^2 is compact and ϕ is continuous, $\exists (a, b, c) \in \mathbb{S}^2$ s.t. $\mu = \phi(a, b, c) > 0$

Therefore $\forall (x, y, z) \in \mathbb{S}^2 : T(x, y, z) \ge \mu(x^2 + y^2 + z^2)^2$. **Claim:** $T(x, y, z) \ge \mu(x^2 + y^2 + z^2)^2$ for all $(x, y, z) \in \mathbb{R}^3$. Indeed, it is trivially true at the point $(0, 0, 0)$, and

for $(x, y, z) \in \mathbb{R}^3 \setminus \{0\}$ denote $N := \sqrt{x^2 + y^2 + z^2}$, then $\left(\frac{x}{\lambda}\right)$ N , \hat{y} N , z N $\Big) \in \mathbb{S}^2,$ which implies that $\sqrt{2}$

$$
T\left(\frac{x}{N}, \frac{y}{N}, \frac{z}{N}\right) \ge \mu\left(\left(\frac{x}{N}\right)^2 + \left(\frac{y}{N}\right)^2 + \left(\frac{z}{N}\right)^2\right)^2.
$$

So, by homogeneity we get

$$
T(x, y, z) \ge \mu(x^2 + y^2 + z^2)^2 = (\sqrt{\mu}(x^2 + y^2 + z^2))^2
$$
, as claimed.
\n \Box (Case1)

Case 2. T has exactly one (nontrivial) zero.

By changing coordinates, we may assume w.l.o.g. that zero to be $(1,0,0)$, i.e. $T(1, 0, 0) = 0$.

Writing T as a polynomial in x one gets

$$
T(x, y, z) = ax4 + (b1y + b2z)x3 + f(y, z)x2 + 2g(y, z)x + h(y, z),
$$

where f, g and h are binary quadratic, cubic and quartic forms respectively.

Reducing T: Since $T(1, 0, 0) = 0$ we get $a = 0$.

Further, suppose $(b_1, b_2) \neq (0, 0)$, it $\Rightarrow \exists (y_0, z_0) \in \mathbb{R}^2$ s.t $b_1y_0 + b_2z_0 < 0$, then taking x big enough $\Rightarrow T(x_0, y_0, z_0) < 0$, a contradiction to $T \geq 0$. Thus $b_1 = b_2 = 0$ and therefore

$$
T(x, y, z) = f(y, z)x^{2} + 2g(y, z)x + h(y, z)
$$
\n(1)

Next, clearly $h(y, z) \ge 0$ [since otherwise $T(0, y_0, z_0) = h(y_0, z_0) < 0$ for some $(y_0, z_0) \in \mathbb{R}^2$, a contradiction.

Also $f(y, z) \geq 0$, if not, say $f(y_0, z_0) < 0$ for some (y_0, z_0) , then taking x big enough we get $T(x_0, y_0, z_0) < 0$, a contradiction.

Thus $f, h \geq 0$.

From (1) we can write:

$$
fT(x, y, z) = (xf + g)^2 + (fh - g^2)
$$
\n(2)

Claim: $fh - g^2 \geq 0$

If not, say $(fh - g^2)(y_0, z_0) < 0$ for some (y_0, z_0) . Then there are two cases to be considered here:

Case (i): $f(y_0, z_0) = 0$. In this case we claim $g(y_0, z_0) = 0$ because if not then $T(x, y_0, z_0) = 2g(y_0, z_0)x + h(y_0, z_0)$ and we take $|x_0|$ large enough so

that $2g(y_0, z_0)x_0 + h(y_0, z_0) < 0$, a contradiction.

Case (ii): $f(y_0, z_0) > 0$, we take x_0 such that $x_0 f(y_0, z_0) + g(y_0, z_0) = 0$, then $fT(x_0, y_0, z_0) = (fh - g^2)(y_0, z_0) < 0$, a contradiction.

So our claim is established and $fh - g^2 \geq 0$.

Now the polynomial f is a psd binary quadratic form, thus by Lemma 1.3 below f is sum of two squares. Let us consider the two subcases:

Case 2.1. f is a perfect square. Then $f = f_1^2$, with $f_1 = by + cz$ for some $b, c \in \mathbb{R}$. Up to multiplication by a constant $(-c, b)$ is the unique zero of f_1 and so of f . Thus

$$
(fh - g^2)(-c, b) = -(g(-c, b))^2 \le 0
$$
 by (2) evaluated at $(-c, b)$.

which is a contradiction unless $g(-c, b) = 0$ which means ¹ that $f_1 | g$, i.e. $g(y, z) = f_1(y, z)g_1(y, z)$. Then from (2) we get

$$
fT \ge (xf + g)^2
$$

= $(xf_1^2 + f_1g_1)^2$
= $f_1^2 (xf_1 + g_1)^2$
= $f(xf_1 + g_1)^2$.

Hence $T \geq (xf_1 + g_1)^2$ as required.

Case 2.2. $f = f_1^2 + f_2^2$, with f_1, f_2 linear in y, z .

Now $f_1 \not\equiv \lambda f_2$ [otherwise we are in **Case 2.1**]

i.e. f_1, f_2 do not have common non-trivial zeroes, otherwise they would be multiples of each other and f would be a perfect square. Hence $f > 0$.

Claim 1: $fh - g^2 > 0$

If not, i.e. if $\exists (y_0, z_0) \neq (0, 0)$ s.t. $(fh - g^2)(y_0, z_0) = 0$, then (y_0, z_0) could be completed to a zero $\left(-\frac{g(y_0, z_0)}{f(z_0)}\right)$ $f(y_0, z_0)$ $,y_0,z_0$ of T, which contradicts our hypothesis that T has only 1 zero $(1,0,0)$. Thus $fh - g^2 > 0$.

Claim 2: $\frac{fh - g^2}{f^2}$ $\frac{f}{f^3}$ has a minimum $\mu > 0$ on the unit circle \mathbb{S}^1 . (clear) So, just as in Case 1,

 $fh - g^2 \geq \mu f^3, \ \forall \ (y, z) \in \mathbb{R}^2.$ $\Rightarrow fT \ge fh - g^2 \ge \mu f^3$, by (2)

 $\frac{1}{1}$ See (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M. Coste, M.-F. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of Squares by M. Marshall.

POSITIVE POLYNOMIALS LECTURE NOTES (08: 06/05/10) 4

$$
\Rightarrow T \ge \mu f^2 = (\sqrt{\mu}f)^2
$$
, as claimed. \Box (Case 2)

Case 3. T has more than one zero.

Without loss of generality, assume $(1, 0, 0)$ and $(0, 1, 0)$ are two of the zeros of T.

As in case 2, reduction $\Rightarrow T$ is of degree at most 2 in x as well as in y and so we can write:

$$
T(x, y, z) = f(y, z)x^{2} + 2g(y, z)zx + z^{2}h(y, z),
$$

where f, g, h are binary quadratic forms and $f, h \geq 0$. And so

$$
fT = (xf + zg)^2 + z^2(fh - g^2),
$$
\n(3)

with $fh - g^2 \ge 0$ [Indeed, if $(fh - g^2)(y_0, z_0) < 0$ for some (y_0, z_0) , then we must have case distinction case (i) or case (ii) as on bottom of page 2 i.e. $f(y_0, z_0) = 0$ or $f(y_0, z_0) > 0$.

Using Lemma 1.3 if f or h is a perfect square, then we get the desired result as in the Case 2.1. Hence we suppose f and h to be sum of two squares and again as before (as in Case 2.2) $f, h > 0$. We consider the following two possible subcases on $fh - g^2$:

Case 3.1. Suppose $fh - g^2$ has a zero $(y_0, z_0) \neq (0, 0)$.

Set
$$
x_0 = -\frac{g(y_0, z_0)}{f(y_0, z_0)}
$$
 and
\n
$$
T_1 := T(x + x_0 z, y, z) = x^2 f + 2xz(g + x_0 f) + z^2 (h + 2x_0 g + x_0^2 f)
$$
\n(4)

Evaluating (3) at $(x+x_0z, y, z)$, we get

$$
fT_1 = fT(x + x_0z, y, z) = ((x + x_0z)f + zg)^2 + z^2(fh - g^2), \tag{3}'.
$$

Multiplying (4) by f, we get

$$
fT_1 = x^2 f^2 + 2xz f(g + x_0 f) + z^2 f(h + 2x_0 g + x_0^2 f) \tag{4'}
$$

Now compare the coefficients of z^2 in $(3)'$ and $(4)'$ to get

$$
(x_0 f + g)^2 + (fh - g^2) = f(h + 2x_0g + x_0^2f),
$$

i.e. $h + 2x_0g + x_0^2f = \frac{(fh - g^2) + (x_0f + g)^2}{f} \quad \forall (y, z) \neq (0, 0)$

In particular, $h + 2x_0g + x_0^2f$ is psd and has a zero, namely $(y_0, z_0) \neq (0, 0)$. Thus $(h + 2x_0g + x_0^2f)$, being a psd quadratic in y, z, which has a nontrivial zero (y_0, z_0) , is a perfect square [since by the arguments similar to **Case 2.2**,

it cannot be a sum of two (or more) squares]. Say $(h + 2x_0g + x_0^2f) = h_1^2$, with $h_1(y, z)$ linear and $h_1(y_0, z_0) = 0$ Now $(g + x_0 f)(y_0, z_0) = g(y_0, z_0) + x_0 f(y_0, z_0) = 0$. So, $g + x_0 f$ vanishes at every zero of the linear form h_1 . Therefore, we have $g + x_0 f = g_1 h_1$ for some g_1 .

So (from (4)),
$$
T_1 = fx^2 + 2xzg_1h_1 + z^2h_1^2
$$

\t\t\t $= (zh_1 + xg_1)^2 + x^2(f - g_1^2)$
\t\t\t $\Rightarrow h_1^2T_1 = h_1^2(zh_1 + xg_1)^2 + x^2(h_1^2f - (h_1g_1)^2)$
\t\t\t $= h_1^2(zh_1 + xg_1)^2 + x^2\underbrace{(hf - g^2)}_{\geq 0}$
\t\t\t $\Rightarrow h_1^2T_1 \geq h_1^2(zh_1 + xg_1)^2$
\t\t\t $\Rightarrow T(x + x_0z, y, z) =: T_1 \geq (zh_1 + xg_1)^2$

By change of variables $(x \to x - x_0 z)$, we get $T \ge a$ square of a quadratic form, as desired.

Case 3.2. Suppose
$$
fh - g^2 > 0
$$
 (i.e. $fh - g^2$ has no zero). Then (as in Case 2.2), $\exists \mu > 0$ s.t $\frac{fh - g^2}{(y^2 + z^2)f} \geq \mu$ on \mathbb{S}^1 and so $fh - g^2 \geq \mu(y^2 + z^2)f \,\forall \, (y, z) \in \mathbb{R}^2$. Hence, by (3) we get\n
$$
f = (xf + zg)^2 + z^2 \underbrace{(fh - g^2)}_{\geq 0}
$$
\n
$$
\geq z^2 (fh - g^2)
$$
\n
$$
\geq \mu z^2 (y^2 + z^2) f,
$$

giving as required

$$
T \ge (\sqrt{\mu}zy)^2 + (\sqrt{\mu}z^2)^2
$$

\n
$$
\Rightarrow T \ge (\sqrt{\mu}z^2)^2
$$
 \qquad \Box(\text{Case 3})

This completes the proof of the Lemma 1.2. \Box

Next we prove Theorem 1.1 part (i), i.e. for binary forms. This was also used as a helping lemma in the proof of above lemma:

Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of squares of binary forms of degree $m/2$, that is, $\mathcal{P}_{2,m} = \sum_{2,m}$. In fact, f is

sum of two squares.

Proof. If f is a binary form of degree m , we can write

$$
f(x,y) = \sum_{k=0}^{m} c_k x^k y^{m-k}; \ c_k \in \mathbb{R}
$$

$$
= y^m \sum_{k=0}^{m} c_k \left(\frac{x}{y}\right)^k,
$$

where m is an even number and $c_m \neq 0$, since f is psd.

Without loss of generality let $c_m = 1$.

Put
$$
g(t) = \sum_{k=0}^{m} c_k t^k
$$
.
\nOver C, $g(t) = \prod_{k=1}^{m/2} (t - z_k)(t - \overline{z}_k); z_k = a_k + ib_k, a_k, b_k \in \mathbb{R}$
\n
$$
= \prod_{k=1}^{m/2} ((t - a_k)^2 + b_k^2)
$$
\n
$$
\Rightarrow f(x, y) = y^m g\left(\frac{x}{y}\right) = \prod_{k=1}^{m/2} ((x - a_k y)^2 + b_k^2 y^2).
$$

Then, using iteratively the identity

$$
(X2 + Y2)(Z2 + W2) = (XZ - YW)2 + (YZ + XW)2,
$$

we obtain that $f(x, y)$ is a sum of two squares. \Box

Example 1.4. Using the ideas in the proof of above lemma, we write the binary form

$$
f(x,y) = 2x^6 + y^6 - 3x^4y^2
$$

as a sum of two squares:

Consider f written in the form

$$
f(x,y) = y^{6} \left(2\left(\frac{x}{y}\right)^{6} + 1 - 3\left(\frac{x}{y}\right)^{4} \right).
$$

The polynomial $g(t) = 2t^6 - 3t^4 + 1$. This polynomial has double roots 1 and -1 and complex roots $\pm \frac{1}{4}$ 2 i.

Thus

$$
g(t) = 2(t-1)^{2}(t+1)^{2}(t^{2} + \frac{1}{2}) = (t^{2} - 1)^{2}(2t^{2} + 1).
$$

Therefore, we have

$$
f(x,y) = y^6 g\left(\frac{x}{y}\right) = (x^2 - y^2)^2 (2x^2 + y^2) = 2x^2 (x^2 - y^2)^2 + y^2 (x^2 - y^2)^2
$$

written as a sum of two squares. \Box

Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:

Lemma 1.5. If $f(x_1, \ldots, x_n)$ is a psd quadratic form, then $f(x_1, \ldots, x_n)$ is sos of linear forms, that is, $\mathcal{P}_{n,2} = \sum_{n,2}$.

Proof. If $f(x_1, \ldots, x_n)$ is a quadratic form, then we can write

$$
f(x_1, \ldots, x_n) = \sum_{i,j=1}^n x_i a_{ij} x_j
$$
, where $A = [a_{ij}]$ is a symmetric matrix with

$$
a_{ij} \in \mathbb{R}.
$$

We have $f = X^T A X$, where $X^T = [x_1, \dots x_n]$.

By the spectral theorem for Hermitian matrices, there exists a real orthogonal matrix S and a diagonal matrix $D = diag(d_1, ..., d_n)$ such that $D = S^TAS$. Then

$$
f = X^T S S^T A S S^T X = (S^T X)^T S^T A S (S^T X).
$$

Putting $Y = [y_1, \ldots, y_n]^T = S^T X$, we get

$$
f = YT ST A SY = YT D Y = \sum_{i=1}^{n} d_i y_i^2, d_i \in \mathbb{R}.
$$

Since f is psd, we have $d_i \geq 0 \ \forall i$, and so

$$
f = \sum_{i=1}^{n} \left(\sqrt{d_i} y_i\right)^2.
$$

Thus,

$$
f(x_1,...,x_n) = \sum_{i=1}^n \left(\sqrt{d_i}(s_{1,i}x_1 + ... + s_{n,i}x_n)\right)^2,
$$

that is, f is sos of linear forms.

