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1. Proof of Hilbert’s theorem 1

1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 or

(ii) m = 2 or

(iii) (n,m) = (3, 4).

In lecture 21 (Theorem 3.2) we showed the proof of (Hilbert’s) Theorem 1.1
part (iii), i.e. for ternary quartic forms: P3,4 =

∑
3,4 using generalization of

Krein-Milman theorem (applied to our context), plus the following lemma:

Lemma 1.2. Let T (x, y, z) ∈ P3,4. Then ∃ a quadratic form q(x, y, z) ̸= 0
s.t. T ≥ q2, i.e. T − q2 is psd.

Proof. Consider three cases concerning the zero set of T.

Case 1. T > 0, i.e. T has no non trivial zeros.

Let

ϕ(x, y, z) :=
T (x, y, z)

(x2 + y2 + z2)2
,∀ (x, y, z) ̸= 0.

Let µ := inf
S2
ϕ ≥ 0, where S2 is the unit sphere.

Since S2 is compact and ϕ is continous, ∃ (a, b, c) ∈ S2 s.t. µ = ϕ(a, b, c) > 0

1
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Therefore ∀ (x, y, z) ∈ S2 : T (x, y, z) ≥ µ(x2 + y2 + z2)2.

Claim: T (x, y, z) ≥ µ(x2 + y2 + z2)2 for all (x, y, z) ∈ R3.

Indeed, it is trivially true at the point (0, 0, 0), and

for (x, y, z) ∈ R3 \ {0} denote N :=
√

x2 + y2 + z2, then
( x

N
,
y

N
,
z

N

)
∈ S2,

which implies that

T

(
x

N
,
y

N
,
z

N

)
≥ µ

(( x

N

)2
+
( y

N

)2
+
( z

N

)2)2

.

So, by homogeneity we get

T (x, y, z) ≥ µ(x2 + y2 + z2)2 =
(√

µ
(
x2 + y2 + z2

))2
, as claimed.

□(Case1)

Case 2. T has exactly one (nontrivial) zero.

By changing coordinates, we may assume w.l.o.g. that zero to be (1, 0, 0),
i.e. T (1, 0, 0) = 0.

Writing T as a polynomial in x one gets

T (x, y, z) = ax4 + (b1y + b2z)x
3 + f(y, z)x2 + 2g(y, z)x+ h(y, z),

where f , g and h are binary quadratic, cubic and quartic forms respectively.

Reducing T : Since T (1, 0, 0) = 0 we get a = 0.

Further, suppose (b1, b2) ̸= (0, 0), it ⇒ ∃ (y0, z0) ∈ R2 s.t b1y0 + b2z0 < 0,
then taking x big enough ⇒ T (x0, y0, z0) < 0, a contradiction to T ≥ 0.
Thus b1 = b2 = 0 and therefore

T (x, y, z) = f(y, z)x2 + 2g(y, z)x+ h(y, z) (1)

Next, clearly h(y, z) ≥ 0
[
since otherwise T (0, y0, z0) = h(y0, z0) < 0 for some

(y0, z0) ∈ R2, a contradiction
]
.

Also f(y, z) ≥ 0, if not, say f(y0, z0) < 0 for some (y0, z0), then taking x big
enough we get T (x0, y0, z0) < 0, a contradiction.

Thus f, h ≥ 0.

From (1) we can write:

fT (x, y, z) = (xf + g)2 + (fh− g2) (2)

Claim: fh− g2 ≥ 0

If not, say (fh− g2)(y0, z0) < 0 for some (y0, z0). Then there are two cases
to be considered here:
Case (i): f(y0, z0) = 0. In this case we claim g(y0, z0) = 0 because if not
then T (x, y0, z0) = 2g(y0, z0)x + h(y0, z0) and we take |x0| large enough so
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that 2g(y0, z0)x0 + h(y0, z0) < 0, a contradiction.
Case (ii): f(y0, z0) > 0, we take x0 such that x0f(y0, z0)+ g(y0, z0) = 0, then
fT (x0, y0, z0) = (fh− g2)(y0, z0) < 0, a contradiction.

So our claim is established and fh− g2 ≥ 0.

Now the polynomial f is a psd binary quadratic form, thus by Lemma 1.3
below f is sum of two squares. Let us consider the two subcases:

Case 2.1. f is a perfect square. Then f = f 2
1 , with f1 = by + cz for some

b, c ∈ R. Up to multiplication by a constant (−c, b) is the unique zero of f1
and so of f . Thus

(fh− g2)(−c, b) = −(g(−c, b))2 ≤ 0 by (2) evaluated at (−c, b).

which is a contradiction unless g(−c, b) = 0 which means 1 that f1 | g, i.e.
g(y, z) = f1(y, z)g1(y, z). Then from (2) we get

fT ≥ (xf + g)2

= (xf1
2 + f1g1)

2

= f1
2(xf1 + g1)

2

= f(xf1 + g1)
2.

Hence T ≥ (xf1 + g1)
2 as required.

Case 2.2. f = f 2
1 + f 2

2 , with f1, f2 linear in y, z.

Now f1 ̸≡ λf2 [otherwise we are in Case 2.1]

i.e. f1, f2 do not have common non-trivial zeroes, otherwise they would be
multiples of each other and f would be a perfect square. Hence f > 0.

Claim 1: fh− g2 > 0

If not, i.e. if ∃ (y0, z0) ̸= (0, 0) s.t. (fh − g2)(y0, z0) = 0, then (y0, z0)

could be completed to a zero
(
− g(y0, z0)

f(y0, z0)
, y0, z0

)
of T , which contradicts

our hypothesis that T has only 1 zero (1, 0, 0). Thus fh− g2 > 0.

Claim 2:
fh− g2

f 3
has a minimum µ > 0 on the unit circle S1. (clear)

So, just as in Case 1,

fh− g2 ≥ µf 3, ∀ (y, z) ∈ R2.

⇒ fT ≥ fh− g2 ≥ µf 3, by (2)

1See (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M.
Coste, M.-F. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of
Squares by M. Marshall.
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⇒ T ≥ µf 2 =
(√

µf
)2
, as claimed. □(Case 2)

Case 3. T has more than one zero.

Without loss of generality, assume (1, 0, 0) and (0, 1, 0) are two of the zeros
of T .

As in case 2, reduction ⇒ T is of degree at most 2 in x as well as in y and
so we can write:

T (x, y, z) = f(y, z)x2 + 2g(y, z)zx+ z2h(y, z),

where f, g, h are binary quadratic forms and f, h ≥ 0.

And so

fT = (xf + zg)2 + z2(fh− g2), (3)

with fh− g2 ≥ 0 [Indeed, if (fh− g2)(y0, z0) < 0 for some (y0, z0), then we
must have case distinction case (i) or case (ii) as on bottom of page 2 i.e.
f(y0, z0) = 0 or f(y0, z0) > 0].

Using Lemma 1.3 if f or h is a perfect square, then we get the desired result
as in the Case 2.1. Hence we suppose f and h to be sum of two squares
and again as before (as in Case 2.2) f, h > 0. We consider the following
two possible subcases on fh− g2:

Case 3.1. Suppose fh− g2 has a zero (y0, z0) ̸= (0, 0).

Set x0 = − g(y0, z0)

f(y0, z0)
and

T1 := T (x+ x0z, y, z) = x2f + 2xz(g + x0f) + z2(h+ 2x0g + x2
0f) (4)

Evaluating (3) at (x+ x0z, y, z), we get

fT1 = fT (x+ x0z, y, z) =
(
(x+ x0z)f + zg

)2
+ z2(fh− g2), (3)

′
.

Multiplying (4) by f , we get

fT1 = x2f 2 + 2xzf(g + x0f) + z2f(h+ 2x0g + x2
0f) (4)

′

Now compare the coefficients of z2 in (3)
′
and (4)

′
to get

(x0f + g)2 + (fh− g2) = f(h+ 2x0g + x2
0f),

i.e. h+ 2x0g + x2
0f =

(fh− g2) + (x0f + g)2

f
∀ (y, z) ̸= (0, 0)

In particular, h+ 2x0g + x2
0f is psd and has a zero, namely (y0, z0) ̸= (0, 0).

Thus (h+ 2x0g + x2
0f), being a psd quadratic in y, z, which has a nontrivial

zero (y0, z0), is a perfect square [since by the arguments similar to Case 2.2,
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it cannot be a sum of two (or more) squares].

Say (h+ 2x0g + x2
0f) = h2

1, with h1(y, z) linear and h1(y0, z0) = 0

Now (g + x0f)(y0, z0) = g(y0, z0) + x0f(y0, z0) = 0. So, g + x0f vanishes at
every zero of the linear form h1. Therefore, we have g+ x0f = g1h1 for some
g1.

So (from (4)), T1 = fx2 + 2xzg1h1 + z2h2
1

= (zh1 + xg1)
2 + x2(f − g21)

⇒ h2
1T1 = h2

1(zh1 + xg1)
2 + x2

(
h2
1f − (h1g1)

2
)

= h2
1(zh1 + xg1)

2 + x2 (hf − g2)︸ ︷︷ ︸
≥ 0

⇒ h2
1T1 ≥ h2

1(zh1 + xg1)
2

⇒ T (x+ x0z, y, z) =: T1 ≥ (zh1 + xg1)
2

By change of variables (x → x − x0z), we get T ≥ a square of a quadratic
form, as desired.

Case 3.2. Suppose fh− g2 > 0 (i.e. fh− g2 has no zero).

Then (as in Case 2.2), ∃ µ > 0 s.t
fh− g2

(y2 + z2)f
≥ µ on S1

and so fh− g2 ≥ µ(y2 + z2)f ∀ (y, z) ∈ R2.

Hence, by (3) we get

fT = (xf + zg)2 + z2 (fh− g2)︸ ︷︷ ︸
>0

≥ z2(fh− g2)

≥ µz2(y2 + z2)f ,

giving as required

T ≥ (
√
µzy)2 + (

√
µz2)2

⇒ T ≥ (
√
µz2)2 □(Case 3)

This completes the proof of the Lemma 1.2. □□

Next we prove Theorem 1.1 part (i), i.e. for binary forms. This was also
used as a helping lemma in the proof of above lemma:

Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of
squares of binary forms of degree m/2, that is, P2,m =

∑
2,m . In fact, f is
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sum of two squares.

Proof. If f is a binary form of degree m, we can write

f(x, y) =
m∑
k=0

ckx
kym−k; ck ∈ R

= ym
m∑
k=0

ck

(
x

y

)k

,

where m is an even number and cm ̸= 0, since f is psd.

Without loss of generality let cm = 1.

Put g(t) =
m∑
k=0

ckt
k.

Over C, g(t) =
m/2∏
k=1

(t− zk)(t− zk); zk = ak + ibk, ak, bk ∈ R

=

m/2∏
k=1

(
(t− ak)

2 + b2k

)

⇒ f(x, y) = ymg
(x
y

)
=

m/2∏
k=1

(
(x− aky)

2 + b2ky
2
)
.

Then, using iteratively the identity

(X2 + Y 2)(Z2 +W 2) = (XZ − YW )2 + (Y Z +XW )2,

we obtain that f(x, y) is a sum of two squares. □

Example 1.4. Using the ideas in the proof of above lemma, we write the
binary form

f(x, y) = 2x6 + y6 − 3x4y2

as a sum of two squares:

Consider f written in the form

f(x, y) = y6

(
2
(x
y

)6
+ 1− 3

(x
y

)4)
.

The polynomial g(t) = 2t6−3t4+1. This polynomial has double roots 1 and

−1 and complex roots ± 1√
2
i.

Thus
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g(t) = 2(t− 1)2(t+ 1)2(t2 +
1

2
) = (t2 − 1)2(2t2 + 1).

Therefore, we have

f(x, y) = y6g
(x
y

)
= (x2 − y2)2(2x2 + y2) = 2x2(x2 − y2)2 + y2(x2 − y2)2

written as a sum of two squares. □

Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:

Lemma 1.5. If f(x1, . . . , , xn) is a psd quadratic form, then f(x1, . . . , , xn)
is sos of linear forms, that is, Pn,2 =

∑
n,2.

Proof. If f(x1, . . . , xn) is a quadratic form, then we can write

f(x1, . . . , xn) =
n∑

i,j=1

xiaijxj, where A = [aij] is a symmetric matrix with

aij ∈ R.

We have f = XTAX, where XT = [x1, . . . xn].

By the spectral theorem for Hermitian matrices, there exists a real orthogonal
matrix S and a diagonal matrix D = diag(d1, . . . , dn) such that D = STAS.
Then

f = XTSSTA SSTX = (STX)TSTA S (STX).

Putting Y = [y1, . . . , yn]
T = STX, we get

f = Y TSTA SY = Y TD Y =
n∑

i=1

diyi
2, di ∈ R .

Since f is psd, we have di ≥ 0 ∀ i, and so

f =
n∑

i=1

(√
diyi

)2
.

Thus,

f(x1, . . . , xn) =
n∑

i=1

(√
di(s1,ix1 + . . .+ sn,ixn)

)2
,

that is, f is sos of linear forms. □


