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1. Proof of Hilbert’s theorem 1

1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Hilbert) > =P, iff
(i) n=2or
(i) m=2or
(i) (n,m) = (3,4).
In lecture 21 (Theorem 3.2) we showed the proof of (Hilbert’s) Theorem 1.1

part (iii), i.e. for ternary quartic forms: P34 = > ., using generalization of
Krein-Milman theorem (applied to our context), plus the following lemma:

Lemma 1.2. Let T'(z,y,2) € Ps4. Then 3 a quadratic form ¢(z,y, z) # 0
st. T > ¢? ie. T — ¢? is psd.

Proof. Consider three cases concerning the zero set of T.

Case 1. T > 0, i.e. T has no non trivial zeros.
Let

o(z,y,2) = T(x,y,z2)

@+ +2)

5,V (2,y,2) # 0.

Let p:= iéleqﬁ > 0, where S? is the unit sphere.

Since S? is compact and ¢ is continous, 3 (a,b, ¢) € S? s.t. u = ¢(a,b,c) >0
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Therefore V (z,y,2) € S*: T(z,y,2) > u(x? + y* + 22)2
Claim: T'(x,y,z) > pu(z? +y* + 22)? for all (z,y,2) € R3.
Indeed, it is trivially true at the point (0,0,0), and

3 — 2 2 2 <£ Y i) 2
for (z,y,z) € R3\ {0} denote N := /2% 4+ y? + 22, then NN N €S,
which implies that

2
x 2 T\ 2 2 2\ 2
t(5dw) 2 (B ()
So, by homogeneity we get
T(x,y,z) > pla? +y* + 22)* = <\/;_L([E2 + 32+ z2)>2, as claimed.
O(Casel)

Case 2. T has exactly one (nontrivial) zero.
By changing coordinates, we may assume w.l.o.g. that zero to be (1,0,0),
i.e. T(1,0,0) = 0.
Writing T as a polynomial in = one gets
T(z,y,2) = ax* + (byy + be2)2® + f(y, 2)2® + 29(y, 2)x + h(y, 2),
where f, g and h are binary quadratic, cubic and quartic forms respectively.
Reducing T": Since 7'(1,0,0) = 0 we get a = 0.
Further, suppose (by,bs) # (0,0), it = 3 (yo, 20) € R? s.t byyo + bazg < 0,

then taking = big enough = T'(xg,yo,20) < 0, a contradiction to 7' > 0.
Thus b; = by = 0 and therefore

T(x,y,2) = f(y,2)z* + 29(y, 2)z + h(y, 2) (1)

Next, clearly h(y, z) > 0 [since otherwise T'(0, yo, 20) = h(yo, 20) < 0 for some
(0, 20) € R?, a contradiction].

Also f(y, z) > 0, if not, say f(yo, 20) < 0 for some (yo, 29), then taking = big
enough we get T'(zo, Yo, 20) < 0, a contradiction.

Thus f,h > 0.
From (1) we can write:
fT(x,y,2) = (xf +9)° + (fh — g°) (2)

Claim: fh—g*>>0

If not, say (fh —¢*)(yo, 20) <0 for some (yo, 29). Then there are two cases
to be considered here:

Case (i): f(yo,20) = 0. In this case we claim g(yo,20) = 0 because if not
then T'(x, yo, 20) = 29(vo, 20)T + h(yo, z0) and we take |xo| large enough so
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that 2¢g(yo, z0)xo + h(yo, 20) < 0, a contradiction.

Case (ii): f(yo, 20) > 0, we take o such that zof(yo, z0) + 9(¥0, 20) = 0, then
T (0,90, 20) = (fh — 9*)(v0, 20) < 0, a contradiction.

So our claim is established and fh — g* > 0.

Now the polynomial f is a psd binary quadratic form, thus by Lemma 1.3
below f is sum of two squares. Let us consider the two subcases:

Case 2.1. f is a perfect square. Then f = f2, with f; = by + cz for some
b,c € R. Up to multiplication by a constant (—c, b) is the unique zero of f;
and so of f. Thus

(fh — g*)(—c,b) = —(g(—¢,0))> <0 by (2) evaluated at (—c,b).
which is a contradiction unless g(—c,b) = 0 which means ! that f; | g, i.e.
9(y,2) = fily, 2)q1(y, z). Then from (2) we get

fT=(xf +9)°

= (fi* + fig1)?
= [(efi + 91)
= flzfi+g)*
Hence T > (zf1 + g1)? as required.

Case 2.2. f = f2 + f2, with f1, f> linear in y, z.

Now f1 Z Afy [otherwise we are in Case 2.1]

i.e. fi, fo do not have common non-trivial zeroes, otherwise they would be
multiples of each other and f would be a perfect square. Hence f > 0.
Claim 1: fh—¢*> >0

If not, ie. if 3 (yo,20) # (0,0) s.t. (fh — g*)(yo, 20) = 0, then (yo, 20)

9(Yo, 20) Yo, Zo) of T', which contradicts
f (ym Zo)

our hypothesis that T has only 1 zero (1,0,0). Thus fh — g? > 0.

could be completed to a zero ( -

h — g?
3

Claim 2: / has a minimum g > 0 on the unit circle S. (clear)

So, just as in Case 1,
fh—g*>uf? ¥ (y,z) e R
= fT > fh—g*> uf?, by (2)

1See (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M.
Coste, M.-F. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of
Squares by M. Marshall.
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=T>puf?= (\/ﬁf)z, as claimed. [(Case 2)

Case 3. T has more than one zero.

Without loss of generality, assume (1,0,0) and (0,1,0) are two of the zeros
of T.

As in case 2, reduction = T is of degree at most 2 in z as well as in y and
SO we can write:
T(x,y,2) = f(y,2)a* + 29(y, z)zz + 2*h(y, 2),
where f, g, h are binary quadratic forms and f,h > 0.
And so

fT = (af +29)° +2°(fh — g°), (3)
with fh — g? > 0 [Indeed, if (fh — g*)(yo, 20) < 0 for some (yo, 20), then we
must have case distinction case (i) or case (ii) as on bottom of page 2 i.e.

f (o, 20) =0 or f(yo,20) > 0].

Using Lemma 1.3 if f or h is a perfect square, then we get the desired result
as in the Case 2.1. Hence we suppose f and h to be sum of two squares
and again as before (as in Case 2.2) f,h > 0. We consider the following
two possible subcases on fh — g%

Case 3.1. Suppose fh — g* has a zero (yg, 20) # (0,0).

g(y07Z0) and
f(y0720)
Ty :=T(z+ x02,y,2) = 22f + 2x2(g + 2o f) + 2°(h + 2209 + 22f)  (4)

Set xg = —

Evaluating (3) at (x + z02,y, 2), we get

T = fT( 4 mzy,2) = (0t a02)f +20) +2(h—g?), ().
Multiplying (4) by f, we get

fTy = 2?2+ 222 (g + o f) + 22 f(h+ 2z09 + 23f)  (4)
Now compare the coefficients of 22 in (3)" and (4) to get

(zof +9)* + (fh = g%) = f(h+ 209 + 75 f),

h—g?) + (zof + g)?
In particular, h + 2zg + 3 f is psd and has a zero, namely (yo, 20) # (0,0).

ie. h+2x9g+aif =

Thus (h + 2z0g + 22f), being a psd quadratic in y, z, which has a nontrivial
zero (Yo, 20), is a perfect square [since by the arguments similar to Case 2.2,
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it cannot be a sum of two (or more) squares].
Say (h+ 2wog + x3f) = h?, with hy(y, 2) linear and hy(yo, 29) = 0

Now (g + xof) (Yo, 20) = 9(%o, 20) + zof (Yo, 20) = 0. So, g + xof vanishes at
every zero of the linear form h;. Therefore, we have g + xof = g1h; for some

g1-
So (from (4)), Ty = fa? + 2zzg1hy + 2203
= (zhy +291)* + 2*(f — 97)

= Ty = hi(zhy + 2g1)? + 22 (W} f — (high)?)

= h2(zhy +291)? + 2 (hf — ¢*)

—_——
>0

= W, > h3(zhy + 2g1)?
= T(x +02,y,2) = Ty > (zh1 + 291)

By change of variables (x — = — x¢z), we get T' > a square of a quadratic
form, as desired.

Case 3.2. Suppose fh —g*> > 0 (i.e. fh — g? has no zero).
Then (as in Case 2.2), 3 u > 0 s.t % > 11 on S!
and so fh—g?> > puy? +22)f V (y,2) € R
Hence, by (3) we get
fT = (xf +29) + 2% (fh — g°)
N

>0

> 2*(fh—¢%)
> pz(y* + 2°)f,
giving as required
T > (Vpzy)* + (uz?)?
=T > (/pz?)? [J(Case 3)
This completes the proof of the Lemma 1.2. O

Next we prove Theorem 1.1 part (i), i.e. for binary forms. This was also
used as a helping lemma in the proof of above lemma:

Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of
squares of binary forms of degree m/2, that is, Pa,, = > ,,, - In fact, f is
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sum of two squares.

Proof. 1f f is a binary form of degree m, we can write

flay) = az'y™ ™ ¢ eR
k=0

m k
T
:ym E & - )
k=0 k<y>

where m is an even number and ¢,, # 0, since f is psd.

Without loss of generality let ¢, = 1.

Put g(t) = Z et
k=0

m/2
Over C, ¢g(t) = H(t —z1)(t — Zk); 2z = ag + by, ap, by € R
o
=TT (¢t =@ +22)
. " m/2
= f(z,y) = ym9(§> = H <(:c —apy)? + bzyz).

Then, using iteratively the identity
(X2+Y2)(Z22+WH = (XZ-YW)2+(YZ+ XW)2,

we obtain that f(z,y) is a sum of two squares. O

Example 1.4. Using the ideas in the proof of above lemma, we write the
binary form

fla,y) = 22° +4° = 3aty?
as a sum of two squares:

Consider f written in the form

fla,y) = (26)6 +1 —3(%)4)

The polynomial g(t) = 2t% — 3t* +1. This polynomial has double roots 1 and

—1 and complex roots +—i.
P V2
Thus
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gt) =20t — 12t + 1)2(t2 + %) = (t* = 1)*(2t* + 1).
Therefore, we have

fla,y) = y6g(§> = (2" —y*)* (22" +y°) = 227 (2" — y*)* + y° (2" — y?)’
written as a sum of two squares. Il

Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:

Lemma 1.5. If f(zy,...,,z,) is a psd quadratic form, then f(z1,...,,z,)
is sos of linear forms, that is, P,2 =), 5.

Proof. If f(x1,...,x,) is a quadratic form, then we can write
n
flzy,... x,) = Z z;a;;T;, where A = [a;;] is a symmetric matrix with
ij=1
ai; € R.

We have f = XTAX, where X7 = [x1,...2,)].

By the spectral theorem for Hermitian matrices, there exists a real orthogonal
matrix S and a diagonal matrix D = diag(dy, ..., d,) such that D = ST AS.
Then

[f=XTSSTASSTX = (STX)TSTA S (STX).
Putting Y = [y1,...,y.)? = STX, we get
f=YTSTASY =YTDY = dy® di€R.
i=1
Since f is psd, we have d; > 0V 7, and so

[ = i <\/d_’lyl)2
i=1
Thus, .

flz, ... x,) = Z (\/d_¢(81,i$1 +...+ Sn,ixn)>27

=1
that is, f is sos of linear forms. 0



