REAL ALGEBRAIC GEOMETRY LECTURE **NOTES** PART II: POSITIVE POLYNOMIALS (20: 29/04/10 - BEARBEITET 10/01/2023)

SALMA KUHLMANN

Contents

1. GENERALITIES ABOUT POLYNOMIALS

Definition 1.1. For a **polynomial** $p \in \mathbb{R}[X_1, \ldots, X_n]$, we write

$$
p(\underline{X}) = \sum_{\underline{i} \in \mathbb{N}_0^n} c_i \underline{X}^{\underline{i}} \; ; \; c_i \in \mathbb{R},
$$

where $\underline{X}^{\underline{i}} = X_1^{i_1} \dots X_n^{i_n}$ is a monomial of degree $= |\underline{i}| = \sum_{k=1}^n i_k$ and $c_i \underline{X}^{\underline{i}}$ is a term.

Definition 1.2. A polynomial $p(X) \in \mathbb{R}[X]$ is called **homogeneous** or form if all terms in p have the same degree.

Notation 1.3. $\mathcal{F}_{n,m} := \{ F \in \mathbb{R}[X_1,\ldots,X_n] \mid F \text{ is a form and } \deg(F) = m \},\$ the set of all forms in n variables of degree m (also called set of n-ary m -ics forms), for $n, m \in \mathbb{N}$. Convention: $0 \in \mathcal{F}_{n,m}$.

Definition 1.4. Let $p \in \mathbb{R}[X_1, \ldots, X_n]$ of degree m. The **homogenization** of p w.r.t X_{n+1} is defined as $\overline{ }$

$$
p_h(X_1,...,X_n,X_{n+1}) := X_{n+1}^m p\left(\frac{X_1}{X_{n+1}},\ldots,\frac{X_n}{X_{n+1}}\right)
$$

Note that p_h is a homogeneous polynomial of degree m and in $n+1$ variables i.e. $p_h \in \mathcal{F}_{n+1,m}$, and $p_h(X_1, \ldots, X_n, 1) = p(X_1, \ldots, X_n)$.

Proposition 1.5. (1) Let $p(\underline{X}) \in \mathbb{R}[X_1, \dots, X_n]$, deg $(p) = m$, then number of monomials of $p \leq \binom{m+n}{n}$

(2) Let $F(\underline{X}) \in \mathcal{F}_{n,m}$, then number of monomials of $F \leq N := \binom{m+n-1}{n-1}$ □

Remark 1.6. $\mathcal{F}_{n,m}$ is a finite dimensional real vector space with $\mathcal{F}_{n,m} \simeq \mathbb{R}^N$.

2. PSD- AND SOS- POLYNOMIALS

Definition 2.1. (1) $p(\underline{X}) \in \mathbb{R}[\underline{X}]$ is positive semidefinite (psd) if

 $p(\underline{x}) \geq 0 \ \forall \ \underline{x} \in \mathbb{R}^n$.

(2) $p(X) \in \mathbb{R}[X]$ is sum of squares (SOS) if $\exists p_i \in \mathbb{R}[X]$ s.t.

$$
p(\underline{X}) = \sum_{i} p_i(\underline{X})^2.
$$

Notation 2.2. $\mathcal{P}_{n,m} := \text{set of all forms } F \in \mathcal{F}_{n,m}$ which are psd, and $\sum_{n,m} :=$ set of all forms $F \in \mathcal{F}_{n,m}$ which are sos.

Lemma 2.3. If a polynomial p is psd then p has even degree. \Box

Remark 2.4. From now on (using lemma 2.3) we will often write $\mathcal{P}_{n,2d}$ and $\sum_{n,2d}$.

Lemma 2.5. Let p be a homogeneous polynomial of degree 2d, and p sos. Then every sos representation of p consists of homogeneous polynomials only, i.e.

$$
p(\underline{X}) = \sum_{i} p_i(\underline{X})^2 \Rightarrow p_i(\underline{X}) \text{ homogeneous of degree } d, \text{ i.e. } p_i \in \mathcal{F}_{n,d}.
$$

Remark 2.6. The properties of psd-ness and sos-ness are preserved under homogenization:

Lemma 2.7. Let $p(X)$ be a polynomial. Then

(1) p is psd iff p_h is psd,

(2) p is sos iff p_h is sos.

So we can focus our investigation of psdness of polynomials versus sosness of polynomials to those of forms, i.e. study and compare $\sum_{n,m} \subseteq \mathcal{P}_{n,m}$.

Theorem 2.8. (Hilbert) $\sum_{n,m} = \mathcal{P}_{n,m}$ iff

- (i) $n = 2$ [i.e. binary forms] or
- (ii) $m = 2$ [i.e. quadratic forms] or
- (iii) $(n, m) = (3, 4)$ [i.e. ternary quartics].

For the ternary quartics case $(\mathcal{F}_{3,4})$, we shall study the **convex cones** $\mathcal{P}_{n,m}$ and $\sum_{n,m}$.

3. CONVEX SETS, CONES AND EXTREMALITY

Definition 3.1. A subset C of \mathbb{R}^n is **convex set** if $\underline{a}, \underline{b} \in C \Rightarrow \lambda \underline{a} + (1 - \lambda) \underline{b} \in C$ C, for all $0 < \lambda < 1$.

Proposition 3.2. The intersection of an arbitrary collection of convex sets is convex.

Notation 3.3. $\mathbb{R}_+ := \{x \in \mathbb{R} \mid x \geq 0\}.$

Definition 3.4. Let $\underline{c}_1, \ldots, \underline{c}_k \in \mathbb{R}^n$. A convex combination of $\underline{c}_1, \ldots, \underline{c}_k$ is any vector sum

$$
\alpha_1 \underline{c}_1 + \ldots + \alpha_k \underline{c}_k
$$
, with $\alpha_1, \ldots, \alpha_k \in \mathbb{R}_+$ and $\sum_{i=1}^k \alpha_i = 1$.

Proposition 3.5. A subset $C \subseteq \mathbb{R}^n$ is convex if and only if it contains all the convex combinations of its elements.

Proof. (\Leftarrow) clear

(\Rightarrow) Let C ⊆ Rⁿ be a convex set. By definition C is closed under taking convex combinations with two summands. We show that it is also closed under finitely many summands.

Let $k > 2$. By Induction on k, assuming it true for fewer than k.

Given a convex combination $c = \alpha_1 c_1 + \ldots + \alpha_k c_k$, with $c_1, \ldots, c_k \in C$

Note that we may assume $0 < \alpha_i < 1$ for $i = i, \ldots, k$; otherwise we have fewer than k summands and we are done.

i

Consider $\underline{d} = \frac{\alpha_2}{1}$ $\frac{a_2}{1 - a_1}$ $\frac{c_2}{1 - a_2} + \ldots +$ α_k $\frac{\alpha_k}{1-\alpha_1}c_k$ we have $\frac{\alpha_2}{1}$ $1 - \alpha_1$ $,\ldots,\frac{\alpha_k}{1}$ $1 - \alpha_1$ > 0 and $\frac{\alpha_2}{1}$ $1 - \alpha_1$ $+\ldots+\frac{\alpha_k}{1}$ $1 - \alpha_1$ $= 1$

Thus \underline{d} is a convex combination of $k-1$ elements of C and $\underline{d} \in C$ by induction. Since $c = \alpha_1 c_1 + (1 - \alpha_1)d$, it follows that $c \in C$.

Definition 3.6. The intersection of all convex sets containing a given subset $S \subseteq \mathbb{R}^n$ is called the **convex hull** of S and is denoted by $\mathbf{cvx}(S)$.

Remark 3.7. The convex hull of $S \subseteq \mathbb{R}^n$ is a convex set and is the uniquely defined smallest convex set containing S.

Proposition 3.8. For any $S \subseteq \mathbb{R}^n$, $\mathrm{cvx}(S) =$ the set of all convex combinations of the elements of S.

Proof. (\supset) The elements of S belong to cvx(S), so all their convex combinations belong to $\text{cvx}(S)$ by Proposition 3.5.

(⊆) On the other hand we observe that the set of convex combinations of elements of S is itself a convex set containing S :

let $\underline{c} = \alpha_1 \underline{c}_1 + \ldots + \alpha_k \underline{c}_k$ and $\underline{d} = \beta_1 \underline{d}_1 + \ldots + \beta_l \underline{d}_l$, where $\underline{c}_i, \underline{d}_i \in S$, then $\lambda_{\mathcal{L}} + (1 - \lambda) \underline{d} = \lambda \alpha_1 \underline{c}_1 + \ldots + \lambda \alpha_k \underline{c}_k + (1 - \lambda) \beta_1 \underline{d}_1 + \ldots + (1 - \lambda) \beta_l \underline{d}_l, 0 \leq \lambda \leq 1$ is just another convex combination of elements of S.

So by minimality property of $\text{cvx}(S)$, it follows that $\text{cvx}(S) \subset \text{the set of all}$ convex combinations of the elements of S. \Box

Corollary 3.9. The convex hull of a finite subset $\{s_1, \ldots, s_k\} \subseteq \mathbb{R}^n$ consists of all the vectors of the form $\alpha_1 s_1 + \ldots + \alpha_k s_k$ with $\alpha_1, \ldots, \alpha_k \geq 0$ and \sum $\alpha_i = 1.$

Definitions 3.10. (1) A set which is the convex hull of a finite subset of \mathbb{R}^n is called a **convex polytope**, i.e. $C \subseteq \mathbb{R}^n$ is a convex polytope if $C =$ $\text{cvx}(S)$ for some finite $S \subseteq \mathbb{R}^n$.

(2) A point in a polytope is called a vertex if it is not on the line segment joining any other two distinct points of the polytope.

Remark 3.11. (1) A convex polytope is necessarily closed and bounded, i.e. compact.

(2) A convex polytope is always the convex hull of its vertices.

More general version for compact sets is the Krein Milman theorem:

Theorem 3.12. (Krein-Milman) Let $C \subseteq \mathbb{R}^n$ be a compact and convex set. Then C is the convex hull of its extreme points. \Box Definition 3.13. $\underline{x} \in C$ is extreme if $C \setminus {\underline{x}}$ is convex.