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1. GENERALITIES ABOUT POLYNOMIALS

Definition 1.1. For a polynomial p ∈ R[X1, . . . , Xn], we write

p(X) =
∑
i∈Nn

0

ci X
i ; ci ∈ R,

where X i = X i1
1 . . . X in

n is a monomial of degree = |i| =
n∑

k=1

ik and ci X
i is

a term.

Definition 1.2. A polynomial p(X) ∈ R[X] is called homogeneous or
form if all terms in p have the same degree.

Notation 1.3. Fn,m :=
{
F ∈ R[X1, . . . , Xn] | F is a form and deg(F ) = m

}
,

the set of all forms in n variables of degree m (also called set of n-ary m-ics
forms), for n,m ∈ N.
Convention: 0 ∈ Fn,m.

Definition 1.4. Let p ∈ R[X1, . . . , Xn] of degree m. The homogenization
of p w.r.t Xn+1 is defined as

ph(X1, . . . , Xn, Xn+1) := Xm
n+1 p

(
X1

Xn+1

, . . . ,
Xn

Xn+1

)

1
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Note that ph is a homogeneous polynomial of degree m and in n+1 variables
i.e. ph ∈ Fn+1,m, and ph(X1, . . . , Xn, 1) = p(X1, . . . , Xn).

Proposition 1.5. (1) Let p(X) ∈ R[X1, ...Xn], deg(p) = m, then

number of monomials of p ≤
(
m+n
n

)
(2) Let F (X) ∈ Fn,m, then

number of monomials of F ≤ N :=
(
m+n−1
n−1

)
□

Remark 1.6. Fn,m is a finite dimensional real vector space with Fn,m ≃ RN .

2. PSD- AND SOS- POLYNOMIALS

Definition 2.1. (1) p(X) ∈ R[X] is positive semidefinite (psd) if

p(x) ≥ 0 ∀ x ∈ Rn.

(2) p(X) ∈ R[X] is sum of squares (SOS) if ∃ pi ∈ R[X] s.t.

p(X) =
∑
i

pi(X)2.

Notation 2.2. Pn,m := set of all forms F ∈ Fn,m which are psd, and∑
n,m := set of all forms F ∈ Fn,m which are sos.

Lemma 2.3. If a polynomial p is psd then p has even degree. □

Remark 2.4. From now on (using lemma 2.3) we will often write Pn,2d and∑
n,2d.

Lemma 2.5. Let p be a homogeneous polynomial of degree 2d, and p sos.
Then every sos representation of p consists of homogeneous polynomials only,
i.e.

p(X) =
∑
i

pi(X)2 ⇒ pi(X) homogenous of degree d, i.e. pi ∈ Fn,d. □

Remark 2.6. The properties of psd-ness and sos-ness are preserved under
homogenization:

Lemma 2.7. Let p(X) be a polynomial. Then

(1) p is psd iff ph is psd,
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(2) p is sos iff ph is sos. □

So we can focus our investigation of psdness of polynomials versus sosness
of polynomials to those of forms, i.e. study and compare

∑
n,m ⊆ Pn,m .

Theorem 2.8. (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 [i.e. binary forms] or

(ii) m = 2 [i.e. quadratic forms] or

(iii) (n,m) = (3, 4) [i.e. ternary quartics].

For the ternary quartics case (F3,4), we shall study the convex cones Pn,m

and
∑

n,m.

3. CONVEX SETS, CONES AND EXTREMALITY

Definition 3.1. A subset C of Rn is convex set if a, b ∈ C ⇒ λa+(1−λ)b ∈
C, for all 0 < λ < 1.

Proposition 3.2. The intersection of an arbitrary collection of convex sets
is convex.

Notation 3.3. R+ := {x ∈ R | x ≥ 0}.

Definition 3.4. Let c1, . . . , ck ∈ Rn. A convex combination of c1, . . . , ck
is any vector sum

α1c1 + . . .+ αkck, with α1, . . . , αk ∈ R+ and
k∑

i=1

αi = 1.

Proposition 3.5. A subset C ⊆ Rn is convex if and only if it contains all
the convex combinations of its elements.

Proof. (⇐) clear

(⇒) Let C ⊆ Rn be a convex set. By definition C is closed under taking
convex combinations with two summands. We show that it is also closed
under finitely many summands.

Let k > 2. By Induction on k, assuming it true for fewer than k.

Given a convex combination c = α1c1 + . . .+ αkck, with c1, . . . , ck ∈ C

Note that we may assume 0 < αi < 1 for i = i, . . . , k; otherwise we have
fewer than k summands and we are done.
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Consider d =
α2

1− α1

c2 + . . .+
αk

1− α1

ck

we have
α2

1− α1

, . . . ,
αk

1− α1

> 0 and
α2

1− α1

+ . . .+
αk

1− α1

= 1

Thus d is a convex combination of k−1 elements of C and d ∈ C by induction.

Since c = α1c1 + (1− α1)d, it follows that c ∈ C. □

Definition 3.6. The intersection of all convex sets containing a given subset
S ⊆ Rn is called the convex hull of S and is denoted by cvx(S).

Remark 3.7. The convex hull of S ⊆ Rn is a convex set and is the uniquely
defined smallest convex set containing S.

Proposition 3.8. For any S ⊆ Rn,
cvx(S) = the set of all convex combinations of the elements of S.

Proof. (⊇) The elements of S belong to cvx(S), so all their convex combina-
tions belong to cvx(S) by Proposition 3.5.

(⊆) On the other hand we observe that the set of convex combinations of
elements of S is itself a convex set containing S:

let c = α1c1 + . . .+ αkck and d = β1d1 + . . .+ βldl, where ci, di ∈ S, then

λc+(1−λ)d = λα1c1+ . . .+λαkck+(1−λ)β1d1+ . . .+(1−λ)βldl, 0 ≤ λ ≤ 1
is just another convex combination of elements of S.

So by minimality property of cvx(S), it follows that cvx(S) ⊆ the set of all
convex combinations of the elements of S. □

Corollary 3.9. The convex hull of a finite subset {s1, . . . , sk} ⊆ Rn consists
of all the vectors of the form α1s1 + . . . + αksk with α1, . . . , αk ≥ 0 and∑
i

αi = 1. □

Definitions 3.10. (1) A set which is the convex hull of a finite subset of
Rn is called a convex polytope, i.e. C ⊆ Rn is a convex polytope if C =
cvx(S) for some finite S ⊆ Rn.

(2) A point in a polytope is called a vertex if it is not on the line segment
joining any other two distinct points of the polytope.

Remark 3.11. (1) A convex polytope is necessarily closed and bounded,
i.e. compact.
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(2) A convex polytope is always the convex hull of its vertices.

More general version for compact sets is the Krein Milman theorem:

Theorem 3.12. (Krein-Milman) Let C ⊆ Rn be a compact and convex
set. Then C is the convex hull of its extreme points. □
Definition 3.13. x ∈ C is extreme if C \ {x} is convex.


