REAL ALGEBRAIC GEOMETRY LECTURE **NOTES** PART II: POSITIVE POLYNOMIALS (19: 27/04/10 - BEARBEITET 22/12/2022)

SALMA KUHLMANN

Contents

1. THE REAL SPECTRUM

Definition 1.1. Let A be a commutative ring with 1. We set:

 $\mathcal{S}per(A) := \{ \alpha = (\mathfrak{p}, \leq) \mid \mathfrak{p} \text{ is a prime ideal of } A \text{ and } \leq \text{ is an ordering on } \mathfrak{p}$ $ff(A/\mathfrak{p})$.

Note 1.2. $Sper(A) := \{ \alpha = (\mathfrak{p}, \leq) \mid \mathfrak{p} \text{ is a real prime and } \leq \text{ an ordering on } \}$ $ff(A/\mathfrak{p})$.

Definition 1.3. Let $\alpha = (\mathfrak{p}, \leq) \in \mathcal Sper(A)$, then $\mathfrak{p} = \text{Supp}(\alpha)$, the **Support** of α .

Recall 1.4. An ordering $P \subseteq A$ is a preordering with $P \cup -P = A$ and $\mathfrak{p} := P \cap -P$ prime ideal of A.

Definition 1.5. Alternatively, the **Real Spectrum** of A, $Sper(A)$ can be defined as:

 $\mathcal{S}\textit{per}(A) := \{P \mid P \subseteq A, P \text{ is an ordering of } A \}.$

Remark 1.6. The two definitions of $Sper(A)$ are equivalent in the following sense:

The map

$$
\varphi: \left\{\text{Orderings in } A\right\} \rightsquigarrow \left\{(\mathfrak{p}, \leq), \mathfrak{p} \text{ real prime}, \leq \text{ordering on } ff(A/\mathfrak{p})\right\}
$$
\n
$$
P \longmapsto \mathfrak{p} := P \cap -P, \leq_P \text{ on } ff(A/\mathfrak{p})
$$
\n
$$
\left(\text{where } \frac{\overline{a}}{\overline{b}} \geq_P 0 \Leftrightarrow ab \in P \text{ with } \overline{a} = a + \mathfrak{p}\right)
$$
\nis bijective $\left[\text{where } \varphi^{-1}(\mathfrak{p}, \leq)\right]$ is $P := \left\{a \in A \mid \overline{a} \geq 0\right\}\right].$

2. TOPOLOGIES ON $Sper(A)$

Definition 2.1. The **Spectral Topology** on $Sper(A)$:

 $Sper(A)$ as a topological space, subbasis of open sets is: $\mathcal{U}(a) := \{ P \in \mathcal{S}per(A) \mid a \notin P \}, a \in A.$

 \int So a basis of open sets consists of finite intersection, i.e. of sets

$$
\mathcal{U}(a_1,\ldots,a_n):=\big\{P\in \mathcal Sper(A)\mid a_1,\ldots,a_n\notin P\big\}\Big)
$$

Then close by arbitrary unions to get all open sets. This is called Spectral Topology.

Definition 2.2. The Constructible (or Patch) Topology on $Sper(A)$ is the topology that is generated by the open sets $\mathcal{U}(a)$ and their complements $Sper(A)\backslash U(a)$, for $a \in A$.

Subbasis for constructible topology is $\mathcal{U}(a)$, $Sper(A)\backslash\mathcal{U}(a)$, for $a \in A$.

Remark 2.3. The constructible topology is finer than the Spectral Topology (i.e. more open sets).

Special case: $A = \mathbb{R}[\underline{X}]$

Proposition 2.4. There is a natural embedding

 $\mathcal{P}: \mathbb{R}^n \longrightarrow \mathcal{S}per(\mathbb{R}[\underline{X}])$

given by

$$
\underline{x} \longmapsto P_{\underline{x}} := \Big\{ f \in \mathbb{R}[\underline{X}] \ | \ f(\underline{x}) \geq 0 \Big\}.
$$

Proof. The map P is well defined.

Verify that $P_{\underline{x}}$ is indeed an ordering of A.

Clearly it is a preordering, $P_x \cup -P_x = \mathbb{R}[\underline{X}]$.

 $\mathfrak{p} := P_{\underline{x}} \cap -P_{\underline{x}} = \Big\{ f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) = 0 \Big\} \text{ is actually a maximal ideal of } \mathbb{R}[\underline{X}],$ since $\mathfrak{p} = \text{Ker } (ev_x)$, the kernel of the evaluation map

$$
ev_{\underline{x}} : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}
$$

so, $\frac{\mathbb{R}[\underline{X}]}{\mathfrak{p}} \simeq \underbrace{\mathbb{R}}_{\text{a field}}$ (by first isomorphism theorem)

 \Rightarrow p maximal \Rightarrow p is prime ideal.

Theorem 2.5. $\mathcal{P}(\mathbb{R}^n)$, the image of \mathbb{R}^n in $\mathcal{S}per(\mathbb{R}[\underline{X}])$ is dense in $(\mathcal{S}per(\mathbb{R}[\underline{X}]),$ Constructible Topology) and hence in $(\mathcal S per(\mathbb R[\underline{X}])$, Spectral Topology). $\left(i.e. \overline{\mathcal{P}(\mathbb{R}^n)}^{patch} = \mathcal{S}per(\mathbb{R}[\underline{X}])\right).$

Proof. By definition, a basic open set in $Sper(\mathbb{R}[\underline{X}])$ has the form

 $\mathcal{U} = \{P \in \mathcal{S}per(\mathbb{R}[\underline{X}]) \mid f_i \notin P, g_j \in P; i = i, \ldots, s, j = 1, \ldots, t\},\$ for some $f_i, g_j \in \mathbb{R}[\underline{X}].$

Let $P \in \mathcal{U}$ (open neighbourhood of $P \in \mathcal{S}per(\mathbb{R}[\underline{X}])$)

We want to show that: $\exists y \in \mathbb{R}^n$ s.t. $P_y \in \mathcal{U}$

Consider $F = ff(\mathbb{R}[\underline{X}]/\mathfrak{p})$; $\mathfrak{p} = \text{Supp}(P) = P \cap -P$ and \leq ordering on F induced by P.

Then (F, \leq) is an ordered field extension of (\mathbb{R}, \leq) . Consider $\underline{x} = (\overline{x_1}, \ldots, \overline{x_n}) \in F^n$, where $\overline{x_i} = X_i + \mathfrak{p}$ Then by definition of \leq we have (as in the proof of PSS): $f_i(\underline{x}) < 0$ and $g_j(\underline{x}) \ge 0$; $\forall i = i, ..., s, j = 1, ..., t$. By Tarski Transfer, $\exists y \in \mathbb{R}^n$ s.t.

$$
f_i(\underline{y}) < 0 \quad \Longleftrightarrow f_i \notin P_{\underline{y}} \quad \text{and} \quad g_j(\underline{y}) \ge 0 \quad \big(\Leftrightarrow g_j \in P_{\underline{y}} \quad \big) \quad ; \quad i = i, \dots, s, \quad j = 1, \dots, t
$$
\n
$$
\Leftrightarrow P_{\underline{y}} \in \mathcal{U} \qquad \qquad \Box
$$

3. ABSTRACT POSITIVSTELLENSATZ

Recall 3.1. T proper preordering $\Rightarrow \exists P$ an ordering of A s.t. $P \supset T$.

Definiton 3.2. Let P be an ordering of A, fix $a \in A$. We define **Sign of** a at P :

$$
a(P) := \begin{cases} 1 & \text{if } a \notin -P \\ 0 & \text{if } a \in P \cap -P \\ -1 & \text{if } a \notin P \end{cases}
$$

(Note that this allows to consider $a \in A$ as a map on $\mathcal Sper(A)$).

Notation 3.3. We write: $a > 0$ at P if $a(P) = 1$ $a = 0$ at P if $a(P) = 0$ $a < 0$ at P if $a(P) = -1$

Note that (in this notation) $a \geq 0$ at P iff $a \in P$.

Definition 3.4. Let $T \subseteq A$, then the **Relative Spectrum** of A with respect to T is

$$
Sper_T(A) = \{ P \mid P \supseteq T; P \in Sper(A) \}.
$$

Proposition 3.5. Let $T \subseteq A$ be a finitely generated preordering, say $T =$ T_S ; where $S = \{g_1, \ldots, g_s\} \subseteq A$. Then

$$
Sper_T(A) = Sper_S(A) = \{ P \in Sper(A) \mid g_i \in P \, ; i = i, \dots, s \}
$$

$$
= \{ P \in Sper(A) \mid g_i(P) \ge 0 \, ; i = i, \dots, s \}
$$

Remark 3.5. Let $T \subseteq A$

(i) $Sper_T(A)$ inherits the relative spectral (respectively constructible) topology.

(ii) In case $T = T_{\{q_1,\dots,q_s\}}$ is a finitely generated preordering, then the proof of Theorem 2.5 goes through to give the following relative version for $\mathcal Sper_T$:

Theorem 3.6. (Relative version of Theorem 2.5) Let $T = T_S = \text{finitely}$ generated preordering; $S = \{g_1, \ldots, g_s\}$. Let $K = K_S = \{ \underline{x} \in \mathbb{R}^n \mid g_i(\underline{x}) \geq 0 \}$ $[0] \subseteq \mathbb{R}^n$, a basic closed semi-algebraic set. Consider $(Sper_T,$ Constructible Topology . Then

$$
(05: 27/04/10)
$$

 $\mathcal{P}: K \rightsquigarrow \mathcal{S}per_T(\mathbb{R}[\underline{X}])$ (defined as before)

$$
\underline{x} \longmapsto P_{\underline{x}} = \left\{ f \in \mathbb{R}[\underline{X}] \mid f(\underline{x}) \ge 0 \right\}
$$

is well defined (i.e. $P_x \supseteq T \ \forall \ \underline{x} \in K$).

Moreover $\mathcal{P}(K)$ is dense in $(Sper_T(\mathbb{R}[\underline{X}]),$ Constructible Topology).

Proof. The proof is analogous to the proof of Theorem 2.5. (Note the fact that T is finitely generated is crucial here to be able to apply Tarski Transfer.) □

Theorem 3.7. (Abstract Positivstellensatz) Let A be a commutative ring, $T \subseteq A$ be a preordering of A (not necessarily finitely generated). Then for $a \in A$:

- (1) $a > 0$ on $\mathcal Sper_T(A) \Leftrightarrow \exists p, q \in T \text{ s.t. } pa = 1 + q$
- (2) $a \ge 0$ on $\mathcal Sper_T(A) \Leftrightarrow \exists p, q \in T, m \ge 0$ s.t. $pa = a^{2m} + q$
- (3) $a = 0$ on $\mathcal{S}per_T(A) \Leftrightarrow \exists m \ge 0$ s.t. $-a^{2m} \in T$.

Proof. (1) Let $a > 0$ on $Sper_T(A)$. Suppose for a contradiction that there are no elements $p, q \in T$ s.t. $pa = 1 + q$ i.e. s.t. $-1 = q - pa$ i.e. $-1 \neq q - pa \,\forall p, q \in T$

Thus $-1 \notin T' := T - Ta$.

 \Rightarrow T' is a proper preordering.

So (by recall 3.1) $\exists P$ an ordering of A with $T' \subseteq P$.

Now observe that $T \subseteq P$ i.e. $P \in \mathcal Sper_T(A)$ but $-a \in P$ (i.e. $a(P) \le 0$) i.e. $a \leq 0$ on P, a contradiction to the assumption. \Box

Proposition 3.8. Abstract Positivstellensatz \Rightarrow Positivstellensatz.

Proof. $A = \mathbb{R}[X], T = T_S = T_{\{g_1,\dots,g_s\}}, K = K_S.$

It suffices to show (2) of PSS [Theorem 1.1 of lecture 03 on $20/04/10$], i.e. $f \geq 0$ on $K_S \Leftrightarrow \exists m \in \mathbb{Z}_+, \exists p, q \in T_S \text{ s.t. } pf = f^{2m} + q.$

Let $f \in \mathbb{R}[X]$ and $f \geq 0$ on K_S .

It suffices [by (2) of Theorem 3.7] to show that $f \geq 0$ on $\mathcal Sper_T(\mathbb{R}[\underline{X}])$:

If not then $\exists P \in \mathcal Sper_T(\mathbb{R}[\underline{X}])$ s.t. $f \notin P$ So, $P \in \mathcal{U}_T(f)$ (open neighbourhood of $P \in \mathcal Sper_T(\mathbb{R}[\underline{X}])$) Now by Theorem 3.6 (i.e. relative density of $\mathcal{P}(K)$ in $\mathcal{S}per_T(\mathbb{R}[\underline{X}])$): $\exists \underline{x} \in K$ s.t. $P_{\underline{x}} \in \mathcal{U}_T(f)$

 $\Rightarrow f \notin P_{\underline{x}} \Rightarrow f(\underline{x}) < 0$, a contradiction to the assumption. \Box