REAL ALGEBRAIC GEOMETRY LECTURE **NOTES** PART II: POSITIVE POLYNOMIALS (18: 22/04/10 - BEARBEITET 20/12/2022)

SALMA KUHLMANN

Contents

1. EXKURS IN COMMUTATIVE ALGEBRA

Recall 1.1. Let K be a field and I an ideal of $K[X]$, then the inclusion $I \subseteq \mathcal{I}(\mathcal{Z}(I))$ is always true.

But in general it is false that $\mathcal{I}(\mathcal{Z}(I))$ $= I$ (1)

Note 1.2. In other words we study the map

$$
\mathcal{I}: \left\{\text{algebraic sets in } K^n \right\} \rightsquigarrow \left\{\text{Ideals of } K[\underline{X}] \right\}
$$

$$
V \longmapsto \mathcal{I}(V)
$$

- Clearly this map is 1-1 (proposition 2.5 of last lecture).
- What is the image of I ? (2)

$$
(2)^{\widehat{}}
$$

Let *I* an ideal,
$$
I = \mathcal{I}(V)
$$

\n $\Rightarrow \mathcal{Z}(I) = \underbrace{\mathcal{Z}(\mathcal{I}(V))}_{(\text{prop. 2.5 of last lecture})} = V$

Thus an ideal I is in the image $\Leftrightarrow I = \mathcal{I}(\mathcal{Z}(I))$

So studying the equality (1) amounts to studying (2).

2. RADICAL IDEALS AND REAL IDEALS

Remark 2.1. For an ideal $I \subseteq K[\underline{X}]$, answer to $I = \mathcal{I}(\mathcal{Z}(I))$ is known

- when K is algebraically closed (Hilbert's Nullstellensatz), or
- \bullet when K is real closed (Real Nullstellensatz).

To formulate these two important theorems we need to introduce some terminology:

Definition 2.2. Let A be a commutative ring with 1, $I \subseteq A$, I an ideal of A. Define

(i) $\sqrt{I} := \{a \in A \mid \exists m \in \mathbb{N} \text{ s.t. } a^m \in I \}$, the **radical** of *I*.

(ii) $\sqrt[R]{I} := \{ a \in A \mid \exists m \in \mathbb{N} \text{ and } \sigma \in \Sigma A^2 \text{ s.t. } a^{2m} + \sigma \in I \}$, the real radical

of I.

Remark 2.3. It follows from the definition that $I \subseteq$ √ $\overline{I} \subseteq \sqrt[R]{I}.$

Definition 2.4. Let I be an ideal of A . Then

- (1) *I* is called **radical ideal** if $I =$ √ I, and
- (2) *I* is called **real radical ideal** (or just **real ideal**) if $I = \sqrt[R]{I}$.

Remark 2.5. (i) Every prime ideal is radical, but the converse does not hold in general.

(ii) I real radical \Rightarrow I radical (follows from Remark 2.3 and Definition 2.4).

Proposition 2.6. Let A be a commutative ring with 1, $I \subseteq A$ an ideal. Then

- (1) *I* is radical $\Leftrightarrow \forall a \in A : a^2 \in I \Rightarrow a \in I$
- (2) I is real radical \Leftrightarrow for $k \in \mathbb{N}, \forall a_1, \ldots, a_k \in A : \sum$ k $i=1$ $a_i^2 \in I \Rightarrow a_1 \in I.$

Proof. (1) (\Rightarrow) Trivially follows from definition.

(
$$
\Leftarrow
$$
) Let $a \in \sqrt{I}$, then $\exists m \ge 1$ s.t. $a^m \in I$.
Let k (big enough) s.t. $2^k \ge m$, then

$$
a^{2^k} = a^m a^{2^k - m} \in I
$$

Now we show by induction on k that:

$$
[a^2 \in I \Rightarrow a \in I] \Rightarrow [a^{2^k} \in I \Rightarrow a \in I]
$$

For $k = 1$, it is clear.

Assume it true for k and show it true for $k + 1$, i.e. let $a^{2^{k+1}} \in I$, then

$$
a^{2^{k+1}} = \left(a^{2^k}\right)^2 \in I \underset{\text{(by assumption)}}{\Longrightarrow} a^{2^k} \in I \underset{\text{(induction hypothesis)}}{\Longrightarrow} a \in I.
$$

(2) (\Rightarrow) Trivially follows from definition.

$$
(\Leftarrow)
$$
 Let $a \in \sqrt[R]{I}$, then $\exists m \ge 1$, $\sigma = \Sigma a_i^2$ ($\in \Sigma A^2$) s.t. $a^{2m} + \sigma \in I$.
\n $\Rightarrow (a^m)^2 + \sigma \in I$ \Rightarrow $a^m \in I$ \Rightarrow $a \in I$. \square

 $\sum_{\text{over }i}$

(as above in (1))

Remark 2.7. (i) Since real radical ideal \Rightarrow radical ideal, so in particular (2) \Rightarrow (1) in above proposition.

(ii) A prime ideal is always radical (as in Remark 2.5), but need not be real.

Proposition 2.8. Let $\mathfrak{p} \subseteq A$ be a prime ideal. Then p is real $\Leftrightarrow ff(A/\mathfrak{p})$ is a real field.

 \sum_{ssumr}

(by assumption)

Proof. p is not real

$$
\Leftrightarrow \exists a, a_1, \dots, a_k \in A; \ a \notin \mathfrak{p} \text{ such that } a^2 + \sum_{i=1}^k a_i^2 \in \mathfrak{p}
$$

$$
\Leftrightarrow \overline{a}^2 + \sum_{i=1}^k \overline{a_i}^2 = 0 \text{ and } \overline{a} \neq 0 \text{ (in } A/\mathfrak{p})
$$

$$
\Leftrightarrow ff(A/\mathfrak{p}) \text{ is not real.}
$$

Theorem 2.9. Let K be a field, $A = K[\underline{X}], I \subseteq A$ an ideal. Then

- (1) (Hilbert's Nullstellensatz) Assume K is algebraically closed, then $\mathcal{I}(\mathcal{Z}(I)) = \sqrt{I}.$ (Proved in B5)
- (2) (Real Nullstellensatz) Assume K is real closed, then $\tau(z(t))$ $\mathcal{I}(\mathcal{Z}(I)) = \sqrt[R]{I}.$ (Will be deduced from Positivstellensatz)

Corollary 2.10. Consider the map:

$$
\mathcal{I}: \left\{\text{algebraic sets in } K^n \right\} \longrightarrow \left\{\text{Ideals of } K[\underline{X}] \right\}
$$

- (1) If K is algebraically closed, then Image $\mathcal{I} = \{I \mid I \text{ is a radical ideal}\}\$
- (2) If K is real closed, then Image $\mathcal{I} = \{I \mid I \text{ is real ideal}\}\$ □

Now we want to deduce the Real Nullstellensatz $[Theorem 2.9 (2)] from$ part (3) of the Positivstellensatz (PSS) Theorem 1.1 of last lecture. We need the following 2 (helping) lemmas:

Lemma 2.11. Let A be a commutative ring and M be a quadratic module, then:

- (1) $M \cap (-M)$ is an ideal of A.
- (2) The following are equivalent for $a \in A$:

(i)
$$
a \in \sqrt{M \cap (-M)}
$$

\n(ii) $a^{2m} \in M \cap (-M)$ for some $m \in \mathbb{N}, m \ge 1$
\n(iii) $-a^{2m} \in M$ for some $m \in \mathbb{N}, m \ge 1$.

Lemma 2.12. Let A be a ring, $M(= M_S)$ a quadratic module (resp. preordering) of A generated by $S = \{g_1, \ldots, g_s\}; g_1, \ldots, g_s \in A$. Let I be an ideal in A generated by h_1, \ldots, h_t , i.e. $I = \langle h_1, \ldots, h_t \rangle; h_1, \ldots, h_t \in A$.

Then $M + I$ is the quadratic module (resp. the preordering) generated by $S \cup {\pm h_i ; i = 1, ..., t}.$

Recall 2.13. $[(3)$ of PSS $]$ Let $A = \mathbb{R}[\underline{X}], S = \{g_1, \ldots, g_s\} \subseteq \mathbb{R}[\underline{X}], f \in$ $\mathbb{R}[\underline{X}]$. Then $f = 0$ on $K_S \Leftrightarrow \exists m \in \mathbb{Z}_+$ s.t. $-f^{2m} \in T_S$.

Corollary 2.14. (to Recall 2.13 and Lemma 2.11) Let $K = K_S \subseteq \mathbb{R}^n$, $T =$ $T_S \subseteq \mathbb{R}[X]$ (as in PSS), then

$$
\mathcal{I}(K_S) = \sqrt{T_S \cap (-T_S)}.
$$

Proof. $f = 0$ on K_S $\sum_{\text{of } F}$ ⇔ $(by(3)$ of PSS) $-f^{2m} \in T_S$ for some $m \in \mathbb{Z}_+$ \sum_{emma} ⇔ (by lemma 2.11) $f \in \sqrt{T_S \cap (-T_S)}$

Corollary 2.15. (to Lemma 2.11) Let A be a commutative ring with 1. Let I be an ideal of A. Consider the preordering $T := \Sigma A^2 + I$, then

$$
\sqrt[R]{I} = \sqrt{T \cap (-T)}.
$$

Now Corollary 2.14 and Corollary 2.15 give the proof of the Real Nullstellensatz (RNSS) as follows:

Proof of RNSS [Theorem 2.9 (2)]. Let I be an ideal of $\mathbb{R}[\underline{X}]$

We show that: $\mathcal{I}(\mathcal{Z}(I)) = \sqrt[R]{I}$

 $\mathbb{R}[\underline{X}]$ Noetherian $\Rightarrow I = \langle h_1, \ldots, h_t \rangle$ (by Hilbert Basis Theorem). Consider $S := \{\pm h_i ; i = 1, ..., t\}$ Then $K_S = \mathcal{Z}(I)$ [clearly]

Now by Lemma 2.12, we have:

$$
T = T_S = \Sigma \mathbb{R}[\underline{X}]^2 + I
$$

So we get,

$$
\mathcal{I}(\mathcal{Z}(I)) = \mathcal{I}(K_S) \underset{\text{(Cor 2.14)}}{=} \sqrt{T \cap (-T)} \underset{\text{(Cor 2.15)}}{=} \sqrt[T]{I} \qquad \Box
$$

3. THE REAL SPECTRUM

Definition 3.1. Let A be a commutative ring with 1. Then:

 $\mathcal{S}\textit{pec}(A) := \{ \mathfrak{p} \mid \mathfrak{p} \text{ is prime ideal of } A \}$ is called the **Spectrum** of A.

 $\mathcal S per(A) = \mathcal S pec_r(A) := \big\{ (\mathfrak{p}, \leq) \, \mid \, \mathfrak{p} \text{ is a prime ideal of } A \text{ and } \leq \text{ is an } \big\}$ ordering on the (formally real) field $ff(A/\mathfrak{p})$ is called the **Real Spectrum** of A.

Remark 3.2. (i) Several orderings may be defined on $ff(A/\mathfrak{p})$, $(\mathfrak{p}, \leq_1) \neq (\mathfrak{p}, \leq_2).$

(ii) $(\mathfrak{p}, \leq) \in \mathcal Sper(A) \Rightarrow \mathfrak{p}$ is real radical ideal. [see Proposition 2.8 and Remark 2.5 (i).]

Note 3.3. $Sper(A) := \{ \alpha = (\mathfrak{p}, \leq) \mid \mathfrak{p} \text{ is a real prime and } \leq \text{ an ordering on } \}$ $ff(A/\mathfrak{p})$.