REAL ALGEBRAIC GEOMETRY LECTURE NOTES PART II: POSITIVE POLYNOMIALS (17: BEARBEITET 15/12/2022)

SALMA KUHLMANN

Contents

1. Geometric version of Positivstellensatz	1
2. Exkurs in commutative algebra	6

1. GEOMETRIC VERSION OF POSITIVSTELLENSATZ

Theorem 1.1. (**Recall**) (Positivstellensatz: Geometric Version) Let $A = \mathbb{R}[\underline{X}]$. Let $S = \{g_1, \dots, g_s\} \subseteq \mathbb{R}[\underline{X}], f \in \mathbb{R}[\underline{X}]$. Then

- (1) f > 0 on $K_S \Leftrightarrow \exists p, q \in T_S$ s.t. pf = 1 + q(Striktpositivstellensatz)
- (2) $f \ge 0$ on $K_S \Leftrightarrow \exists m \in \mathbb{N}_0, \exists p, q \in T_S$ s.t. $pf = f^{2m} + q$ (Nonnegativstellensatz)
- (3) f = 0 on $K_S \Leftrightarrow \exists m \in \mathbb{N}_0$ s.t. $-f^{2m} \in T_S$ (Real Nullstellensatz (first form))
- (4) $K_S = \phi \Leftrightarrow -1 \in T_S$.

Proof. It consists of two parts: -Step I: prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$ -Step II: prove (4) [using Tarski Transfer]

We will start with step II: Clearly $K_S \neq \phi \Rightarrow -1 \notin T_S$ (since $-1 \in T_S \Rightarrow K_S = \phi$), so it only remains to prove the following proposition: **Proposition 1.2.** (3.2 of last lecture) If $-1 \notin T_S$ (i.e. if T_S is a proper preordering), then $K_S \neq \phi$.

For proving this we need the following results:

Lemma 1.3.1. (3.4.1 of last lecture) Let A be a commutative ring with 1. Let P be a maximal proper preordering in A. Then P is an ordering. *Proof.* We have to show:

```
(i) P \cup -P = A, and
(ii) \mathfrak{p} := P \cap -P is a prime ideal of A.
(i) Assume a \in A, but a \notin P \cup -P.
   By maximality of P, we have: -1 \in (P + aP) and -1 \in (P - aP)
   Thus
    -1 = s_1 + at_1 and
    -1 = s_2 - at_2; for some s_1, s_2, t_1, t_2 \in P
   So (rewritting)
    -at_1 = 1 + s_1 and
      at_2 = 1 + s_2
   Multiplying we get:
    -a^2t_1t_2 = 1 + s_1 + s_2 + s_1s_2
   \Rightarrow -1 = s_1 + s_2 + s_1 s_2 + a^2 t_1 t_2 \in P, a contradiction.
(ii) Now consider \mathfrak{p} := P \cap -P, clearly it is an ideal.
    We claim that p is prime.
    Let ab \in \mathfrak{p} and a, b \notin \mathfrak{p}.
    Assume w.l.o.g. that a, b \notin P.
    Then as above in (i), we get:
    -1 \in (P + aP) and -1 \in (P + bP)
    So, -1 = s_1 + at_1 and
    -1 = s_2 + bt_2; for some s_1, s_2, t_1, t_2 \in P
    Rearranging and multiplying we get:
    (at_1)(bt_2) = (1 + s_1)(1 + s_2) = 1 + s_1 + s_2 + s_1s_2
    \Rightarrow -1 = \underbrace{s_1 + s_2 + s_1 s_2}_{\in P} \underbrace{-abt_1 t_2}_{\in \mathfrak{p} \subset P}
    \Rightarrow -1 \in P, a contradiction.
```

Lemma 1.3.2. (3.4.2 of last lecture) Let *A* be a commutative ring with 1 and $P \subseteq A$ an ordering. Then *P* induces uniquely an ordering \leq_P on F := ff(A/p) defined by:

POSITIVE POLYNOMIALS LECTURE NOTES

$$\forall a, b \in A, b \notin \mathfrak{p} : \frac{\overline{a}}{\overline{b}} \ge_P 0 \text{ (in } F) \Leftrightarrow ab \in P, \text{ where } \overline{a} = a + \mathfrak{p}.$$

Recall 1.3.3. (Tarski Transfer Principle) Suppose $(\mathbb{R}, \leq) \subseteq (F, \leq)$ is an ordered field extension of \mathbb{R} . If $\underline{x} \in F^n$ satisfies a finite system of polynomial equations and inequalities with coefficients in \mathbb{R} , then $\exists \underline{r} \in \mathbb{R}^n$ satisfying the same system.

Using lemma 1.3.1, lemma 1.3.2 and TTP (recall 1.3.3), we prove the proposition 1.2 as follows:

Proof of Propostion 1.2. To show: $-1 \notin T_S \Rightarrow K_S \neq \phi$. Set $S = \{g_1, \dots, g_s\} \subseteq \mathbb{R}[\underline{X}]$ $-1 \notin T_S \Rightarrow T_S$ is a proper preordering. By Zorn, extend T_S to a maximal proper preordering *P*. By lemma 1.3.1, *P* is an ordering on $\mathbb{R}[\underline{X}]$; $\mathfrak{p} := P \cap -P$ is prime.

By lemma 1.3.2, let $(F, \leq_P) = (ff(\mathbb{R}[\underline{X}]/\mathfrak{p}), \leq_P)$ is an ordered field extension of (\mathbb{R}, \leq) .

Now consider the system $S := \begin{cases} g_1 \ge 0 \\ \vdots \\ g_s \ge 0. \end{cases}$

Claim: The system S has a solution in F^n , namely $\underline{X} := (\overline{X_1}, \ldots, \overline{X_n})$,

i.e. to show: $g_i(\overline{X_1}, \ldots, \overline{X_n}) \ge_P 0$; $i = 1, \ldots, s$.

Indeed $g_i(\overline{X_1}, \ldots, \overline{X_n}) = \overline{g_i(X_1, \ldots, X_n)}$, and since $g_i \in T_S \subset P$, it follows by definition of \leq_P that $\overline{g_i} \geq_P 0$.

Now apply TTP (recall 1.3.3) to conclude that: $\exists \underline{r} \in \mathbb{R}^n$ satisfying the system S, i.e. $g_i(\underline{x}) \ge 0$; i = 1, ..., s. $\Rightarrow \underline{r} \in K_S \Rightarrow K_S \neq \phi$.

This completes step II.

Now we will do step I: i.e. we show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$

 $(1) \Rightarrow (2)$

Let $f \ge 0$ on K_S , $f \not\equiv 0$.

3

(03: 20/04/10)

Consider
$$S' \subseteq \mathbb{R}[\underline{X}, Y]$$
, $S' := S \cup \{Yf - 1, -Yf + 1\}$
So, $K_{S'} = \{(\underline{x}, y) \mid g_i(\underline{x}) \ge 0, i = 1, ..., n; yf(\underline{x}) = 1\}.$

Thus $f(\underline{X}, Y) = f(\underline{X}) > 0$ on $K_{S'}$, so applying (1) $\exists p', q' \in T_{S'}$ s.t.

$$p'(\underline{X}, Y)f(\underline{X}) = 1 + q'(\underline{X}, Y)$$

Substitute $Y := \frac{1}{f(\underline{X})}$ in above equation and clear denominators by multiplying both sides by $f(\underline{X})^{2m}$ for $m \in \mathbb{N}_0$ sufficiently large to get:

$$p(\underline{X})f(\underline{X}) = f(\underline{X})^{2m} + q(\underline{X}),$$

with
$$p(\underline{X}) := f(\underline{X})^{2m} p'\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}]$$
 and
 $q(\underline{X}) := f(\underline{X})^{2m} q'\left(\underline{X}, \frac{1}{f(\underline{X})}\right) \in \mathbb{R}[\underline{X}].$

To finish the proof we **claim** that: $p(\underline{X}), q(\underline{X}) \in T_S$ for sufficiently large *m*.

Observe that $p'(\underline{X}, Y) \in T_{S'}$, so p' is a sum of terms of the form:

$$\underbrace{\sigma(\underline{X}, Y)}_{\in \Sigma \mathbb{R}[\underline{X}, Y]^2} g_1^{e_1} \dots g_s^{e_s} (Yf(\underline{X}) - 1)^{e_{s+1}} (-Yf(\underline{X}) + 1)^{e_{s+2}} ; e_1, \dots, e_s, e_{s+1}, e_{s+2} \in \{0, 1\}$$

say $\sigma(\underline{X}, Y) = \sum_j h_j(\underline{X}, Y)^2$.

Now when we substitute Y by $\frac{1}{f(\underline{X})}$ in $p'(\underline{X}, Y)$, all terms with e_{s+1} or e_{s+2} equal to 1 vanish.

So, the remaining terms are of the form

$$\sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right) g_1^{e_1} \dots g_s^{e_s} = \left(\sum_j \left[h_j\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^2\right) g_1^{e_1} \dots g_s^{e_s}$$

So, we want to choose *m* large enough so that $f(\underline{X})^{2m} \sigma(\underline{X}, \frac{1}{f(\underline{X})}) \in \Sigma \mathbb{R}[\underline{X}]^2$.

Write
$$h_j(\underline{X}, Y) = \sum_i h_{ij}(\underline{X})Y^i$$

Let $m \ge \deg(h_j(\underline{X}, Y))$ in Y , for all j .

Substituting $Y = \frac{1}{f(\underline{X})}$ in $h_j(\underline{X}, Y)$ and multiplying by $f(\underline{X})^m$, we get:

$$f(\underline{X})^m h_j(\underline{X}, \frac{1}{f(\underline{X})}) = \sum_i h_{ij}(\underline{X}) f(\underline{X})^{m-i}, \text{ with } (m-i) \ge 0 \forall i$$

POSITIVE POLYNOMIALS LECTURE NOTES

so that
$$f(\underline{X})^m h_j(\underline{X}, \frac{1}{f(\underline{X})}) \in \mathbb{R}[\underline{X}]$$
, for all j .
So $f(\underline{X})^{2m} \sigma(\underline{X}, \frac{1}{f(\underline{X})}) = f(\underline{X})^{2m} \left(\sum_j \left[h_j(\underline{X}, \frac{1}{f(\underline{X})})\right]^2\right)$
$$= \sum_j \left[f(\underline{X})^m h_j(\underline{X}, \frac{1}{f(\underline{X})})\right]^2 \in \Sigma \mathbb{R}[\underline{X}]^2$$

Thus *p* and (similarly) $q \in T_S$, which proves our claim and hence $(1) \Rightarrow (2)$.

$$\underline{(2) \Rightarrow (3)}$$

Assume
$$f = 0$$
 on K_S . Apply (2) to f and $-f$ to get:
 $p_1 f = f^{2m_1} + q_1$ and
 $-p_2 f = f^{2m_2} + q_2$; for some $p_1, p_2, q_1, q_2 \in T_S$, $m_i \in \mathbb{N}_0$

Multiplying yields:

$$-p_1 p_2 f^2 = f^{2(m_1+m_2)} + f^{2m_1} q_2 + f^{2m_2} q_1 + q_1 q_2$$

$$\Rightarrow -f^{2(m_1+m_2)} = \underbrace{p_1 p_2 f^2 + f^{2m_1} q_2 + f^{2m_2} q_1 + q_1 q_2}_{\in T_S}$$

i.e. $-f^{2m} \in T_S$.

 $(3) \Rightarrow (4)$

Assume $K_S = \phi$ \Rightarrow the constant polynomial $f(X) \equiv 1$ vanishes on K_S . Applying (3), gives $-1 \in T_S$.

 $(4) \Rightarrow (1)$

Let $S' = S \cup \{-f\}$ Since f > 0 on K_S we have $K_{S'} = \phi$, so $-1 \in T_{S'}$ by (4). Moreover from $S' = S \cup \{-f\}$, we have $T_{S'} = T_S - fT_S$ $\Rightarrow -1 = q - pf$; for some $p, q \in T_S$ i.e. pf = 1 + q

This completes step I and hence the proof of Positivstellensatz. $\Box\Box$

We will now study other forms of the Real Nullstellensatz that will relate it to Hilbert's Nullstellensatz.

2. EXKURS IN COMMUTATIVE ALGEBRA

(03: 20/04/10)

Recall 2.1. Let *K* be a field, $S \subseteq K[X]$. Define

 $\mathcal{Z}(S) := \{ \underline{x} \in K^n \mid g(\underline{x}) = 0 \ \forall g \in S \}, \text{ the zero set of } S.$

Proposition 2.2. Let $V \subseteq K^n$. Then the following are equivalent:

(1) $V = \mathcal{Z}(S)$; for some finite $S \subseteq K[\underline{X}]$

(2) $V = \mathcal{Z}(S)$; for some set $S \subseteq K[\underline{X}]$ (2) $V = \mathcal{Z}(V)$

(3) $V = \mathcal{Z}(I)$; for some ideal $I \subseteq K[\underline{X}]$

Proof. (1) \Rightarrow (2) Clear.

(2) \Rightarrow (3) Take $I := \langle S \rangle$, the ideal generated by S.

 $(3) \Rightarrow (1)$ Using Hilbert Basis Theorem (i.e. for a field *K*, every ideal in *K*[<u>X</u>] is finitely generated):

 $I = \langle S \rangle, S \text{ finite}$ $\Rightarrow \mathcal{Z}(I) = \mathcal{Z}(S).$

Definition 2.3. $V \subseteq K^n$ is an **algebraic set** if *V* satisfies one of the equivalent conditions of Proposition 2.2.

Definition 2.4. Given a subset $A \subseteq K^n$, we form:

$$\mathcal{I}(A) := \{ f \in K[\underline{X}] \mid f(\underline{a}) = 0 \ \forall \ \underline{a} \in A \}.$$

Proposition 2.5. Let $A \subseteq K^n$. Then

- (1) I(A) is an ideal called the **ideal of vanishing polynomials** on A.
- (2) If A = V is an algebraic set in K^n , then $\mathcal{Z}(\mathcal{I}(V)) = V$
- (3) the map $V \mapsto \mathcal{I}(V)$ is a 1-1 map from the set of algebraic sets in K^n into the set of ideals of $K[\underline{X}]$.

Remark 2.6. Note that for an ideal *I* of $K[\underline{X}]$, the inclusion $I \subseteq \mathcal{I}(\mathcal{Z}(I))$ is always true.

Proof. Say (by Hilbert Basis Theorem) $I = \langle g_1, \ldots, g_s \rangle, g_i \in K[X]$. Then

$$\mathcal{Z}(I) = \{ \underline{x} \in K^n \mid g_i(\underline{x}) = 0 \forall i = 1, \dots, s \},$$

$$I(\mathcal{Z}(I)) = \{ f \in K[\underline{X}] \mid f(\underline{x}) = 0 \forall \underline{x} \in \mathcal{Z}(I) \}.$$
Assume $f = h_1g_1 + \dots + h_sg_s \in I$, then $f(\underline{x}) = 0 \forall \underline{x} \in \mathcal{Z}(I)$
[since by definition $\underline{x} \in \mathcal{Z}(I) \Rightarrow g_i(\underline{x}) = 0 \forall i = 1, \dots, s$]
$$\Rightarrow f \in I(\mathcal{Z}(I)).$$

But in general it is false that $I(\mathbb{Z}(I)) = I$. Hilbert's Nullstellensatz studies necessary and sufficient conditions on K and I so that this identity holds.