REAL ALGEBRAIC GEOMETRY LECTURE NOTES PART II: POSITIVE POLYNOMIALS (17: BEARBEITET 15/12/2022)

SALMA KUHLMANN

Contents

1. GEOMETRIC VERSION OF POSITIVSTELLENSATZ

Theorem 1.1. (**Recall**) (Positivstellensatz: Geometric Version) Let $A = \mathbb{R}[X]$. Let $S = \{g_1, \ldots, g_s\} \subseteq \mathbb{R}[\underline{X}], f \in \mathbb{R}[\underline{X}].$ Then

- (1) $f > 0$ on $K_S \Leftrightarrow \exists p, q \in T_S$ s.t. $pf = 1 + q$ Striktpositivstellensatz
- (2) *f* ≥ 0 on K_S ⇔ ∃ *m* ∈ \mathbb{N}_0 , ∃ *p*, *q* ∈ T_S s.t. $pf = f^{2m} + q$
(Nonnegativstellensatz) Nonnegativstellensatz
- $(3) f = 0$ on $K_S \Leftrightarrow \exists m \in \mathbb{N}_0 \text{ s.t. } -f^{2m} \in T_S$ Real Nullstellensatz (first form)
- (4) $K_S = \phi \Leftrightarrow -1 \in T_S$.

Proof. It consists of two parts: -Step I: prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$ -Step II: prove (4) [using Tarski Transfer]

We will start with step II: Clearly $K_S \neq \emptyset \Rightarrow -1 \notin T_S$ (since −1 ∈ $T_S \Rightarrow K_S = \emptyset$), so it only remains to prove the following proposition: prove the following proposition:

Proposition 1.2. (3.2 of last lecture) If $-1 \notin T_S$ (i.e. if T_S is a proper preordering), then $K_S \neq \phi$.

For proving this we need the following results:

Lemma 1.3.1. (3.4.1 of last lecture) Let *A* be a commutative ring with 1. Let *P* be a maximal proper preordering in *A*. Then *P* is an ordering. *Proof.* We have to show:

```
(i) P \cup -P = A, and
(ii) p := P \cap -P is a prime ideal of A.
(i) Assume a \in A, but a \notin P \cup -P.
  By maximality of P, we have: -1 \in (P + aP) and -1 \in (P - aP)Thus
   -1 = s_1 + at_1 and
   -1 = s_2 - at_2; for some s_1, s_2, t_1, t_2 \in PSo (rewritting)
   -at_1 = 1 + s_1 and
     at_2 = 1 + s_2Multiplying we get:
   -a^2t_1t_2 = 1 + s_1 + s_2 + s_1s_2\Rightarrow -1 = s_1 + s_2 + s_1 s_2 + a^2 t_1 t_2 \in P, a contradiction.
(ii) Now consider p := P \cap -P, clearly it is an ideal.
   We claim that \nu is prime.
   Let ab \in \mathfrak{p} and a, b \notin \mathfrak{p}.
   Assume w.l.o.g. that a, b \notin P.
   Then as above in (i), we get:
   −1 ∈ (P + aP) and −1 ∈ (P + bP)
   So, -1 = s_1 + at_1 and
    -1 = s_2 + bt_2; for some s_1, s_2, t_1, t_2 \in PRearranging and multiplying we get:
    (at_1)(bt_2) = (1 + s_1)(1 + s_2) = 1 + s_1 + s_2 + s_1s_2\Rightarrow -1 = s<sub>1</sub> + s<sub>2</sub> + s<sub>1</sub>s<sub>2</sub>
              | {z }
∈P
                              -dbt_1t_2| {z }
∈p ⊂ P
   \Rightarrow -1 \in P, a contradiction.
```
Lemma 1.3.2. (3.4.2 of last lecture) Let *A* be a commutative ring with 1 and *P* ⊆ *A* an ordering. Then *P* induces uniquely an ordering \leq_P on *F* := *f f*(*A*/ \uparrow) defined by: defined by:

POSITIVE POLYNOMIALS LECTURE NOTES $(03: 20/04/10)$ 3

$$
\forall a, b \in A, b \notin \mathfrak{p} : \frac{\overline{a}}{\overline{b}} \geq_P 0 \text{ (in } F) \Leftrightarrow ab \in P \text{, where } \overline{a} = a + \mathfrak{p}. \square
$$

Recall 1.3.3. (Tarski Transfer Principle) Suppose $(\mathbb{R}, \leq) \subseteq (F, \leq)$ is an ordered field extension of R. If $x \in F^n$ satisfies a finite system of polynomial equations and inequalities with coefficients in \mathbb{R} , then $\exists r \in \mathbb{R}^n$ satisfying the same system.

Using lemma 1.3.1, lemma 1.3.2 and TTP (recall 1.3.3), we prove the proposition 1.2 as follows:

Proof of Propostion 1.2. **To show:** $-1 \notin T_S \Rightarrow K_S \neq \emptyset$. Set $S = \{g_1, \ldots, g_s\} \subseteq \mathbb{R}[\underline{X}]$
 $-1 \notin T_s \to T_s$ is a proper p $-1 \notin T_S \implies T_S$ is a proper preordering. By Zorn, extend *T^S* to a maximal proper preordering *P*. By lemma 1.3.1, *P* is an ordering on $\mathbb{R}[X]$; $p := P \cap -P$ is prime.

By lemma 1.3.2, let $(F, \leq_P) = \left(f f\left(\mathbb{R}[\underline{X}]/\mathfrak{p} \right), \leq_P \right)$ is an ordered field extension of $(\mathbb{R}, \leq).$

Now consider the system $S :=$ \int $\overline{\mathcal{L}}$ $g_1 \geq 0$ $: g_s \geq 0.$

Claim: The system *S* has a solution in F^n , namely $\underline{X} := (\overline{X_1}, \ldots, \overline{X_n})$,

i.e. to show: $g_i(\overline{X_1}, ..., \overline{X_n}) \geq_P 0$; $i = 1, ..., s$.

Indeed $g_i(\overline{X_1}, \ldots, \overline{X_n}) = \overline{g_i(X_1, \ldots, X_n)}$, and since $g_i \in T_S \subset P$, it follows by definition of \leq_P that $\overline{g_i} \geq_P 0$.

Now apply TTP (recall 1.3.3) to conclude that: $\exists \underline{r} \in \mathbb{R}^n$ satisfying the system S, i.e. $g_i(\underline{x}) \ge 0$; $i = 1, ..., s$. \Rightarrow $r \in K_S \Rightarrow K_S \neq \phi$.

This completes step II. \Box

Now we will do step I: i.e. we show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$

 $(1) \Rightarrow (2)$

Let $f \ge 0$ on K_s , $f \not\equiv 0$.

□

Consider
$$
S' \subseteq \mathbb{R}[\underline{X}, Y]
$$
, $S' := S \cup \{Yf - 1, -Yf + 1\}$
So, $K_{S'} = \{(x, y) | g_i(x) \ge 0, i = 1, ..., n; yf(x) = 1\}$.

Thus $f(\underline{X}, Y) = f(\underline{X}) > 0$ on $K_{S'}$, so applying (1) $\exists p', q' \in T_{S'}$ s.t.

$$
p'(\underline{X}, Y)f(\underline{X}) = 1 + q'(\underline{X}, Y)
$$

Substitute $Y := \frac{1}{f(x)}$ $\frac{1}{f(X)}$ in above equation and clear denominators by multiplying both sides by $f(\underline{X})^{2m}$ for $m \in \mathbb{N}_0$ sufficiently large to get:

$$
p(\underline{X})f(\underline{X}) = f(\underline{X})^{2m} + q(\underline{X}),
$$

with $p(\underline{X}) := f(\underline{X})^{2m} p'(\underline{X}, \frac{1}{f(\underline{X})})$ *f*(*X*) $\epsilon \in \mathbb{R}[\underline{X}]$ and $q(\underline{X}) := f(\underline{X})^{2m} q'(\underline{X}, \frac{1}{f(\underline{Y})})$ *f*(*X*) ∈ R[*X*].

To finish the proof we **claim** that: $p(\underline{X})$, $q(\underline{X}) \in T_S$ for sufficiently large *m*.

Observe that $p'(\underline{X}, Y) \in T_{S'}$, so p' is a sum of terms of the form:

$$
\underbrace{\sigma(\underline{X}, Y)}_{\in \Sigma \mathbb{R}[\underline{X}, Y]^2} g_1^{e_1} \cdots g_s^{e_s} (Yf(\underline{X}) - 1)^{e_{s+1}} (-Yf(\underline{X}) + 1)^{e_{s+2}}; e_1, \dots, e_s, e_{s+1}, e_{s+2} \in \{0, 1\}
$$
\nsay $\sigma(\underline{X}, Y) = \sum_j h_j(\underline{X}, Y)^2$.

Now when we substitute *Y* by $\frac{1}{f(X)}$ in $p'(X, Y)$, all terms with e_{s+1} or e_{s+2} equal to 1 vanish 1 vanish.

So, the remaining terms are of the form

$$
\sigma\left(\underline{X}, \frac{1}{f(\underline{X})}\right)g_1^{e_1}\cdots g_s^{e_s} = \left(\sum_j \left[h_j\left(\underline{X}, \frac{1}{f(\underline{X})}\right)\right]^2\right)g_1^{e_1}\cdots g_s^{e_s}
$$

So, we want to choose *m* large enough so that $f(\underline{X})^{2m}$ $\left(\underline{X}, \frac{1}{f \mathbb{Q}} \right)$ *f*(*X*) $\Big) \in \Sigma \mathbb{R}[\underline{X}]^2.$

Write
$$
h_j(\underline{X}, Y) = \sum_i h_{ij}(\underline{X}) Y^i
$$

Let $m \ge \deg (h_j(\underline{X}, Y))$ in Y, for all j.

Substituting $Y = \frac{1}{f(x)}$ $\frac{1}{f(\underline{X})}$ in $h_j(\underline{X}, Y)$ and multiplying by $f(\underline{X})^m$, we get:

$$
f(\underline{X})^m h_j\left(\underline{X}, \frac{1}{f(\underline{X})}\right) = \sum_i h_{ij}(\underline{X}) f(\underline{X})^{m-i}, \text{ with } (m-i) \ge 0 \ \forall \ i
$$

POSITIVE POLYNOMIALS LECTURE NOTES (03: 20/04/10) 5

so that
$$
f(\underline{X})^m h_j(\underline{X}, \frac{1}{f(\underline{X})}) \in \mathbb{R}[\underline{X}]
$$
, for all j.
\nSo $f(\underline{X})^{2m} \sigma(\underline{X}, \frac{1}{f(\underline{X})}) = f(\underline{X})^{2m} \left(\sum_j \left[h_j(\underline{X}, \frac{1}{f(\underline{X})}) \right]^2 \right)$
\n $= \sum_j \left[f(\underline{X})^m h_j(\underline{X}, \frac{1}{f(\underline{X})}) \right]^2 \in \Sigma \mathbb{R}[\underline{X}]^2$

Thus *p* and (similarly) $q \in T_s$, which proves our claim and hence (1) \Rightarrow (2). \Box

$$
(2) \Rightarrow (3)
$$

Assume
$$
f = 0
$$
 on K_S . Apply (2) to f and $-f$ to get:
\n $p_1 f = f^{2m_1} + q_1$ and
\n $-p_2 f = f^{2m_2} + q_2$; for some $p_1, p_2, q_1, q_2 \in T_S$, $m_i \in \mathbb{N}_0$

Multiplying yields:

$$
-p_1 p_2 f^2 = f^{2(m_1+m_2)} + f^{2m_1} q_2 + f^{2m_2} q_1 + q_1 q_2
$$

\n
$$
\Rightarrow -f^{2(m_1+m_2)} = p_1 p_2 f^2 + f^{2m_1} q_2 + f^{2m_2} q_1 + q_1 q_2
$$

\n
$$
\in T_S
$$

\ni.e. $-f^{2m} \in T_S$.

 $(3) \Rightarrow (4)$

Assume $K_S = \phi$ \Rightarrow the constant polynomial $f(X) \equiv 1$ vanishes on K_S . Applying (3), gives $-1 \in T_S$. □

$$
(4) \Rightarrow (1)
$$

Let $S' = S \cup \{-f\}$ Since $f > 0$ on K_S we have $K_{S'} = \phi$, so $-1 \in T_{S'}$ by (4).
Moreover from $S' = S + 1 - fV$ we have $T_{S'} = T_{S} = fT_{S}$ Moreover from $S' = S \cup \{-f\}$, we have $T_{S'} = T_S - fT_S$ \Rightarrow -1 = *q* - *pf*; for some *p*, *q* \in *T*_{*S*} i.e. $pf = 1 + q$

This completes step I and hence the proof of Positivstellensatz. □□

We will now study other forms of the Real Nullstellensatz that will relate it to Hilbert's Nullstellensatz.

2. EXKURS IN COMMUTATIVE ALGEBRA

Recall 2.1. Let *K* be a field, *S* ⊆ *K*[*X*]. Define

 $\mathcal{Z}(S) := \{ \underline{x} \in K^n \mid g(\underline{x}) = 0 \ \forall \ g \in S \},\$ the zero set of *S*.

Proposition 2.2. Let $V \subseteq K^n$. Then the following are equivalent:

(1) $V = Z(S)$; for some finite $S \subseteq K[X]$

 (2) $V = \mathcal{Z}(S)$; for some set $S \subseteq K[X]$ (3) $V = Z(I)$; for some ideal $I \subseteq K[X]$

Proof. (1) \Rightarrow (2) Clear.

 $(2) \Rightarrow (3)$ Take $I := *S* >$, the ideal generated by *S*.

 (3) \Rightarrow (1) Using Hilbert Basis Theorem (i.e. for a field *K*, every ideal in *K*[*X*] is finitely generated):

> $I = S > S$ finite \Rightarrow $\mathcal{Z}(I) = \mathcal{Z}(S)$.

Definition 2.3. *V* ⊆ K^n is an algebraic set if *V* satisfies one of the equivalent conditions of Proposition 2.2.

Definition 2.4. Given a subset $A \subseteq K^n$, we form:

$$
\mathcal{I}(A) := \{ f \in K[\underline{X}] \mid f(\underline{a}) = 0 \ \forall \underline{a} \in A \}.
$$

Proposition 2.5. Let $A \subseteq K^n$. Then

- (1) $I(A)$ is an ideal called the **ideal of vanishing polynomials** on A.
- (2) If $A = V$ is an algebraic set in $Kⁿ$, then $\mathcal{Z}(I(V)) = V$
- (3) the map $V \mapsto I(V)$ is a 1-1 map from the set of algebraic sets in K^n into the set of ideals of $K[X]$.

Remark 2.6. Note that for an ideal *I* of $K[\underline{X}]$, the inclusion $I \subseteq I(\mathcal{Z}(I))$ is always true.

Proof. Say (by Hilbert Basis Theorem) $I = \langle g_1, \ldots, g_s \rangle, g_i \in K[\underline{X}]$. Then

-

$$
\mathcal{Z}(I) = \{ \underline{x} \in K^n \mid g_i(\underline{x}) = 0 \ \forall \ i = 1, ..., s \},
$$

$$
I(\mathcal{Z}(I)) = \{ f \in K[\underline{X}] \mid f(\underline{x}) = 0 \ \forall \ \underline{x} \in \mathcal{Z}(I) \}.
$$

Assume $f = h_1 g_1 + ... + h_s g_s \in I$, then $f(\underline{x}) = 0 \ \forall \ \underline{x} \in \mathcal{Z}(I)$
[since by definition $\underline{x} \in \mathcal{Z}(I) \Rightarrow g_i(\underline{x}) = 0 \ \forall \ i = 1, ..., s \}$
 $\Rightarrow f \in I(\mathcal{Z}(I)).$

But in general it is false that $I(Z(I)) = I$. Hilbert's Nullstellensatz studies necessary and sufficient conditions on *K* and *I* so that this identity holds.