REAL ALGEBRAIC GEOMETRY LECTURE NOTES (14: 01/12/2009 - BEARBEITET 08/12/2022)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

Main Proposition. Let $f_i(\underline{T}, X) := h_{i,m_i}(\underline{T})X^{m_i} + \ldots + h_{i,0}(\underline{T})$ for $i =$ $1, \ldots, s$ be a sequence of polynomials in $n + 1$ variables with coefficients in Z, and let $m := max{m_i | i = 1, ..., s}$. Let W' be a subset of $W_{s,m}$. Then there exists a boolean combination $B(\underline{T}) = S_1(\underline{T}) \vee \ldots \vee S_p(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z} , such that, for every real closed field R and every $\underline{t} \in \mathbb{R}^n$, we have

 $SIGN_R(f_1(\underline{t},X),\ldots,f_s(\underline{t},X)) \in W' \Leftrightarrow B(\underline{t})$ holds true in R.

Proof. Without loss of generality, we assume that none of f_1, \ldots, f_s is identically zero and that $h_{i,m_i}(\underline{T})$ is not identically zero for $i = 1, \ldots, s$. To every sequence of polynomials (f_1, \ldots, f_s) associate the s-tuple (m_1, \ldots, m_s) , where $deg(f_i) = m_i$. We compare these finite sequences by defining a strict order as follows:

$$
\sigma := (m'_1, \ldots, m'_t) \prec \tau := (m_1, \ldots, m_s)
$$

if there exists $p \in \mathbb{N}$ such that, for every $q > p$,

-the number of times q appears in $\sigma =$ the number of times q appears in τ , and

-the number of times p appears in $\sigma <$ the number of times p appears in τ .

This order \prec is a total order ¹ on the set of finite sequences.

Example: let $m = \max (\{m_1, \ldots, m_s\}) = m_s$ (say), σ and τ be the sequence of degrees of the sequences $(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s)$ and $(f_1, \ldots, f_{s-1}, f_s)$ respectively, i.e.

$$
\sigma \rightsquigarrow (f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s),
$$

\n
$$
\tau \rightsquigarrow (f_1, \ldots, f_{s-1}, f_s)
$$

¹This was a mistake in the book *Real Algebraic Geometry* of J. Bochnak, M. Coste, M.-F. Roy. For corrected argument, see Appendix I following this proof.

then $\sigma \prec \tau$.

Let $m = \max\{m_1, \ldots, m_s\}.$ In particular using $p = m$ we have: $\big(deg(f_1), \ldots, deg(f_{s-1}), deg(f'_{s})\big)$ $s',\deg(g_1),\ldots,deg(g_s)) \prec \big(deg(f_1),\ldots,deg(f_s)\big).$

If $m = 0$, then there is nothing to show, since $SIGN_R(f_1(\underline{t},X), \ldots, f_s(\underline{t},X)) =$ $SIGN_R(h_{1,0}(\underline{t}),\ldots,h_{s,0}(\underline{t}))$ [the list of signs of "constant terms"]. t_s , $deg(g_1), \ldots, deg(g_s)) \prec (deg(f_1),$
g to show, since $SIGN_R(f_1(\underline{t},X), \ldots)$
the list of signs of "constant terms"

Suppose that $m \geq 1$ and $m_s = m = max\{m_1, \ldots, m_s\}$. Let $W'' \subset W_{2s,m}$ be the inverse image of $W' \subset W_{s,m}$ under the mapping φ (as in main lemma). Set $W'' = \{SIGN_R(f_1,\ldots,f_{s-1},f'_s,g_1,\ldots,g_s) \mid SIGN_R(f_1,\ldots,f_s) \in W' \}.$

-Case 1. By the main lemma, for every real closed field R and for every $\underline{t} \in R^n$ such that $h_{i,m_i}(\underline{t}) \neq 0$ for $i = 1, \ldots, s$, we have

$$
SIGN_R(f_1(\underline{t}, X), \dots, f_s(\underline{t}, X)) \in W'
$$

$$
\Leftrightarrow
$$

 $SIGN_R(f_1(t, X), \ldots, f_{s-1}(t, X), f'_{s}(t, X), g_1(t, X), \ldots, g_s(t, X)) \in W'',$

where f'_{s} s' is the derivative of f_s with respect to X, and g_1, \ldots, g_s are the remainders of the euclidean division (with respect to X) of f_s by $f_1, \ldots, f_{s-1}, f'_s$, respectively (multiplied by appropriate even powers of $h_{1,m_1}, \ldots, h_{s,m_s}$, respectively, to clear the denominators).

Now, the sequence of degrees in X of $f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s$ is smaller than [the sequence of degrees in X of f_1, \ldots, f_s i.e.] (m_1, \ldots, m_s) w.r.t. the order ≺.

-Case 2. At least one of $h_{i,m_i}(\underline{t})$ is zero

In this case we can truncate the corresponding polynomial f_i and obtain a sequence of polynomials, whose sequence of degrees in X is smaller than (m_1, \ldots, m_s) w.r.t. the order \prec .

This completes the proof of main propostion and also proves the Tarski-Seidenberg principle. □□