REAL ALGEBRAIC GEOMETRY LECTURE NOTES (14: 01/12/2009 - BEARBEITET 08/12/2022)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

Main Proposition. Let $f_i(\underline{T}, X) := h_{i,m_i}(\underline{T})X^{m_i} + \ldots + h_{i,0}(\underline{T})$ for $i = 1, \ldots, s$ be a sequence of polynomials in n + 1 variables with coefficients in \mathbb{Z} , and let $m := max\{m_i | i = 1, \ldots, s\}$. Let W' be a subset of $W_{s,m}$. Then there exists a boolean combination $B(\underline{T}) = S_1(\underline{T}) \vee \ldots \vee S_p(\underline{T})$ of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z} , such that, for every real closed field R and every $\underline{t} \in \mathbb{R}^n$, we have

 $SIGN_R(f_1(\underline{t}, X), \dots, f_s(\underline{t}, X)) \in W' \Leftrightarrow B(\underline{t})$ holds true in R.

Proof. Without loss of generality, we assume that none of f_1, \ldots, f_s is identically zero and that $h_{i,m_i}(\underline{T})$ is not identically zero for $i = 1, \ldots, s$. To every sequence of polynomials (f_1, \ldots, f_s) associate the s-tuple (m_1, \ldots, m_s) , where $deg(f_i) = m_i$. We compare these finite sequences by defining a strict order as follows:

$$\sigma := (m'_1, \dots, m'_t) \prec \tau := (m_1, \dots, m_s)$$

if there exists $p \in \mathbb{N}$ such that, for every q > p,

-the number of times q appears in σ = the number of times q appears in τ , and

-the number of times p appears in σ < the number of times p appears in τ .

This order \prec is a total order ¹ on the set of finite sequences.

Example: let $m = \max(\{m_1, \ldots, m_s\}) = m_s$ (say), σ and τ be the sequence of degrees of the sequences $(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s)$ and $(f_1, \ldots, f_{s-1}, f_s)$ respectively, i.e.

$$\sigma \rightsquigarrow (f_1, \dots, f_{s-1}, f_s, g_1, \dots, g_s)$$

$$\tau \rightsquigarrow (f_1, \dots, f_{s-1}, f_s)$$

¹This was a mistake in the book *Real Algebraic Geometry* of J. Bochnak, M. Coste, M.-F. Roy. For corrected argument, see Appendix I following this proof.

then $\sigma \prec \tau$.

Let $m = \max\{m_1, \dots, m_s\}$. In particular using p = m we have: $(deg(f_1), \dots, deg(f_{s-1}), deg(f'_s), deg(g_1), \dots, deg(g_s)) \prec (deg(f_1), \dots, deg(f_s)).$

If $\underline{m} = 0$, then there is nothing to show, since $SIGN_R(f_1(\underline{t}, X), \ldots, f_s(\underline{t}, X)) = SIGN_R(h_{1,0}(\underline{t}), \ldots, h_{s,0}(\underline{t}))$ [the list of signs of "constant terms"].

Suppose that $\underline{m \geq 1}$ and $m_s = m = max\{m_1, \ldots, m_s\}$. Let $W'' \subset W_{2s,m}$ be the inverse image of $W' \subset W_{s,m}$ under the mapping φ (as in main lemma). Set $W'' = \{SIGN_R(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s) \mid SIGN_R(f_1, \ldots, f_s) \in W'\}$.

-Case 1. By the main lemma, for every real closed field R and for every $\underline{t} \in \mathbb{R}^n$ such that $h_{i,m_i}(\underline{t}) \neq 0$ for $i = 1, \ldots, s$, we have

$$SIGN_R(f_1(\underline{t}, X), \dots, f_s(\underline{t}, X)) \in W$$

 \Leftrightarrow

 $SIGN_R(f_1(\underline{t}, X), \dots, f_{s-1}(\underline{t}, X), f'_s(\underline{t}, X), g_1(\underline{t}, X), \dots, g_s(\underline{t}, X)) \in W'',$

where f'_s is the derivative of f_s with respect to X, and g_1, \ldots, g_s are the remainders of the euclidean division (with respect to X) of f_s by $f_1, \ldots, f_{s-1}, f'_s$, respectively (multiplied by appropriate even powers of $h_{1,m_1}, \ldots, h_{s,m_s}$, respectively, to clear the denominators).

Now, the sequence of degrees in X of $f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s$ is smaller than [the sequence of degrees in X of f_1, \ldots, f_s i.e.] (m_1, \ldots, m_s) w.r.t. the order \prec .

-Case 2. At least one of $h_{i,m_i}(\underline{t})$ is zero

In this case we can truncate the corresponding polynomial f_i and obtain a sequence of polynomials, whose sequence of degrees in X is smaller than (m_1, \ldots, m_s) w.r.t. the order \prec .

This completes the proof of main propostion and also proves the Tarski-Seidenberg principle. $\hfill \Box$