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Main Lemma. For any real closed field R and every sequence of polynomials
f1, . . . , fs ∈ R[X] of degrees ≤ m, with fs nonconstant and none of the
f1, . . . , fs−1 identically zero, we have
SIGNR(f1, . . . , fs) ∈ Ws,m is completely determined by
SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs) ∈ W2s,m, where f

′
s is the derivative of fs,

and g1, . . . , gs are the remainders of the euclidean division of fs by f1, . . . , fs−1, f
′
s,

respectively.
Equivalently, the map φ : W2s,m −→ Ws,m

SIGNR(f1, . . . , fs−1, f
′

s, g1, . . . , gs) 7−→ SIGNR(f1, . . . , fs)

is well defined.
In other words, for any (f1, . . . , fs), (F1, . . . , Fs) ∈ R[X],
SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs) = SIGNR(F1, . . . , Fs−1, F

′
s, G1, . . . , Gs)

⇒ SIGNR(f1, . . . , fs) = SIGNR(F1, . . . , Fs).

Proof. Assume w = SIGNR(f1, . . . , fs−1, f
′
s, g1, . . . , gs) is given.

Let x1 < . . . < xN , with N ≤ 2sm, be the roots in R of those polyno-
mials among f1, . . . , fs−1, f

′
s, g1, . . . , gs that are not identically zero. Extract

from these the subsequence xi1 < . . . < xiM of the roots of the polynomials
f1, . . . , fs−1, f

′
s. By convention, let xi0 := x0 = −∞ ; xiM+1

:= xN+1 = +∞.
Note that the sequence i1 < . . . < iM depends only on w.
For k = 1, . . . ,M one of the polynomials f1, . . . , fs−1, f

′
s vanishes at xik . This

allows to choose a map (determined by w)

θ : {1, . . . ,M} → {1, . . . , s}
such that fs(xik) = gθ(k)(xik)(
This goes via polynomial division fs = fθ(k)qθ(k)+gθ(k), where fθ(k)(xik) = 0

)
.

Claim I. The existence of a root of fs in an interval ]xik , xik+1
[, for k =

0, . . . ,M depends only on w.

1
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Proof of Claim I .
Case 1: fs has a root in ]−∞, xi1 [ (if M ̸= 0) if and only if

sign
(
f

′
s( ]−∞, x1[ )

)
sign

(
gθ(1)(xi1)

)
= 1,

equivalently iff
sign

(
f

′
s( ]−∞, x1[ )

)
= signfs(xi1).

(⇐) We want to show that if sign
(
f

′
s( ]−∞, x1[ )

)
= signfs(xi1),

then fs has a root in ]−∞, xi1 [.
Suppose on contradiction that fs has no root in ] − ∞, xi1 [, then
signfs must be constant and nonzero on ]−∞, xi1 ], so we get
0 ̸= signfs( ]−∞, x1[ ) = signfs( ]−∞, xi1 ] ) = signfs(xi1) =
signf

′
s( ]−∞, x1[ )

⇒ signfs( ]−∞, x1[ ) = signf
′
s( ]−∞, x1[ ), a contradiction

[
because

on ] −∞,−D[ : signf(x) = (−1)msign(d) for f = dxm + . . . + d0
and signf

′
(x) = (−1)m−1sign(md) for f

′
= mdxm−1 + . . . ,

see Corollary 2.1 of lecture 6 (05/11/09)
]
.

(⇒) Assume that fs has a root (say) x ∈ ]−∞, xi1 [.

Note that signfs(xi1) ̸= 0
[
otherwise fs(xi1) = fs(x) = 0, so (by

Rolle’s theorem) f
′
s has a root in ]x, xi1 [ and the only possibility is

x1 ∈ ]x, xi1 [ (by our listing), but then x1 = xi1 , a contradiction
]
.

Note also that fs cannot have two roots (counting multiplicity) in

]−∞, xi1 [
[
otherwise f

′
s will be forced to have a root in ]−∞, xi1 [,

a contradiction as before
]
.

By Corollary 2.4, lecture 6, fs must change sign around its root x,
so

−signfs
(
]−∞, x[

)
= signfs

(
]x, xi1 ]

)
= signfs(xi1),

Also (by the same argument as before)

−signfs
(
]−∞, x[

)
= signf

′
s

(
]−∞, x1[

)
,

therefore, we get

signf
′
s

(
]−∞, x1[

)
= signfs(xi1). □ (case 1)

Case 2: Similarly one proves that: fs has a root in ]xiM ,+∞[ (if M ̸= 0) if
and only if

sign
(
f

′
s( ]xN ,+∞[ )

)
sign

(
gθ(M)(xiM )

)
= −1,(

i.e. iff signf
′
s( ]xN ,+∞[ ) = −signfs(xiM ) ̸= 0

)
.

Case 3: fs has a root in ]xik , xik+1
[, for k = 1, . . . ,M − 1, if and only if
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sign
(
gθ(k)(xik)

)
sign

(
gθ(k+1)(xik+1

)
)
= −1,

equivalently iff
signfs(xik) = −signfs(xik+1

).(
Proof is clear because if fs has a root in ]xik , xik+1

[, then this root is
of multipilicty 1 and therefore a sign change must occur (by Corollary

2.4, lecture 6).
)

Case 4: fs has exactly one root in ]−∞,+∞[ if M = 0. □ (claim I)

Claim II. SIGNR(f1, . . . , fs) depends only on w.
Proof of Claim II .
Notation: Let y1 < . . . < yL, with L ≤ sm, be the roots in R of the
polynomials f1, . . . , fs. As before, let y0 := −∞, yL+1 := +∞.
Set Ik :=]yk, yk+1[, k = 0, . . . , L.

Define

ρ : {0, . . . , L+ 1} −→ {0, . . . ,M + 1} ∪ {(k, k + 1) | k = 0, . . . ,M}

l 7−→

{
k if yl = xik ,

(k, k + 1) if yl ∈]xik , xik+1
[

Note that by Claim I, L and ρ depends only on w. So, to prove claim II it is
enough to show that SIGNR(f1, . . . , fs) depends only on ρ and w.

Also,

SIGNR(f1, ..., fs) :=


signf1(I0) signf1(y1) . . . signf1(yL) signf1(IL)

...
...

...
...

signfs−1(I0) signfs−1(y1) . . . signfs−1(yL) signfs−1(IL)
signfs(I0) signfs(y1) . . . signfs(yL) signfs(IL)


is an s×(2L+ 1) matrix with coefficients in {−1, 0,+1}.

Case 1: j = 1, . . . , s− 1
For l ∈ {0, . . . , L+ 1} we have

� if ρ(l) = k ⇒ sign
(
fj(yl)

)
= sign

(
fj(xik)

)
,

� if ρ(l) = (k, k + 1) ⇒ sign
(
fj(yl)

)
= sign

(
fj( ]xik , xik+1

[ )
)
.

So, sign
(
fj(yl)

)
is known from w and ρ, for all j = 1, . . . , s − 1 and l ∈

{0, . . . , L+ 1}.
We also have

� if ρ(l) = k or (k, k+1) ⇒ sign
(
fj( ]yl, yl+1[ )

)
= sign

(
fj( ]xik , xik+1

[ )
)
.
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So, sign
(
fj( ]yl, yl+1[ )

)
is known from w and ρ, for all j = 1, . . . , s− 1 and

l ∈ {0, . . . , L+ 1}.
Thus one can reconstruct the first s− 1 rows of SIGNR(f1, ..., fs) from w.

Case 2: j = s
For l ∈ {0, . . . , L+ 1} we have

� if ρ(l) = k ⇒ sign
(
fs(yl)

)
= sign

(
gθ(k)(xik)

)
,

� if ρ(l) = (k, k + 1) ⇒ sign
(
fs(yl)

)
= 0.

So, sign
(
fs(yl)

)
is known from w and ρ, for all l ∈ {0, . . . , L+1} and therefore

can also be reconstructed from w.
Now remains the most delicate case that concerns sign

(
fs( ]yl, yl+1[ )

)
:

For l ∈ {0, . . . , L+ 1} we have

� if l ̸= 0, ρ(l) = k ⇒

sign
(
fs( ]yl, yl+1[ )

)
=

{
sign

(
gθ(k)(xik)

)
if it is ̸= 0,

sign
(
f

′
s( ]xik , xik+1

[ )
)

otherwise.[
This is because

(
ρ(l) = k if yl = xik , so

)
:

- if gθ(k)(xik) = fs(xik) ̸= 0, then by continuity sign is constant, and

- if gθ(k)(xik) = fs(xik) = 0, then on ]xik , xik+1
[ :{

f
′
s ≥ 0 ⇒ fs(xik) < fs(y) for y < xik+1

, so fs(y) > 0,

f
′
s ≤ 0 ⇒ −fs(xik) < −fs(y) for y < xik+1

, so fs(y) < 0(
using 6. Lecture, Cor. 2.4: In a real closed ordered field, if P is

a nonconstant polynomial s.t. P
′ ≥ 0 on [a, b], a < b, then P (a) <

P (b)
)
.
]

� if l ̸= 0, ρ(l) = (k, k+1) ⇒ sign
(
fs( ]yl, yl+1[ )

)
= sign

(
f

′
s( ]xik , xik+1

[ )
)
.[

We argue as follows
(
noting that ρ(l) = (k, k + 1) if yl ∈]xik , xik+1

[
)
:

sign
(
fs( ]yl, yl+1[ )

)
is constant so at any rate is equal to sign

(
fs( ]yl, xik+1

[ )
)
,

now using the fact that fs(yl) = 0 and the same lemma (stated above)
we get, for any a ∈ ]yl, xik+1

[ :{
f

′
s ≥ 0 ⇒ fs(yl) < fs(a), so fs(a) > 0,

f
′
s ≤ 0 ⇒ −fs(yl) < −fs(a), so fs(a) < 0

i.e. fs has same sign as f
′
s.
]

� if l = 0 ⇒ sign
(
fs( ]−∞, y1[ )

)
= sign

(
f

′
s( ]−∞, x1[ )

)
(as before). □


