REAL ALGEBRAIC GEOMETRY LECTURE NOTES (13: 01/12/2009 - BEARBEITET 06/12/2022)

SALMA KUHLMANN

THE TARSKI-SEIDENBERG PRINCIPLE

Main Lemma. For any real closed field R and every sequence of polynomials $f_1, \ldots, f_s \in R[X]$ of degrees $\leq m$, with f_s nonconstant and none of the f_1, \ldots, f_{s-1} identically zero, we have

 $SIGN_R(f_1, \ldots, f_s) \in W_{s,m}$ is completely determined by

 $SIGN_R(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s) \in W_{2s,m}$, where f'_s s' is the derivative of f_s , and g_1, \ldots, g_s are the remainders of the euclidean division of f_s by $f_1, \ldots, f_{s-1}, f_s'$, respectively.

Equivalently, the map $\varphi: W_{2s,m} \longrightarrow W_{s,m}$

$$
SIGN_R(f_1,\ldots,f_{s-1},f'_s,g_1,\ldots,g_s) \longmapsto SIGN_R(f_1,\ldots,f_s)
$$

is well defined.

In other words, for any $(f_1, \ldots, f_s), (F_1, \ldots, F_s) \in R[X],$ $SIGN_R(f_1, \ldots, f_{s-1}, f'_{s}, g_1, \ldots, g_s) = SIGN_R(\overline{F_1}, \ldots, \overline{F_{s-1}}, F'_{s}, G_1, \ldots, G_s)$ $\Rightarrow SIGN_R(f_1, \ldots, f_s) = SIGN_R(F_1, \ldots, F_s).$

Proof. Assume $w = SIGN_R(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s)$ is given.

Let $x_1 < \ldots < x_N$, with $N \leq 2sm$, be the roots in R of those polynomials among $f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s$ that are not identically zero. Extract from these the subsequence $x_{i_1} < \ldots < x_{i_M}$ of the roots of the polynomials $f_1, \ldots, f_{s-1}, f'_s$. By convention, let $x_{i_0} := x_0 = -\infty$; $x_{i_{M+1}} := x_{N+1} = +\infty$. Note that the sequence $i_1 < \ldots < i_M$ depends only on w.

For $k = 1, \ldots, M$ one of the polynomials $f_1, \ldots, f_{s-1}, f'_s$ vanishes at x_{i_k} . This allows to choose a map (determined by w)

 θ : {1, ..., M } \rightarrow {1, ..., s}

such that $f_s(x_{i_k}) = g_{\theta(k)}(x_{i_k})$

(This goes via polynomial division $f_s = f_{\theta(k)} q_{\theta(k)} + g_{\theta(k)}$, where $f_{\theta(k)}(x_{i_k}) = 0$).

Claim I. The existence of a root of f_s in an interval $x_{i_k}, x_{i_{k+1}}$, for $k =$ $0, \ldots, M$ depends only on w.

Proof of Claim I.
\nCase 1:
$$
f_s
$$
 has a root in $]-\infty, x_{i_1}[$ (if $M \neq 0$) if and only if
\n $sign(f'_s() - \infty, x_1[)) sign(g_{\theta(1)}(x_{i_1})) = 1$,
\nequivalently iff
\n $sign(f'_s() - \infty, x_1[)) = signf_s(x_{i_1})$.
\n (\Leftarrow) We want to show that if $sign(f'_s() - \infty, x_1[)) = signf_s(x_{i_1})$,
\nthen f_s has a root in $]-\infty, x_{i_1}[$.
\nSuppose on contradiction that f_s has no root in $]-\infty, x_{i_1}[$, then
\n $signf_s$ must be constant and nonzero on $]-\infty, x_{i_1}]$, so we get
\n $0 \neq signf_s(] - \infty, x_1[) = signf_s(] - \infty, x_{i_1}]) = signf_s(x_{i_1}) =$
\n $signf'_s(] - \infty, x_1[) = signf'_s(] - \infty, x_1[)$, a contradiction [because
\non $]-\infty, -D[:$ $signf(x) = (-1)^m sign(d)$ for $f = dx^m + ... + d_0$
\nand $signf'(x) = (-1)^{m-1} sign(md)$ for $f' = mdx^{m-1} + ...$,
\nsee Corollary 2.1 of lecture 6 (05/11/09)].

(⇒) Assume that f_s has a root (say) $x \in]-\infty, x_{i_1}[$. Note that $sign f_s(x_{i_1}) \neq 0$ [otherwise $f_s(x_{i_1}) = f_s(x) = 0$, so (by Rolle's theorem) f'_s has a root in x_i _i and the only possibility is $x_1 \in \left] x, x_{i_1} \right[$ (by our listing), but then $x_1 = x_{i_1}$, a contradiction. Note also that f_s cannot have two roots (counting multiplicity) in $]-\infty, x_{i_1}[$ otherwise f'_s will be forced to have a root in $]-\infty, x_{i_1}[$, a contradiction as before.

By Corollary 2.4, lecture 6, f_s must change sign around its root x,

$$
-sign f_s([]-\infty,x[]) = sign f_s([x,x_{i_1}]) = sign f_s(x_{i_1}),
$$

Also (by the same argument as before)

$$
-sign f_s([-\infty, x[) = sign f_s'([-\infty, x_1[),
$$

therefore, we get

so

$$
sign f'_{s}(] - \infty, x_{1} [) = sign f_{s}(x_{i_{1}}). \qquad \qquad \Box \text{ (case 1)}
$$

<u>Case 2:</u> Similarly one proves that: f_s has a root in x_{i_M} , $+\infty$ [(if $M \neq 0$) if and only if

$$
sign(f'_{s}(x_N,+\infty[))sign(g_{\theta(M)}(x_{i_M})) = -1,
$$

(i.e. iff signf'_{s}(x_N,+\infty[) = -signf_{s}(x_{i_M}) \neq 0).

<u>Case 3:</u> f_s has a root in $x_{i_k}, x_{i_{k+1}}$, for $k = 1, ..., M - 1$, if and only if

$$
sign(g_{\theta(k)}(x_{i_k}))sign(g_{\theta(k+1)}(x_{i_{k+1}})) = -1,
$$

equivalently iff

$$
sign f_s(x_{i_k}) = -sign f_s(x_{i_{k+1}}).
$$

(Proof is clear because if f_s has a root in $x_{i_k}, x_{i_{k+1}}$, then this root is of multipilicty 1 and therefore a sign change must occur (by Corollary 2.4, lecture 6).

Case 4: f_s has exactly one root in $]-\infty, +\infty[$ if $M = 0$. \Box (claim I)

Claim II. $SIGN_R(f_1, \ldots, f_s)$ depends only on w. Proof of Claim II. Notation: Let $y_1 < \ldots < y_L$, with $L \leq sm$, be the roots in R of the polynomials f_1, \ldots, f_s . As before, let $y_0 := -\infty$, $y_{L+1} := +\infty$. Set $I_k := |y_k, y_{k+1}|, k = 0, \ldots, L.$

Define

$$
\rho : \{0, ..., L+1\} \longrightarrow \{0, ..., M+1\} \cup \{(k, k+1) | k = 0, ..., M\}
$$

$$
l \longmapsto \begin{cases} k & \text{if } y_l = x_{i_k}, \\ (k, k+1) & \text{if } y_l \in]x_{i_k}, x_{i_{k+1}}[\end{cases}
$$

Note that by Claim I, L and ρ depends only on w. So, to prove claim II it is enough to show that $SIGN_R(f_1, \ldots, f_s)$ depends only on ρ and w. Also,

$$
SIGN_R(f_1, ..., f_s) := \begin{pmatrix} signf_1(I_0) & signf_1(y_1) & \dots & signf_1(y_L) & signf_1(I_L) \\ \vdots & \vdots & \vdots & \vdots \\ signf_{s-1}(I_0) & signf_{s-1}(y_1) & \dots & signf_{s-1}(y_L) & signf_{s-1}(I_L) \\ signf_s(I_0) & signf_s(y_1) & \dots & signf_s(y_L) & signf_s(I_L) \end{pmatrix}
$$

is an $s \times (2L + 1)$ matrix with coefficients in $\{-1, 0, +1\}.$

<u>Case 1:</u> $j = 1, ..., s - 1$ For $l \in \{0, \ldots, L+1\}$ we have

• if
$$
\rho(l) = k \Rightarrow sign(f_j(y_l)) = sign(f_j(x_{i_k})),
$$

• if
$$
\rho(l) = (k, k+1) \Rightarrow sign(f_j(y_l)) = sign(f_j(\lfloor x_{i_k}, x_{i_{k+1}} \rfloor))
$$
.

So, $sign(f_j(y_l))$ is known from w and ρ , for all $j = 1, ..., s - 1$ and $l \in$ $\{0, \ldots, L+1\}.$

We also have

• if
$$
\rho(l) = k
$$
 or $(k, k+1) \Rightarrow sign(f_j(\,]y_l, y_{l+1}[\,)) = sign(f_j(\,]x_{i_k}, x_{i_{k+1}}[\,))$.

So, $sign(f_j(\,]y_l, y_{l+1}[\,])$ is known from w and ρ , for all $j = 1, \ldots, s-1$ and $l \in \{0, \ldots, L+1\}.$

Thus one can reconstruct the first $s - 1$ rows of $SIGN_R(f_1, ..., f_s)$ from w.

Case 2: $j = s$ For $l \in \{0, \ldots, L+1\}$ we have

- if $\rho(l) = k \Rightarrow sign(f_s(y_l)) = sign(g_{\theta(k)}(x_{i_k})),$
- if $\rho(l) = (k, k + 1) \Rightarrow sign(f_s(y_l)) = 0.$

So, $sign(f_s(y_l))$ is known from w and ρ , for all $l \in \{0, \ldots, L+1\}$ and therefore can also be reconstructed from w.

Now remains the most delicate case that concerns $sign(f_s($ | y_l, y_{l+1} | $))$: For $l \in \{0, \ldots, L+1\}$ we have

• if
$$
l \neq 0
$$
, $\rho(l) = k \Rightarrow$
\n
$$
sign(f_s(\;]y_l, y_{l+1}[\;)) = \begin{cases} sign(g_{\theta(k)}(x_{i_k})) & \text{if it is } \neq 0, \\ sign(f'_s(\;]x_{i_k}, x_{i_{k+1}}[\;)) & \text{otherwise.} \end{cases}
$$

This is because $(\rho(l) = k \text{ if } y_l = x_{i_k}, \text{ so})$: - if $g_{\theta(k)}(x_{i_k}) = f_s(x_{i_k}) \neq 0$, then by continuity sign is constant, and - if $g_{\theta(k)}(x_{i_k}) = f_s(x_{i_k}) = 0$, then on $]x_{i_k}, x_{i_{k+1}}[$: $\int f'_s \geq 0 \Rightarrow f_s(x_{i_k}) < f_s(y)$ for $y < x_{i_{k+1}}$, so $f_s(y) > 0$, $f'_s \leq 0 \Rightarrow -f_s(x_{i_k}) < -f_s(y)$ for $y < x_{i_{k+1}}$, so $f_s(y) < 0$

(using 6. Lecture, Cor. 2.4: In a real closed ordered field, if P is a nonconstant polynomial s.t. $P' \geq 0$ on [a, b], $a < b$, then $P(a) <$ $P(b)$).

• if $l \neq 0, \rho(l) = (k, k+1) \Rightarrow sign(f_s([y_l, y_{l+1}[])) = sign(f_s$ $x'_{s}(x_{i_k}, x_{i_{k+1}}[x)).$ We argue as follows (noting that $\rho(l) = (k, k+1)$ if $y_l \in]x_{i_k}, x_{i_{k+1}}[$):

 $sign\big(f_s(\,]y_l,y_{l+1}[\,)\big)$ is constant so at any rate is equal to $sign\big(f_s(\,]y_l,x_{i_{k+1}}[\,)\big),$ now using the fact that $f_s(y_l) = 0$ and the same lemma (stated above) we get, for any $a \in [y_l, x_{i_{k+1}}[$:

$$
\begin{cases} f'_s \ge 0 \Rightarrow f_s(y_l) < f_s(a), \text{ so } f_s(a) > 0, \\ f'_s \le 0 \Rightarrow -f_s(y_l) < -f_s(a), \text{ so } f_s(a) < 0 \end{cases}
$$

i.e. f_s has same sign as f'_s $\left.\frac{s'}{s}\right\rceil$

• if $l = 0 \Rightarrow sign(f_s() - \infty, y_1[)) = sign(f_s()$ s' (] − ∞, x_1 [)) (as before). □