REAL ALGEBRAIC GEOMETRY LECTURE NOTES (12: 26/11/2009 - BEARBEITET 01/12/2022)

SALMA KUHLMANN

$\operatorname{Contents}$

1.	Quantifier eliminaton for the theory of real closed fields	1
2.	Definable sets	3

1. QUANTIFIER ELIMINATON FOR THE THEORY OF REAL CLOSED FIELDS

We recall from last lecture the definition of first order formulas in the language of real closed field:

Definition 1.1. A first order formula in the language of real closed fields is obtained as follows recursively:

(1) if
$$f(\underline{x}) \in \mathbb{Q}[\mathbf{x}_1, \dots, \mathbf{x}_n], n \ge 1$$
, then
 $f(\underline{\mathbf{x}}) \ge 0, \ f(\underline{\mathbf{x}}) > 0, \ f(\underline{\mathbf{x}}) = 0, \ f(\underline{x}) \neq 0$

are first order formulas (with free variables $\underline{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$);

(2) if Φ and Ψ are first order formulas, then

 $\Phi \wedge \Psi, \quad \Phi \lor \Psi, \quad \neg \Phi$

are also first order formulas (with free variables given by the union of the free variables of Φ and the free variables of Ψ);

(3) if Φ is a first order formula then

 $\exists x \Phi \text{ and } \forall x \Phi$

are first order formulas (with same free variables as Φ minus $\{x\}$).

The formulas obtained using just (1) and (2) are called **quantifier free**.

Definition 1.2. Let $\Phi(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ and $\Psi(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ be first order formulas in the language of real closed fields with free variables contained in $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$. We say that $\Phi(\underline{\mathbf{x}})$ and $\Psi(\underline{\mathbf{x}})$ are **equivalent** if for every real closed field R and every $\underline{r} \in \mathbb{R}^n$,

$$\Phi(\underline{r})$$
 holds in $R \iff \Psi(\underline{r})$ holds in R .

If Φ and Ψ are equivalent, we write $\Phi \sim \Psi$.

Remark 1.3. (Normal form of quantifier free formulas). Every quantifier free formula is equivalent to a finite disjunction of finite conjuctions of formulas obtained using construction (1).

Proof. Like showing that every semialgebraic subset of \mathbb{R}^n is a finite union (= finite disjunction) of basic semialgebraic sets (= finite conjuction of formulas of type (1)).

Theorem 1.4. (Tarski's quantifier elimination theorem for real closed fields). Every first order formula in the language of real closed fields is equivalent to a quantifier free formula.

Proof. Since all formulas of type (1) are quantifier free, it suffices to show that

 $\mathcal{C} :=$ the set of first order formulas which are equivalent to quantifier free formulas

is closed under constructions of (2) and (3).

Closure under 2. If $\Phi \sim \Phi'$ and $\Psi \sim \Psi'$, then

$$\begin{array}{rcl} \Phi \lor \Psi & \sim & \Phi' \lor \Psi \\ \Phi \land \Psi & \sim & \Phi' \land \Psi \\ \neg \Phi & \sim & \neg \Phi'. \end{array}$$

Closure under 3. It is enough to consider $\exists \mathbf{x} \Phi$, because

$$\forall \, \mathbf{x} \, \Phi \ \leftrightarrow \ \neg \, \exists \, x \ (\neg \Phi).$$

We claim that if Φ is equivalent to a quantifier free formula then $\exists \mathbf{x} \Phi$ is equivalent to a quantifier free formula. Since

$$\exists \mathbf{x} (\Phi_1 \lor \cdots \lor \Phi_k) \sim (\exists \mathbf{x} \Phi_1) \lor \cdots \lor (\exists \mathbf{x} \Phi_k),$$

using the normal form of quantifier free formulas (Remark 1.3), we can assume that Φ is a finite conjunction of polynomial equations and inequalities (i.e. a system $S(\underline{T}, \mathbf{x})$).

Applying Tarski-Seidenberg's Theorem:

$$\exists \underline{\mathbf{x}} \ S(\underline{T}; \underline{\mathbf{x}}) \Leftrightarrow \bigvee_{i=1}^{l} S_{i}(\underline{t}),$$

there exist finitely many finite conjunctions of polynomial equalities and inequalities $\vartheta_1, \ldots, \vartheta_l$ (corresponding to the systems $S_1(\underline{T}), \ldots, S_l(\underline{T})$) such that

$$\exists \underline{\mathbf{x}} \ \Phi \ \sim \ \vartheta_1 \lor \cdots \lor \vartheta_l.$$

 $\mathbf{2}$

2. Definable sets

Definition 2.1. Let $\Phi(\underline{T}, \underline{X})$ a first order formula with free variables $T_1, \ldots, T_m, X_1, \ldots, X_n$. Let R be a real closed field and $\underline{t} \in R^m$. Then $\Phi(\underline{t}, \underline{X})$ is a first order formula with parameters in R, and t_1, \ldots, t_m are called the parameters.

Definition 2.2. Let R be a real closed field, $n \ge 1$. A subset $A \subseteq R^n$ is said to be **definable** (with parameters from R) in R if there is a first order formula $\Phi(\underline{t}, \underline{X})$ with parameters $\underline{t} \in R^m$ and free variables $\underline{X} = (X_1, \ldots, X_n)$, such that

$$A = \{ \underline{r} \in \mathbb{R}^n : \Phi(\underline{t}, \underline{r}) \text{ is true in } \mathbb{R} \}.$$

Corollary 2.3. For any real closed field R the class of definable sets (with parameters) in R coincides with the class of semialgebraic sets.