REAL ALGEBRAIC GEOMETRY LECTURE NOTES (10: 20/11/2009 - BEARBEITET 24/11/2022)

SALMA KUHLMANN

CONTENTS

1. Homomorphism Theorems

Theorem 1.1. (Homomorphism Theorem I) Let $R \subseteq R_1$ be real closed fields and $I \subset R[\underline{x}]$ an ideal. Then

$$
\exists R\text{-}alg. \text{ hom. } \varphi \colon \frac{R[\underline{x}]}{I} \longrightarrow R_1 \Rightarrow \exists R\text{-}alg. \text{ hom. } \psi \colon \frac{R[\underline{x}]}{I} \longrightarrow R.
$$

Corollary 1.2. (Homomorphism Theorem II) Suppose R and R_1 are real closed fields, $R \subseteq R_1$. Let A be a finitely generated R-algebra. If there is an R-algebra homomorphism

$$
\varphi\colon A\;\longrightarrow\;R_1
$$

then there is an R-algebra homomorphism

 $\psi: A \longrightarrow R$.

Proof. We want to use Homomorphism Theorem I. For this we just prove the following:

Claim 1.3. A is a finitely generated R-algebra if and only if there is a surjective R-algebra homomorphism $\vartheta: R[x_1, \ldots, x_n] \longrightarrow A$ (for some $n \in$ N).

Proof.

- (\Rightarrow) Let A be a finitely generated R-algebra, say with generators r_1, \ldots, r_n . Define $\vartheta: R[x_1,\ldots,x_n] \longrightarrow A$ by setting $\vartheta(x_i) := r_i$ for every $i =$ $1, \ldots, n$, and $\vartheta(a) := a$ for every $a \in R$.
- (←) Given a surjective homomorphism $\vartheta: R[x_1, \ldots, x_n] \longrightarrow A$ set $r_i :=$ $\vartheta(\mathbf{x}_i) \in A$ for every $i = 1, \ldots, n$. Then $\{r_1, \ldots, r_n\}$ generate A over R.

□

So we get $A \cong R[\underline{x}]/I$ with $I = \ker \vartheta$.

□

2 SALMA KUHLMANN

We can see that Homomorphism Theorem II implies T-T-III:

Let $R \subset R_1$ be real closed fields. $S(\underline{X})$ with coefficients in R has a solution $\underline{x} \in R_1^n$ if and only if it has a solution $\underline{x} \in R^n$.

We first need the following:

Proposition 1.4. Let

$$
S(\underline{\mathbf{x}}) := \begin{cases} f_1(\underline{\mathbf{x}}) \triangleleft_1 0 \\ \vdots \\ f_k(\underline{\mathbf{x}}) \triangleleft_k 0 \end{cases}
$$

be a system with coefficients in R, where $\lhd_i \in \{\geq, >, =, \neq\}$. Then $S(\underline{x})$ can be written as a system of the form

$$
\sigma(\underline{x}) := \begin{cases} g_1(\underline{x}) \geq 0 \\ \vdots \\ g_s(\underline{x}) \geq 0 \\ g(\underline{x}) \neq 0 \end{cases}
$$

for some $g_1, \ldots, g_s, g \in R[\underline{x}].$

Proof.

• Replace each equality in the original system by a pair of inequalities:

$$
f_i = 0 \iff \begin{cases} f_i \geq 0 \\ -f_i \geq 0 \end{cases}
$$

• Replace each strict inequality

$$
f_i > 0 \text{ by } \begin{cases} f_i \geq 0\\ f_i \neq 0 \end{cases}
$$

• Finally collect all inequalities $f_i \neq 0, i = 1, \ldots, t$ as

$$
g := \prod_{i=1}^t f_i \neq 0.
$$

□

Now we show that Homomorphism Theorem II implies T-T-III:

Proof. Let $R \subseteq R_1$ and let $S(\underline{x})$ be a system with coefficients in R:

$$
S(\underline{\mathbf{x}}) := \begin{cases} f_1(\underline{\mathbf{x}}) \triangleleft_1 0 \\ \vdots \\ f_k(\underline{\mathbf{x}}) \triangleleft_k 0 \end{cases}
$$

Rewrite it as

$$
S(\underline{x}) := \begin{cases} f_1(\underline{x}) \geq 0 \\ \vdots \\ f_k(\underline{x}) \geq 0 \\ g(\underline{x}) \neq 0 \end{cases}
$$

with $f_i(\underline{x}), g(\underline{x}) \in R[x_1, \ldots, x_n].$

Suppose $\underline{x} \in R_1^n$ is a solution of $S(\underline{x})$. Consider

$$
A:=\frac{R[X_1,\ldots,X_n,Y_1,\ldots,Y_k,Z]}{\langle Y_1^2-f_1,\ldots,Y_k^2-f_k;gZ-1\rangle},
$$

which is a finitely generated R -algebra. Consider the R -algebra homomorphism φ such that

$$
\varphi: A \longrightarrow R_1
$$

$$
\bar{X}_i \mapsto x_i
$$

$$
\bar{Y}_j \mapsto \sqrt{f_j(\underline{x})}
$$

$$
\bar{Z} \mapsto 1/g(\underline{x}).
$$

By Homomorphism Theorem II there is an R -algebra homomorphism $\psi\colon \AA\longrightarrow R$. Then $\psi(\bar X_1),\ldots,\psi(\bar X_n)$ is the required solution in R^n .

□

2. HILBERT'S 17^{th} PROBLEM

Definition 2.1. Let R be a real closed field. We say that a polynomial $f(\underline{x}) \in R[\underline{x}]$ is positive semi-definite if $f(x_1, \ldots, x_n) \geq 0 \; \forall (x_1, \ldots, x_n) \in$ R^n We write $f \geqslant 0$.

We know that

$$
f \in \sum R[\underline{x}]^2 \Rightarrow f \geqslant 0.
$$

Now take $R = \mathbb{R}$. Conversely, for any $f \in \mathbb{R}[\mathbf{x}]$ is it true that

$$
f \ge 0
$$
 on $\mathbb{R}^n \stackrel{?}{\Rightarrow} f \in \sum \mathbb{R}(\underline{x})^2$. (Hilbert's 17th problem).

Remark 2.2.

(1) Hilbert knew that the answer is NO to the more natural question

$$
f \in \mathbb{R}[\underline{x}], f \geq 0
$$
 on $\mathbb{R}^n \Rightarrow f \in \sum \mathbb{R}[\underline{x}]^2$?

(2) If $n = 1$ then indeed $f \ge 0$ on $\mathbb{R} \Rightarrow f = f_1^2 + f_2^2$.

4 SALMA KUHLMANN

(3) More generally Hilbert showed that:

Set $P_{d,n} :=$ the set of homogeneous polynomials of degree d in n -variables which are positive semi-definite

and set $\sum_{d,n} :=$ the subset of $P_{d,n}$ consisting of sums of squares.

Then

$$
P_{d,n} = \sum_{d,n} \iff n \leq 2
$$
 or $d = 2$ or $(n = 3$ and $d = 4)$.

Note: only d even is interesting because

Lemma 2.3. $0 \neq f \in \sum \mathbb{R}[\underline{x}]^2 \Rightarrow \deg(f)$ is even. More precisely, if $f = \sum_{i=1}^k f_i^2$, with $f_i \in \mathbb{R}[\underline{x}]$ $f_i \neq 0$, then $\deg(f) = 2 \max\{\deg(f_i) :$ $i = 1, \ldots, k$.

Hilbert knew that $P_{6,3} \setminus \sum_{6,3} \neq \emptyset$.

The first example was given by Motzkin 1967:

$$
m(X, Y, Z) = X^6 + Y^4 Z^2 + Y^2 Z^4 - 3X^2 Y^2 Z^2.
$$

Theorem 2.4. (Artin, 1927) Let R be a real closed field and $f \in R[\underline{x}]$, $f \geq 0$ on R^n . Then $f \in \sum R(\underline{x})^2$.

Proof. Set $F = R(\underline{x})$ and $T = \sum F^2 = \sum R(\underline{x})^2$. Note that since $R(\underline{x})$ is real, $\sum F^2$ is a proper preordering.

We want to show:

$$
f \notin T \implies \exists \underline{x} \in R^n : f(\underline{x}) < 0.
$$

Since $f \in F \setminus T$, by Zorn's Lemma there is a preordering $P \supseteq T$ of F which is maximal for the property that $f \notin P$. Then P is an ordering of F (see proof of Crucial Lemma 2.1 of Lecture 3).

Let \leq_P be the ordering such that (F, \leq_P) is an ordered field extension of the real closed field R (since R is a real closed field, it is uniquely ordered and we know that (F, \leqslant_P) is an ordered field extension). By construction $f \notin P$ so $f < 0$. Consider the system

$$
S(\underline{\mathbf{x}}) := \begin{cases} f(\underline{\mathbf{x}}) < 0, \\ \end{cases} \quad f(\underline{\mathbf{x}}) \in R[\underline{\mathbf{x}}].
$$

This system has a solution in $F = R(x)$, namely

$$
\underline{X} = (X_1, \dots, X_n) \qquad X_i \in R(\underline{x}) = F.
$$

thus by T-T-IV $\exists \underline{x} \in R^n$ with $f(\underline{x}) < 0$.