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1. REAL CLOSURE

Definition 1.1. Let (K, P) be an ordered field. R is a real closure of (K, P)
if
(1) R is real closed,
(2) RO K, R| K is algebraic,
(3) P=>_R’ N K (i.e. the order on K is the restriction of the unique
order R to K).

Theorem 1.2. FEvery ordered field (K, P) has a real closure.

Proof. Apply Zorn’s Lemma and Proposition 5.1.1(7) to

L:={(L,Q): L|K algebraic, QN K = P}.
O

Proposition 1.3. (Corollary to Sturm’s Theorem) Let K be a field. Let Ry,
Ry be two real closed fields such that

K Q R1 and K Q R2
wilh

P=Kn)Y R=Kn) R

(i.e. Ry and Ry induce the same ordering P on K ).
Let f(x) € K[x]; then the number of roots of f(x) in Ry is equal to the
number of roots of f(x) in Ra.
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2. ORDER PRESERVING EXTENSIONS

Proposition 2.1. Let (K, P) be an ordered field. Let R be a real closed field
containing (K, P). Let K C L C R be such that [L : K| < co. Let S be a
real closed field with

p: (K, P) < (8, > 87

an order preserving embedding. Then ¢ extends to an order preserving em-
bedding

Y (L, Y RPNL) < (S,) 5%

Proof. We recall that if (K, P) and (L, Q) are ordered fields, a field homo-
morphism ¢: K — L is called order preserving with respect to P and @
if (P) C Q (equivalently P = o~ 1(Q)).

By the Theorem of the Primitive Element L = K(«).

Consider f = MinPol(a| K). Since o € R, ¢(f) has at least one root 3
in S by Proposition 1.3

L:=K(a) AN P(K)(B),

so there is at least one extension of ¢ from K to L.

Let 41,...,%, all such extensions of ¢ to L = K(«), and for a con-
tradiction assume that none of them is order preserving with respect to
Q=1L N> R? Then 3by,...,b, € L, b; > 0 (in R) and ;(b;) < 0 (in S)
Vi=1,...,r.

Consider L' := L(v/by,...,v/b;) C R. Since [L : K] < oo, also [L' :
K] < oo.

So let 7 be an extension of ¢ from K to L’. In particular 7|, is one of the
'LﬁfS. Say T = le.

Now compute for by € L,

Yi(b) = 7(b1) = T((V01)*) = ((Vb1)* € Y 5%,

in contradiction with the fact that ¢4 (b;) < 0.
g

Theorem 2.2. Let (K, P) be an ordered field and (R, Y R?) be a real closure
of (K, P). Let (S, S?) be a real closed field and assume that
p: (K, P) = (S, ) 5%

15 an order preserving embedding. Then ¢ has a uniquely determined exten-
ston

v (R, YR < (S, ) 5.
Proof. Consider
L:={(L,Y): KCLCR; ¢:L<=S, ¢, =p}
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Let (L,) be a maximal element. Then by Proposition 2.1 we must have
L=R.
Therefore we have an order preserving embedding ¢ of R extending ¢

v: R — S.

We want to prove that ¢ is unique. We show that ¢(«) € S is uniquely
determined for every a € R.

Let f = MinPol(a | K) and let ay < --- < «, all the real roots of f in R.
Let f1 < --- < B, be all the real roots of ¢(f) in S. Since ¢: R < S is order
preserving, we must have ¢(«;) = §; for every ¢ = 1,...,r. In particular
a = a; for some 1 < j <rand ¢(a) =5 € S. a

Corollary 2.3. Let (K, P) be an ordered field, Ry, R two real closures of
(K, P). Then there exists a unique

(p:Rl —>R2

K-isomorphism (i.e. with ¢, = id).

Corollary 2.4. Let R be a real closure of (K, P). Then the only K -automorphism
of R is the identity.

Corollary 2.5. Let R be a real closed field, K C R a subfield. Set P :=
K N> R? the induced order. Then

K™9 = {o € R: a is algebraic over K}

is relatively algebraic closed in R and is a real closure of (K, P).

Proof. It is enough to show that K" is real closed.
K" is real because @ := K"9 N Y~ R? is an induced ordering.
Let a € Q, a =% b€ R. So p(x) =x>—a € K"9[x] has a root in R.
One can see that b is algebraic over K (so b € K"9),

Similarly one shows that every odd polynomial with coefficients in K9
has a root in K79, 0

Corollary 2.6. Let (K, P) be an ordered field, S a real closed field and
¢: (K,P) < S an order preserving embedding. Let L|K an algebraic ex-
tension. Then there is a bijective correspondence

{extensions : L — S of v} N {extensions Q of P to L}

N RO
Proof.

(=) Let ¢p: L — S an extension of ¢. Then indeed Q = ¢~ Y( Sz)
an ordering on L. Furthermore % 1(3.S*)NK = ¢~ 1(325?) =
So the extension v induces the extension Q.
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(<) Conversely assume that ) is an extension of P from K to L (QNK =
P). Note that if R is a real closure of (L, Q) then R is a real closure
of (K, P) as well.

Now apply Theorem 2.2 to extend ¢ to o: R — S. Set ¢ := 0|,
which is order preserving with respect to Q.

So the map & is well-defined and surjective. To see that it is also
injective, assume

Yr:L— S, e L— S, gy =iy =g

which induce the same order

Q=v'Q_8)=v3'0_5%
on L. Let R be the real closure of (L, Q). Apply Theorem 2.2 to 1,
and 9 to get uniquely determined extensions
c1: R—S, o09: R— S,
of ¥1 and 9 respectively.
But now o1, = 0y, = ¢ By the uniqueness part of Theorem

2.2 we get 01 = 09 and a fortiori 11 = 9.
O

Corollary 2.7. Let (K, P) be an ordered field, R a real closure, [L : K] < co.
Let L = K(«), f = MinPol(a| K). Then there is a bijection

{roots of f in R} — {extensions Q of P to L}.
Proof. If 8 is a root we consider the K-embedding
Yot L =R
such that p,(a) = B. Set Q := ¢~ (3 R?) ordering on L extending P. [

Example 2.8. K = Q(v/2) has 2 orderings P, # P», with V2 € P, V2 ¢
P,. The Minimum Polynomial of v/2 over Q is p(x) = x> — 2.



