REAL ALGEBRAIC GEOMETRY LECTURE NOTES (06: 05/11/2009 - BEARBEITET 10/11/2022)

SALMA KUHLMANN

Contents

1.	Counting roots in an interval	1
2.	Bounding the roots	2
3.	Changes of sign	4

Let R be a real closed field (for all this lecture).

1. Counting roots in an interval

Definition 1.1. Let $f(\mathbf{x}) \in R[\mathbf{x}], a \in R$,

$$f(\mathbf{x}) = (\mathbf{x} - a)^m h(\mathbf{x})$$

with $m \in \mathbb{N}$, $m \ge 1$ and $h(a) \ne 0$ (i.e. $(\mathbf{x} - a)$ is not a factor of $h(\mathbf{x})$). We say that m is the **multiplicity** (*Vielfachheit*) of f at a.

Corollary 1.2. (Generalized Intermediate Value Theorem: Verstärkung Zwischenwertsatz). Let $f(x) \in R[x]$; $a, b \in R$, a < b, f(a)f(b) < 0 (i.e. f(a) < 0 < f(b) or f(b) < 0 < f(a)). Then the number of roots of f(x) counting multiplicities in the interval $]a, b[\subseteq R$ is odd (in particular, f has a root in]a, b[).

Proof. By Corollary 3.1 of 5th lecture (3/11/09), we can write

$$f(\mathbf{x}) = \prod_{i=1}^{n} (\mathbf{x} - c_i)^{m_i} g(\mathbf{x})$$

with $g(\mathbf{x}) = dq(\mathbf{x})$, where $d \in R$ is the leading coefficient of $f(\mathbf{x})$ and $q(\mathbf{x})$ is the product of the irreducible quadratic factors of $f(\mathbf{x})$.

Note that $g(\mathbf{x})$ has constant sign on R (i.e. $g(r) > 0 \ \forall r \in R$ or $g(r) < 0 \ \forall r \in R$). Without loss of generality, we can suppose d = 1 (and so $g(\mathbf{x})$ is positive everywhere).

Set $\forall i = 1, \dots, n$

$$\begin{cases} L_i(\mathbf{x}) := (\mathbf{x} - c_i)^{m_i} \\ l_i(\mathbf{x}) := \mathbf{x} - c_i. \end{cases}$$

If $l_i(a)l_i(b) < 0$, then we must have $l_i(a) < 0 < l_i(b)$. Note that $L_i(a)L_i(b) < 0$ if and only if $l_i(a)l_i(b) < 0$ and m_i is odd.

SALMA KUHLMANN

In particular if $L_i(a)L_i(b) < 0$, then we must have $L_i(a) < 0 < L_i(b)$ as well.

Let us count the number of distinct $i \in \{1, ..., n\}$ for which $L_i(a) < 0 < L_i(b)$. We claim that this number must be odd. If not, we get an even number of *i* such that $L_i(a)L_i(b) < 0$, so their product would be positive, in contradiction with the fact that f(a)f(b) < 0.

 Set

$$|\{i \in \{1, \dots, n\} : L_i(a) < 0 < L_i(b)\}| = M \ge 1$$
 odd

Say these are L_1, \ldots, L_M . So the total number of roots of f in]a, b[counting multiplicity is

$$\sum := m_1 + \dots + m_M.$$

Since m_i is odd $\forall i = 1, ..., M$ and M is odd, it follows that \sum is odd as well.

2. Bounding the roots

Corollary 2.1. Let $f(x) \in R[x]$, $f(x) = dx^m + d_{m-1}x^{m-1} + \dots + d_0, d \neq 0$. Set

$$D := 1 + \sum_{i=m-1}^{0} \left| \frac{d_i}{d} \right| \in R$$

Then

- $\begin{array}{ll} (i) \ a \in R, \ f(a) = 0 \ \Rightarrow \ |a| < D; \\ (i.e. \ f \ has \ no \ root \ in \] \infty, -D] \cup [D + \infty[\) \end{array}$
- (*ii*) $y \in [D, +\infty[\Rightarrow \operatorname{sign}(f(y)) = \operatorname{sign}(d);$

(*iii*)
$$y \in \left] - \infty, -D\right[\Rightarrow \operatorname{sign}(f(y)) = (-1)^m \operatorname{sign}(d)$$

Proof. Wlog assume $\exists i$ such that $d_i \neq 0$.

(i) For every i = 0, ..., m - 1 set $b_i := \frac{d_i}{d}$ and compute for $|y| \ge D$:

$$f(y) = dy^{m}(1 + b_{m-1}y^{-1} + \dots + b_{0}y^{-m}).$$

Now

$$|b_{m-1}y^{-1} + \dots + b_0y^{-m}| \leq (|b_{m-1}| + \dots + |b_0|)D^{-1} < 1$$

because $D > 1$, so $f(y) \neq 0$.

- (ii) If $y \ge D$ then $f(y) = d \prod (y a_i)^{m_i} q(y)$ where deg(q) is even and by (i), we have $|a_i| < D$, so $y a_i > 0$.
- (*iii*) If $y \leq -D$ then by (*i*), $(y a_i)^{m_i} < 0$ if and only if m_i is odd. Moreover *m* is odd if and only if $\sum m_i$ is odd.

 $\mathbf{2}$

Corollary 2.2. (Rolle's Satz) Let $f(x) \in R[x]$, $a < b \in R$ such that f(a) = f(b). Then there is $c \in R$, a < c < b such that f'(c) = 0.

Proof. We can suppose f(a) = f(b) = 0 (otherwise if $f(a) = f(b) = k \neq 0$, we can consider the polynomial (f - k)(x)).

We can also assume that $f(\mathbf{x})$ has no root in]a, b[. So

$$f(\mathbf{x}) = (\mathbf{x} - a)^m (\mathbf{x} - b)^n g(\mathbf{x}),$$

where g(x) has no root in [a, b], and by Corollary 1.2 (IVT) g(x) has constant sign in [a, b]. Compute

$$f'(\mathbf{x}) = (\mathbf{x} - a)^{m-1} (\mathbf{x} - b)^{n-1} g_1(\mathbf{x}),$$

where

$$g_1(\mathbf{x}) := m(\mathbf{x} - b)g(\mathbf{x}) + n(\mathbf{x} - a)g(\mathbf{x}) + (\mathbf{x} - a)(\mathbf{x} - b)g'(\mathbf{x}).$$

Therefore

$$g_1(a) = m(a-b)g(a)$$

$$g_1(b) = n(b-a)g(b).$$

Since $g_1(a)g_1(b) < 0$, by the Intermediate Value Theorem (1.2) $g_1(x)$ has a root in]a, b[and so does f'(x).

Corollary 2.3. (Mittelwertsatz: Mean Value Theorem) Let $f(x) \in R[x]$, $a < b \in R$. Then there is $c \in R$, a < c < b such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proof. We can apply Rolle's Theorem to

$$F(\mathbf{x}) := f(\mathbf{x}) - (\mathbf{x} - a) \frac{f(b) - f(a)}{b - a},$$

since F(a) = F(b).

Corollary 2.4. (Monotonicity Theorem). Let $f(x) \in R[x]$, $a < b \in R$. If f' is positive (respectively negative) on]a, b[, then f is strictly increasing (respectively strictly decreasing) on [a, b].

Proof. If $a \leq a_1 < b_1 \leq b$, by the Mean Value Theorem there is some $c \in R$, $a_1 < c < b_1$ such that

$$f'(c) = \frac{f(b_1) - f(a_1)}{b_1 - a_1}.$$

SALMA KUHLMANN

3. Changes of sign

Definition 3.1.

- (i) Let (c_1, \ldots, c_n) a finite sequence in R. An index $i \in \{1, \ldots, n-1\}$ is a **change of sign** (*Vorzeichenwechsel*) if $c_i c_{i+1} < 0$.
- (*ii*) Let (c_1, \ldots, c_n) a finite sequence in R. After we have removed all zero's by the sequence, we define

$$Var(c_1, \dots, c_n) := |\{i \in \{1, \dots, n-1\} : i \text{ is a change of sign}\}|$$
$$= |\{i \in \{1, \dots, n-1\} : c_i c_{i+1} < 0\}|.$$

Theorem 3.2. (Lemma von Descartes) Let $f(\mathbf{x}) = a_n \mathbf{x}^n + \cdots + a_0 \in R[\mathbf{x}]$, $a_n \neq 0$. Then

$$|\{a \in R : a > 0 \text{ and } f(a) = 0\}| \leq \operatorname{Var}(a_n, \dots, a_1, a_0).$$

Proof. By induction on $n = \deg(f)$. The case n = 1 is obvious, so suppose n > 1. Wlog assume that $a_0 \neq 0$.

Let r > 0 be the smallest positive index such that $a_r \neq 0$. By induction applied to

$$f'(\mathbf{x}) = na_n \mathbf{x}^{n-1} + \dots + ra_r \mathbf{x}^{r-1} = x^{r-1}h(x)$$
 with $h(0) = a_r$,

We know that there are at most $\operatorname{Var}(na_n, \ldots, ra_r) = \operatorname{Var}(a_n, \ldots, a_r)$ many positive roots of f'. Set c := the smallest such positive root of f' (by convention $c := +\infty$ if none exists)

Apply Rolle's Theorem: f has at most $1 + Var(a_n, \ldots, a_r)$ positive roots. We consider the following two cases:

Case 1. If the number of positive roots of f is strictly less than $1 + \operatorname{Var}(a_n, \ldots, a_r)$, then the number of positive roots of f is $\leq \operatorname{Var}(a_n, \ldots, a_r) \leq \operatorname{Var}(a_n, \ldots, a_r, a_0)$ and we are done.

Case 2. Assume f has exactly $1 + Var(a_n, \ldots, a_r)$ positive roots. We claim that in this case

$$1 + \operatorname{Var}(a_n, \dots, a_r) = \operatorname{Var}(a_n, \dots, a_r, a_0).$$

We observe that f has a root a in]0, c[.

For 0 < x < c we have that $\operatorname{sign}(f'(x)) = \operatorname{sign}(a_r) \neq 0$, so f is strictly monotone in the interval [0, c] (Monotonicity Theorem). So

$$a_r > 0 \Rightarrow a_0 = f(0) < f(a) = 0 \Rightarrow a_0 < 0,$$

 $a_r < 0 \Rightarrow a_0 = f(0) > f(a) = 0 \Rightarrow a_0 > 0.$

In both cases $a_0 a_r < 0$ and the claim is established.

Corollary 3.3. Let $f(x) \in R[x]$ a polynomial with m monomials. Then f has at most 2m - 1 roots in R.

REAL ALGEBRAIC GEOMETRY LECTURE NOTES (06: 05/11/2009 - BEARBEITET 10/11/2022)

Proof. Consider f(x) and f(-x). By previous Theorem they have both at most m-1 strictly positive roots in R. So f(x) has at most 2m-2 non-zero roots and therefore at most 2m-1 roots in R.