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Let R be a real closed �eld (for all this lecture).

1. Counting roots in an interval

De�nition 1.1. Let f(x) ∈ R[x], a ∈ R,

f(x) = (x− a)mh(x)

with m ∈ N, m ⩾ 1 and h(a) ̸= 0 (i.e. (x− a) is not a factor of h(x)).
We say that m is the multiplicity (Vielfachheit) of f at a.

Corollary 1.2. (Generalized Intermediate Value Theorem: Verstärkung Zwis-
chenwertsatz). Let f(x) ∈ R[x]; a, b ∈ R, a < b, f(a)f(b) < 0 (i.e.
f(a) < 0 < f(b) or f(b) < 0 < f(a)). Then the number of roots of f(x)
counting multiplicities in the interval ]a, b[ ⊆ R is odd (in particular, f has
a root in ]a, b[).

Proof. By Corollary 3.1 of 5th lecture (3/11/09), we can write

f(x) =
n∏

i=1

(x− ci)
mig(x)

with g(x) = dq(x), where d ∈ R is the leading coe�cient of f(x) and q(x) is
the product of the irreducible quadratic factors of f(x).

Note that g(x) has constant sign on R (i.e. g(r) > 0 ∀ r ∈ R or g(r) <
0 ∀ r ∈ R). Without loss of generality, we can suppose d = 1 (and so g(x) is
positive everywhere).

Set ∀ i = 1, . . . , n {
Li(x) := (x− ci)

mi

li(x) := x− ci.

If li(a)li(b) < 0, then we must have li(a) < 0 < li(b). Note that Li(a)Li(b) <
0 if and only if li(a)li(b) < 0 and mi is odd.
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In particular if Li(a)Li(b) < 0, then we must have Li(a) < 0 < Li(b) as
well.

Let us count the number of distinct i ∈ {1, . . . , n} for which Li(a) < 0 <
Li(b). We claim that this number must be odd. If not, we get an even
number of i such that Li(a)Li(b) < 0, so their product would be positive, in
contradiction with the fact that f(a)f(b) < 0.

Set

|{i ∈ {1, . . . , n} : Li(a) < 0 < Li(b)}| = M ⩾ 1 odd.

Say these are L1, . . . , LM . So the total number of roots of f in ]a, b[ counting
multiplicity is ∑

:= m1 + · · ·+mM .

Since mi is odd ∀ i = 1, . . . ,M and M is odd, it follows that
∑

is odd as
well.

□

2. Bounding the roots

Corollary 2.1. Let f(x) ∈ R[x], f(x) = dxm + dm−1x
m−1 + · · ·+ d0, d ̸= 0.

Set

D := 1 +
0∑

i=m−1

∣∣∣∣did
∣∣∣∣ ∈ R.

Then

(i) a ∈ R, f(a) = 0 ⇒ |a| < D;
(i.e. f has no root in ]−∞,−D] ∪ [D +∞[ )

(ii) y ∈ [D,+∞[ ⇒ sign(f(y)) = sign(d);

(iii) y ∈ ]−∞,−D[ ⇒ sign(f(y)) = (−1)m sign(d).

Proof. W log assume ∃i such that di ̸= 0.

(i) For every i = 0, . . . ,m− 1 set bi :=
di
d and compute for |y| ⩾ D:

f(y) = dym(1 + bm−1y
−1 + · · ·+ b0y

−m).

Now

|bm−1y
−1 + · · ·+ b0y

−m| ⩽ (|bm−1|+ · · ·+ |b0|)D−1 < 1

because D > 1, so f(y) ̸= 0.

(ii) If y ⩾ D then f(y) = d
∏
(y− ai)

miq(y) where deg(q) is even and by
(i), we have |ai| < D, so y − ai > 0.

(iii) If y ⩽ −D then by (i), (y − ai)
mi < 0 if and only if mi is odd.

Moreover m is odd if and only if
∑

mi is odd.

□
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Corollary 2.2. (Rolle's Satz) Let f(x) ∈ R[x], a < b ∈ R such that f(a) =
f(b). Then there is c ∈ R, a < c < b such that f ′(c) = 0.

Proof. We can suppose f(a) = f(b) = 0 (otherwise if f(a) = f(b) = k ̸= 0,
we can consider the polynomial (f − k)(x)).

We can also assume that f(x) has no root in ]a, b[. So

f(x) = (x− a)m(x− b)ng(x),

where g(x) has no root in [a, b], and by Corollary 1.2 (IVT) g(x) has constant
sign in [a, b]. Compute

f ′(x) = (x− a)m−1(x− b)n−1g1(x),

where

g1(x) := m(x− b)g(x) + n(x− a)g(x) + (x− a)(x− b)g′(x).

Therefore

g1(a) = m(a− b)g(a)

g1(b) = n(b− a)g(b).

Since g1(a)g1(b) < 0, by the Intermediate Value Theorem (1.2) g1(x) has
a root in ]a, b[ and so does f ′(x). □

Corollary 2.3. (Mittelwertsatz: Mean Value Theorem) Let f(x) ∈ R[x],
a < b ∈ R. Then there is c ∈ R, a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. We can apply Rolle's Theorem to

F (x) := f(x)− (x− a)
f(b)− f(a)

b− a
,

since F (a) = F (b). □

Corollary 2.4. (Monotonicity Theorem). Let f(x) ∈ R[x], a < b ∈ R. If
f ′ is positive (respectively negative) on ]a, b[, then f is strictly increasing
(respectively strictly decreasing) on [a, b].

Proof. If a ⩽ a1 < b1 ⩽ b, by the Mean Value Theorem there is some c ∈ R,
a1 < c < b1 such that

f ′(c) =
f(b1)− f(a1)

b1 − a1
.

□
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3. Changes of sign

De�nition 3.1.

(i) Let (c1, . . . , cn) a �nite sequence in R. An index i ∈ {1, . . . , n − 1}
is a change of sign (Vorzeichenwechsel) if cici+1 < 0.

(ii) Let (c1, . . . , cn) a �nite sequence in R. After we have removed all
zero's by the sequence, we de�ne

Var(c1, . . . , cn) : = |{i ∈ {1, . . . , n− 1} : i is a change of sign}|
= |{i ∈ {1, . . . , n− 1} : cici+1 < 0}|.

Theorem 3.2. (Lemma von Descartes) Let f(x) = anx
n + · · ·+ a0 ∈ R[x],

an ̸= 0. Then

|{a ∈ R : a > 0 and f(a) = 0}| ⩽ Var(an, . . . , a1, a0).

Proof. By induction on n = deg(f). The case n = 1 is obvious, so suppose
n > 1. W log assume that a0 ̸= 0.

Let r > 0 be the smallest positive index such that ar ̸= 0. By induction
applied to

f ′(x) = nanx
n−1 + · · ·+ rarx

r−1 = xr−1h(x) with h(0) = ar,

We know that there are at most Var(nan, . . . , rar) = Var(an, . . . , ar) many
positive roots of f ′. Set c := the smallest such positive root of f ′ (by con-
vention c := +∞ if none exists)

Apply Rolle's Theorem: f has at most 1 +Var(an, . . . , ar) positive roots.
We consider the following two cases:

Case 1. If the number of positive roots of f is strictly less than 1 +
Var(an, . . . , ar), then the number of positive roots of f is ⩽ Var(an, . . . , ar) ⩽
Var(an, . . . , ar, a0) and we are done.

Case 2. Assume f has exactly 1 + Var(an, . . . , ar) positive roots. We
claim that in this case

1 + Var(an, . . . , ar) = Var(an, . . . , ar, a0).

We observe that f has a root a in ]0, c[.
For 0 < x < c we have that sign(f ′(x)) = sign(ar) ̸= 0, so f is strictly

monotone in the interval [0, c] (Monotonicity Theorem). So

ar > 0 ⇒ a0 = f(0) < f(a) = 0 ⇒ a0 < 0,

ar < 0 ⇒ a0 = f(0) > f(a) = 0 ⇒ a0 > 0.

In both cases a0ar < 0 and the claim is established. □

Corollary 3.3. Let f(x) ∈ R[x] a polynomial with m monomials. Then f
has at most 2m− 1 roots in R.
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Proof. Consider f(x) and f(−x). By previous Theorem they have both at
most m−1 strictly positive roots in R. So f(x) has at most 2m−2 non-zero
roots and therefore at most 2m− 1 roots in R. □


