REAL ALGEBRAIC GEOMETRY LECTURE NOTES (06: 05/11/2009 - BEARBEITET 10/11/2022)

SALMA KUHLMANN

CONTENTS

Let R be a real closed field (for all this lecture).

1. Counting roots in an interval

Definition 1.1. Let $f(x) \in R[x]$, $a \in R$,

$$
f(\mathbf{x}) = (\mathbf{x} - a)^m h(\mathbf{x})
$$

with $m \in \mathbb{N}$, $m \geq 1$ and $h(a) \neq 0$ (i.e. $(x - a)$ is not a factor of $h(x)$). We say that m is the **multiplicity** (*Vielfachheit*) of f at a.

Corollary 1.2. (Generalized Intermediate Value Theorem: Verstärkung Zwischenwertsatz). Let $f(x) \in R[x]$; $a, b \in R$, $a < b$, $f(a)f(b) < 0$ (i.e. $f(a) < 0 < f(b)$ or $f(b) < 0 < f(a)$). Then the number of roots of $f(x)$ counting multiplicities in the interval $[a, b] \subseteq R$ is odd (in particular, f has a root in $[a, b]$.

Proof. By Corollary 3.1 of 5th lecture $(3/11/09)$, we can write

$$
f(\mathbf{x}) = \prod_{i=1}^{n} (\mathbf{x} - c_i)^{m_i} g(\mathbf{x})
$$

with $g(x) = dq(x)$, where $d \in R$ is the leading coefficient of $f(x)$ and $q(x)$ is the product of the irreducible quadratic factors of $f(x)$.

Note that $g(x)$ has constant sign on R (i.e. $g(r) > 0 \,\forall r \in R$ or $g(r) <$ $0 \forall r \in R$). Without loss of generality, we can suppose $d = 1$ (and so $g(x)$ is positive everywhere).

Set $\forall i = 1, \ldots, n$

$$
\begin{cases} L_i(\mathbf{x}) := (\mathbf{x} - c_i)^{m_i} \\ l_i(\mathbf{x}) := \mathbf{x} - c_i. \end{cases}
$$

If $l_i(a)l_i(b) < 0$, then we must have $l_i(a) < 0 < l_i(b)$. Note that $L_i(a)L_i(b) <$ 0 if and only if $l_i(a)l_i(b) < 0$ and m_i is odd.

2 SALMA KUHLMANN

In particular if $L_i(a)L_i(b) < 0$, then we must have $L_i(a) < 0 < L_i(b)$ as well.

Let us count the number of distinct $i \in \{1, \ldots, n\}$ for which $L_i(a) < 0$ $L_i(b)$. We claim that this number must be odd. If not, we get an even number of i such that $L_i(a)L_i(b) < 0$, so their product would be positive, in contradiction with the fact that $f(a) f(b) < 0$.

Set

$$
|\{i \in \{1, \ldots, n\} : L_i(a) < 0 < L_i(b)\}| = M \geq 1 \quad \text{odd.}
$$

Say these are L_1, \ldots, L_M . So the total number of roots of f in $[a, b]$ counting multiplicity is

$$
\sum := m_1 + \cdots + m_M.
$$

Since m_i is odd $\forall i = 1, ..., M$ and M is odd, it follows that \sum is odd as well.

□

2. Bounding the roots

Corollary 2.1. Let $f(x) \in R[x]$, $f(x) = dx^m + d_{m-1}x^{m-1} + \cdots + d_0, d \neq 0$. Set

$$
D := 1 + \sum_{i=m-1}^{0} \left| \frac{d_i}{d} \right| \in R.
$$

Then

- (i) $a \in R$, $f(a) = 0 \Rightarrow |a| < D$; (i.e. f has no root in $]-\infty, -D] \cup [D+\infty[$)
- (ii) $y \in [D, +\infty] \Rightarrow sign(f(y)) = sign(d);$

$$
(iii) \ y \in]-\infty, -D[\Rightarrow \text{sign}(f(y)) = (-1)^m \text{sign}(d).
$$

Proof. Wlog assume $\exists i$ such that $d_i \neq 0$.

(*i*) For every $i = 0, ..., m - 1$ set $b_i := \frac{d_i}{d}$ and compute for $|y| \geqslant D$:

$$
f(y) = dy^m (1 + b_{m-1}y^{-1} + \dots + b_0y^{-m}).
$$

Now

$$
|b_{m-1}y^{-1} + \dots + b_0y^{-m}| \leq (|b_{m-1}| + \dots + |b_0|)D^{-1} < 1
$$
\nbecause $D > 1$, so $f(y) \neq 0$.

- (*ii*) If $y \ge D$ then $f(y) = d \prod (y a_i)^{m_i} q(y)$ where $deg(q)$ is even and by (*i*), we have $|a_i| < D$, so $y - a_i > 0$.
- (*iii*) If $y \le -D$ then by (*i*), $(y a_i)^{m_i} < 0$ if and only if m_i is odd. Moreover m is odd if and only if $\sum m_i$ is odd.

□

Corollary 2.2. (Rolle's Satz) Let $f(x) \in R[x]$, $a < b \in R$ such that $f(a) =$ $f(b)$. Then there is $c \in R$, $a < c < b$ such that $f'(c) = 0$.

Proof. We can suppose $f(a) = f(b) = 0$ (otherwise if $f(a) = f(b) = k \neq 0$, we can consider the polynomial $(f - k)(x)$.

We can also assume that $f(x)$ has no root in $[a, b]$. So

$$
f(\mathbf{x}) = (\mathbf{x} - a)^m (\mathbf{x} - b)^n g(\mathbf{x}),
$$

where $g(x)$ has no root in [a, b], and by Corollary 1.2 (IVT) $g(x)$ has constant sign in $[a, b]$. Compute

$$
f'(x) = (x - a)^{m-1}(x - b)^{n-1}g_1(x),
$$

where

$$
g_1(x) := m(x - b)g(x) + n(x - a)g(x) + (x - a)(x - b)g'(x).
$$

Therefore

$$
g_1(a) = m(a - b)g(a)
$$

$$
g_1(b) = n(b - a)g(b).
$$

Since $g_1(a)g_1(b) < 0$, by the Intermediate Value Theorem (1.2) $g_1(x)$ has a root in $[a, b[$ and so does f' (x) .

Corollary 2.3. (Mittelwertsatz: Mean Value Theorem) Let $f(x) \in R[x]$, $a < b \in R$. Then there is $c \in R$, $a < c < b$ such that

$$
f'(c) = \frac{f(b) - f(a)}{b - a}.
$$

Proof. We can apply Rolle's Theorem to

$$
F(x) := f(x) - (x - a) \frac{f(b) - f(a)}{b - a},
$$

since $F(a) = F(b)$.

Corollary 2.4. (Monotonicity Theorem). Let $f(x) \in R[x]$, $a < b \in R$. If f' is positive (respectively negative) on $[a, b]$, then f is strictly increasing (respectively strictly decreasing) on $[a, b]$.

Proof. If $a \leq a_1 < b_1 \leq b$, by the Mean Value Theorem there is some $c \in R$, $a_1 < c < b_1$ such that

$$
f'(c) = \frac{f(b_1) - f(a_1)}{b_1 - a_1}.
$$

□

4 SALMA KUHLMANN

3. Changes of sign

Definition 3.1.

- (i) Let (c_1, \ldots, c_n) a finite sequence in R. An index $i \in \{1, \ldots, n-1\}$ is a change of sign (*Vorzeichenwechsel*) if $c_i c_{i+1} < 0$.
- (ii) Let (c_1, \ldots, c_n) a finite sequence in R. After we have removed all zero's by the sequence, we define

$$
\begin{aligned} \text{Var}(c_1, \dots, c_n) &:= |\{i \in \{1, \dots, n-1\} : i \text{ is a change of sign}\}| \\ &= |\{i \in \{1, \dots, n-1\} : c_i c_{i+1} < 0\}|. \end{aligned}
$$

Theorem 3.2. (Lemma von Descartes) Let $f(x) = a_n x^n + \cdots + a_0 \in R[x]$, $a_n \neq 0$. Then

$$
|\{a \in R : a > 0 \text{ and } f(a) = 0\}| \leq \text{Var}(a_n, ..., a_1, a_0).
$$

Proof. By induction on $n = \deg(f)$. The case $n = 1$ is obvious, so suppose $n > 1$. Wlog assume that $a_0 \neq 0$.

Let $r > 0$ be the smallest positive index such that $a_r \neq 0$. By induction applied to

$$
f'(x) = na_n x^{n-1} + \dots + ra_r x^{r-1} = x^{r-1} h(x)
$$
 with $h(0) = a_r$,

We know that there are at most $Var(na_n, \ldots, ra_r) = Var(a_n, \ldots, a_r)$ many positive roots of f' . Set $c :=$ the smallest such positive root of f' (by convention $c := +\infty$ if none exists)

Apply Rolle's Theorem: f has at most $1 + \text{Var}(a_n, \ldots, a_r)$ positive roots. We consider the following two cases:

Case 1. If the number of positive roots of f is strictly less than $1 +$ $Var(a_n, \ldots, a_r)$, then the number of positive roots of f is \leq $Var(a_n, \ldots, a_r)$ $Var(a_n, \ldots, a_r, a_0)$ and we are done.

Case 2. Assume f has exactly $1 + \text{Var}(a_n, \ldots, a_r)$ positive roots. We claim that in this case

$$
1 + \text{Var}(a_n, \dots, a_r) = \text{Var}(a_n, \dots, a_r, a_0).
$$

We observe that f has a root a in $[0, c]$.

For $0 < x < c$ we have that $sign(f'(x)) = sign(a_r) \neq 0$, so f is strictly monotone in the interval $[0, c]$ (Monotonicity Theorem). So

$$
a_r > 0 \Rightarrow a_0 = f(0) < f(a) = 0 \Rightarrow a_0 < 0,
$$

 $a_r < 0 \Rightarrow a_0 = f(0) > f(a) = 0 \Rightarrow a_0 > 0.$

In both cases $a_0a_r < 0$ and the claim is established. □

Corollary 3.3. Let $f(x) \in R[x]$ a polynomial with m monomials. Then f has at most $2m - 1$ roots in R.

Proof. Consider $f(x)$ and $f(-x)$. By previous Theorem they have both at most $m-1$ strictly positive roots in R. So $f(x)$ has at most $2m-2$ non-zero roots and therefore at most $2m - 1$ roots in R. \Box