REAL ALGEBRAIC GEOMETRY LECTURE NOTES (05: 03/11/2009 - BEARBEITET 08/11/2022)

SALMA KUHLMANN

Contents

1.	Real closed fields	1
2.	The algebraic closure of a real closed field	2
3.	Factorization in $R[\mathbf{x}]$	3

1. Real closed fields

We first recall Artin-Schreier characterization of real closed fields:

Proposition 1.1. (Artin-Schreier, 1926) Let K be a field. The following are equivalent:

- (i) K is real closed.
- (ii) K has an ordering P which does not extend to any proper algebraic extension.
- (iii) K is real, has no proper algebraic extension of odd degree, and

$$K = K^2 \cup -(K^2).$$

Corollary 1.2. If K is a real closed field then

$$K^2 = \{a^2 : a \in K\}$$

is the unique ordering of K.

Proof. Since K is a real closed field, by (ii) it has an ordering P which does not extend to any proper algebraic extension.

Let $b \in P$. Then $b = a^2$ for some $a \in K$, otherwise P extends to an ordering of $K(\sqrt{b})$, which is a proper algebraic extension of K.

Therefore $P = K^2$.

Remark 1.3. We denote by $\sum K^2$ the unique ordering of a real closed field K, even though we know that $\sum K^2 = K^2$, to avoid any confusion with the cartesian product $K \times K$.

Corollary 1.4. Let (K, \leq) be an ordered field. Then K is real closed if and only if

- (a) every positive element in K has a square root in K, and
- (b) every polynomial of odd degree has a root in K.

Examples 1.5. \mathbb{R} is real closed and \mathbb{Q} is not.

SALMA KUHLMANN

2. The algebraic closure of a real closed field

Lemma 2.1. (Hilfslemma) If K is a field such that K^2 is an ordering of K, then every element of $K(\sqrt{-1})$ is a square.

Proof. Let $x = a + \sqrt{-1} b \in K(\sqrt{-1}) := L$, $a, b \in K$, $b \neq 0$. We want to find $y \in L$ such that $x = y^2$.

 K^2 is an ordering $\ \Rightarrow\ a^2+b^2\in K^2.$ Let $c\in K,\,c\geqslant 0$ such that $a^2+b^2=c^2.$

Since $a^2 \leqslant a^2 + b^2 = c^2$, $|a| \leqslant c$, so $c + a \ge 0$, $c - a \ge 0$ $(-c \leqslant a \leqslant c)$. Therefore $\frac{1}{2}(c \pm a) \in K^2$. Let $d, e \in K$, $d, e \ge 0$ such that

$$\frac{1}{2}(c+a) = d^2$$
$$\frac{1}{2}(c-a) = e^2.$$

 So

$$d = \frac{\sqrt{c+a}}{\sqrt{2}} \qquad e = \frac{\sqrt{c-a}}{\sqrt{2}}$$

Now set $y := d + e\sqrt{-1}$. Then

$$\begin{split} y^2 &= (d + e\sqrt{-1})^2 \\ &= d^2 + (e\sqrt{-1})^2 + 2de\sqrt{-1} \\ &= \frac{1}{2}(c+a) - \frac{1}{2}(c-a) + 2\frac{1}{2}\sqrt{(c-a)(c+a)}\sqrt{-1} \\ &= \frac{1}{2}a + \frac{1}{2}a + \sqrt{c^2 - a^2}\sqrt{-1} \\ &= a + \sqrt{b^2}\sqrt{-1} \\ &= a + b\sqrt{-1} \\ &= x. \end{split}$$

Theorem 2.2. (Fundamental Theorem of Algebra) If K is a real closed field then $K(\sqrt{-1})$ is algebraically closed.

Proof. Let $L \supseteq K(\sqrt{-1})$ be an algebraic extension of $K(\sqrt{-1})$. We show $L = K(\sqrt{-1})$. Without loss of generality, assume it is a finite Galois extension.

Set $G := \operatorname{Gal}(L/K)$. Then $[L:K] = |G| = 2^a m, a \ge 1, m \text{ odd.}$

Let $S \leq G$ be a 2-Sylow subgroup $(|S| = 2^a)$, and F := Fix(S). We have

$$[F:K] = [G:S] = m \qquad \text{odd.}$$

Since K is real closed, it follows that m = 1, so G = S and $|G| = 2^a$. Now $[L: K(\sqrt{-1})][K(\sqrt{-1}): K] = [L: K] = 2^a$.

Therefore $[L: K(\sqrt{-1})] = 2^{a-1}$. We claim that a = 1.

If not, set $G_1 := \operatorname{Gal}(L/K(\sqrt{-1}))$, let S_1 be a subgroup of G_1 of index 2, and $F_1 := \operatorname{Fix}(S_1)$. So

$$[F_1: K(\sqrt{-1})] = [G_1: S_1] = 2,$$

and F_1 is a quadratic extension of $K(\sqrt{-1})$. But every element of $K(\sqrt{-1})$ is a square by Lemma 2.1, contradiction.

Notation. We denote by \overline{K} the algebraic closure of a field K, i.e. the smallest algebraically closed field containing K.

We have just proved that if K is real closed then $\overline{K} = K(\sqrt{-1})$.

3. Factorization in R[x]

Corollary 3.1. (Irreducible elements in R[x] and prime factorization in R[x]). Let R be a real closed field, $f(x) \in R[x]$. Then

(1) if f(x) is monic and irreducible then

$$f(x) = x - a$$
 or $f(x) = (x - a)^2 + b^2$, $b \neq 0$;

(2)

$$f(\mathbf{x}) = d \prod_{i=1}^{n} (\mathbf{x} - a_i) \prod_{j=1}^{m} (\mathbf{x} - d_j)^2 + b_j^2, \quad b_j \neq 0.$$

Proof. Let $f(\mathbf{x}) \in R[\mathbf{x}]$ be monic and irreducible. Then $\deg(f) \leq 2$. Suppose not, and let $\alpha \in \overline{R}$ a root of $f(\mathbf{x})$. Then

$$[R(\alpha):R] = \deg(f) > 2.$$

On the other hand, by Theorem 2.2

$$[R(\alpha):R] \leqslant [\bar{R}:R] = 2,$$

contradiction.

If $\deg(f) = 1$, then $f(\mathbf{x}) = \mathbf{x} - a$, for some $a \in R$.

If deg(f) = 2, then $f(x) = x^2 - 2ax + c = (x - a)^2 + (c - a^2)$, for some $a, c \in R$.

We claim that $c - a^2 > 0$. If not,

 $c-a^2\leqslant 0 \ \Rightarrow \ -(c-a^2)\geqslant 0 \ \Rightarrow \ a^2-c\geqslant 0,$

the discriminant $4(a^2 - c) \ge 0$, $f(\mathbf{x})$ has a root in R and factors, contradiction.

Therefore $(c - a^2) \in \mathbb{R}^2$ and there is $b \in \mathbb{R}$ such that $(c - a^2) = b^2 \neq 0$.

Corollary 3.2. (Zwischenwertsatz : Intermediate value Theorem) Let R be a real closed field, $f(x) \in R[x]$. Assume $a < b \in R$ with f(a) < 0 < f(b). Then $\exists c \in R$, a < c < b such that f(c) = 0.

Proof. By previous Corollary,

$$f(\mathbf{x}) = d \prod_{i=1}^{n} (\mathbf{x} - a_i) \prod_{j=1}^{m} (\mathbf{x} - d_j)^2 + b_j^2$$

= $d \prod_{i=1}^{n} l_i(\mathbf{x}) q(\mathbf{x}),$

where $l_i(\mathbf{x}) := \mathbf{x} - a_i, \, \forall \, i = 1, \dots, n \text{ and } q(\mathbf{x}) := \prod_{j=1}^m (\mathbf{x} - d_j)^2 + b_j^2$.

We claim that there is some $k \in \{1, ..., n\}$ such that $l_k(a)l_k(b) < 0$. Since

$$\operatorname{sign}(f) = \operatorname{sign}(d) \prod_{i=1}^{n} \operatorname{sign}(l_i) \operatorname{sign}(q) \quad \text{and} \quad \operatorname{sign}(q) = 1,$$

if we had that

$$\operatorname{sign}(l_i(a)) = \operatorname{sign}(l_i(b)) \quad \forall i \in \{1, \dots, n\},\$$

we would have

$$\operatorname{sign}(f(a)) = \operatorname{sign}(f(b)),$$

in contradiction with f(a)f(b) < 0.

For such a k,

i.e.

$$a - a_k < 0 < b - a_k,$$

 $l_k(a) < 0 < l_k(b),$

and $c := a_k \in [a, b]$ is a root of $f(\mathbf{x})$.

Corollary 3.3. (Rolle) Let R be a real closed field, $f(x) \in R[x]$, Assume that $a, b \in R$, a < b and f(a) = f(b) = 0. Then $\exists c \in R$, a < c < b such that f'(c) = 0.

Proof. See lecture 6.