REAL ALGEBRAIC GEOMETRY LECTURE NOTES (05: 03/11/2009 - BEARBEITET 08/11/2022)

SALMA KUHLMANN

CONTENTS

1. Real closed fields

We first recall Artin-Schreier characterization of real closed fields:

Proposition 1.1. (Artin-Schreier, 1926) Let K be a field. The following are equivalent:

- (i) K is real closed.
- (ii) K has an ordering P which does not extend to any proper algebraic extension.
- (iii) K is real, has no proper algebraic extension of odd degree, and

$$
K = K^2 \cup -(K^2).
$$

Corollary 1.2. If K is a real closed field then α

$$
K^2 = \{a^2 : a \in K\}
$$

is the unique ordering of K.

Proof. Since K is a real closed field, by (ii) it has an ordering P which does not extend to any proper algebraic extension.

Let $b \in P$. Then $b = a^2$ for some $a \in K$, otherwise P extends to an ordering of $K(\sqrt{b})$, which is a proper algebraic extension of K.

Therefore $P = K^2$. . □

Remark 1.3. We denote by $\sum K^2$ the unique ordering of a real closed field K, even though we know that $\sum K^2 = K^2$, to avoid any confusion with the cartesian product $K \times K$.

Corollary 1.4. Let (K, \leq) be an ordered field. Then K is real closed if and only if

- (a) every positive element in K has a square root in K , and
- (b) every polynomial of odd degree has a root in K.

Examples 1.5. $\mathbb R$ is real closed and $\mathbb Q$ is not.

2. The algebraic closure of a real closed field

Lemma 2.1. (Hilfslemma) If K is a field such that K^2 is an ordering of K, then every element of $K(\sqrt{-1})$ is a square.

Proof. Let $x = a +$ √ $\overline{-1} b \in K($ √ $\overline{-1}$:= L, $a, b \in K$, $b \neq 0$. We want to find $y \in L$ such that $x = y^2$.

 K^2 is an ordering $\Rightarrow a^2 + b^2 \in K^2$. Let $c \in K$, $c \geq 0$ such that $a^2 + b^2 = c^2$.

Since $a^2 \leq a^2 + b^2 = c^2$, $|a| \leq c$, so $c + a \geq 0$, $c - a \geq 0$ ($-c \leq a \leq c$). Therefore $\frac{1}{2}(c \pm a) \in K^2$. Let $d, e \in K$, $d, e \geq 0$ such that

$$
\frac{1}{2}(c+a) = d^2
$$

$$
\frac{1}{2}(c-a) = e^2.
$$

So

$$
d = \frac{\sqrt{c+a}}{\sqrt{2}} \qquad e = \frac{\sqrt{c-a}}{\sqrt{2}}
$$

Now set $y := d + e$ √ -1 . Then

$$
y^{2} = (d + e\sqrt{-1})^{2}
$$

= $d^{2} + (e\sqrt{-1})^{2} + 2de\sqrt{-1}$
= $\frac{1}{2}(c + a) - \frac{1}{2}(c - a) + 2\frac{1}{2}\sqrt{(c - a)(c + a)}\sqrt{-1}$
= $\frac{1}{2}a + \frac{1}{2}a + \sqrt{c^{2} - a^{2}}\sqrt{-1}$
= $a + \sqrt{b^{2}}\sqrt{-1}$
= $a + b\sqrt{-1}$
= x.

 \Box

Theorem 2.2. (Fundamental Theorem of Algebra) If K is a real closed field then $K(\sqrt{-1})$ is algebraically closed.

Proof. Let $L \supseteq K$ (√ $\overline{-1}$) be an algebraic extension of K(√ Let $L \supseteq K(\sqrt{-1})$ be an algebraic extension of $K(\sqrt{-1})$. We show $L = K(\sqrt{-1})$. Without loss of generality, assume it is a finite Galois extension.

Set $G := Gal(L/K)$. Then $[L : K] = |G| = 2^am, a \ge 1, m$ odd.

Let $S \le G$ be a 2-Sylow subgroup $(|S| = 2^a)$, and $F := Fix(S)$. We have $[F : K] = [G : S] = m$ odd.

Since K is real closed, it follows that $m = 1$, so $G = S$ and $|G| = 2^a$. Now $[L:K($ √ $[-1)]$ [K($\sqrt{-1}$: K = [L : K] = 2^a .

Therefore $[L:K($ $\sqrt{-1}$] = 2^{a-1} . We claim that $a = 1$.

If not, set $G_1 := \operatorname{Gal}(L/K(\sqrt{-1})),$ let S_1 be a subgroup of G_1 of index 2, and $F_1 := \text{Fix}(S_1)$. So

$$
[F_1 : K(\sqrt{-1})] = [G_1 : S_1] = 2,
$$

and F_1 is a quadratic extension of $K($ √ $\overline{-1}$). But every element of $K($ √ $\overline{-1})$ is a square by Lemma 2.1, contradiction. \Box

Notation. We denote by \bar{K} the algebraic closure of a field K, i.e. the smallest algebraically closed field containing K .

anest argeorarcany crosed nerd containing κ .
We have just proved that if K is real closed then $\bar{K} = K(\sqrt{k})$ $\overline{-1}$).

3. FACTORIZATION IN $R[x]$

Corollary 3.1. (Irreducible elements in $R[x]$ and prime factorizaction in $R[x]$). Let R be a real closed field, $f(x) \in R[x]$. Then

(1) if $f(x)$ is monic and irreducible then $f(x) = x - a$ or $f(x) = (x - a)^2 + b^2$, $b \neq 0$; (2)

$$
f(\mathbf{x}) = d \prod_{i=1}^{n} (\mathbf{x} - a_i) \prod_{j=1}^{m} (\mathbf{x} - d_j)^2 + b_j^2, \quad b_j \neq 0.
$$

Proof. Let $f(x) \in R[x]$ be monic and irreducible. Then $\deg(f) \leq 2$. Suppose not, and let $\alpha \in \overline{R}$ a root of $f(x)$. Then

$$
[R(\alpha):R] = \deg(f) > 2.
$$

On the other hand, by Theorem 2.2

$$
[R(\alpha):R]\leqslant [\bar R:R]=2,
$$

contradiction.

If deg(f) = 1, then $f(x) = x - a$, for some $a \in R$.

If $\deg(f) = 2$, then $f(x) = x^2 - 2ax + c = (x - a)^2 + (c - a^2)$, for some $a, c \in R$.

We claim that $c - a^2 > 0$. If not,

 $c - a^2 \leq 0 \Rightarrow -(c - a^2) \geq 0 \Rightarrow a^2 - c \geq 0,$

the discriminant $4(a^2 - c) \geq 0$, $f(x)$ has a root in R and factors, contradiction.

Therefore $(c - a^2) \in R^2$ and there is $b \in R$ such that $(c - a^2) = b^2 \neq 0$. □ Corollary 3.2. (Zwischenwertsatz : Intermediate value Theorem) Let R be a real closed field, $f(x) \in R[x]$. Assume $a < b \in R$ with $f(a) < 0 < f(b)$. Then $\exists c \in R$, $a < c < b$ such that $f(c) = 0$.

Proof. By previous Corollary,

$$
f(\mathbf{x}) = d \prod_{i=1}^{n} (\mathbf{x} - a_i) \prod_{j=1}^{m} (\mathbf{x} - d_j)^2 + b_j^2
$$

= $d \prod_{i=1}^{n} l_i(\mathbf{x}) q(\mathbf{x}),$

where $l_i(x) := x - a_i, \forall i = 1, ..., n$ and $q(x) := \prod_{j=1}^{m} (x - d_j)^2 + b_j^2$.

We claim that there is some $k \in \{1, \ldots, n\}$ such that $l_k(a)l_k(b) < 0$. Since

$$
sign(f) = sign(d) \prod_{i=1}^{n} sign(l_i) sign(q)
$$
 and $sign(q) = 1$,

if we had that

$$
sign(l_i(a)) = sign(l_i(b)) \quad \forall i \in \{1, \ldots, n\},
$$

we would have

$$
sign(f(a)) = sign(f(b)),
$$

in contradiction with $f(a) f(b) < 0$.

For such a k ,

i.e.

$$
l_k(a) < 0 < l_k(b),
$$

 $a - a_k < 0 < b - a_k$

and $c := a_k \in]a, b[$ is a root of $f(x)$.

Corollary 3.3. (Rolle) Let R be a real closed field, $f(x) \in R[x]$, Assume that $a, b \in R$, $a < b$ and $f(a) = f(b) = 0$. Then $\exists c \in R$, $a < c < b$ such that $f'(c) = 0.$

Proof. See lecture 6. \Box