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1. Ordering extensions

De�nition 1.1. Let L/K be a �eld extension and P an ordering on K.
An ordering Q of L is said to be an extension (Fortsetzung) of P if

P ⊆ Q, or equivalently Q ∩K = P .

De�nition 1.2. Let L/K be a �eld extension and P an ordering on K. We
de�ne

TL(P ) := {
n∑

i=1

piy
2
i : n ∈ N, pi ∈ P, yi ∈ L }.

Remark 1.3. Let L/K be a �eld extension and P an ordering on K.
Then TL(P ) is the smallest preordering of L containing P .

Corollary 1.4. Let L/K be a �eld extension and P an ordering on K.
Then P has an extension to an ordering Q of L if and only if TL(P ) is a

proper preordering.

2. Quadratic extensions

Theorem 2.1. Let K be a �eld, a ∈ K and de�ne L := K(
√
a). Then an

ordering P of K extends to an ordering Q of L if and only if a ∈ P .

Proof.

(⇒) Assume Q is an extension of P , then a = (
√
a)2 ∈ Q ∩K = P .

(⇐) Let a ∈ P , without loss of generality we can assume L ̸= K or√
a /∈ K. We show that TL(P ) is a proper preordering (and then the

thesis follows by Corollary 1.4).
If not, there is n ∈ N and there are x1, . . . , xn, y1, . . . , yn ∈ K,

p1, . . . , pn ∈ P such that
1
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−1 =
n∑

i=1

pi(xi + yi
√
a)2

=
n∑

i=1

pi(x
2
i + ay2i + 2xiyi

√
a).

On the other hand −1 ∈ K, and since every x ∈ K(
√
a) can be

written in a unique way as x = k1+ k2
√
a with k1, k2 ∈ K, it follows

that

−1 =

n∑
i=1

pi(x
2
i + ay2i ) ∈ P,

contradiction.

□

3. Odd degree field extensions

Theorem 3.1. Let L/K be a �eld extension such that [L : K] is �nite and
odd. Then every ordering of K extends to an ordering of L.

Proof. Otherwise, let n ∈ N the minimal odd degree of a �eld extension for
which the theorem fails.
Let L/K be a �nite �eld extension such that [L : K] = n and let P be an

ordering of K not extending to an ordering of L.
Since char(K) = 0 Primitive Element Theorem applies and there is some

α ∈ L \ K such that

L = K(α) ∼= K[x]/(f),

where f is the minimal polynomial of α over K. Therefore deg(f) = n,
f(α) = 0 and for every g(x) ∈ K[x] such that deg(g) < n, we have g(α) ̸= 0.
By Corollary 1.4, −1 ∈ TL(P ), so

1 +

s∑
i=1

piy
2
i = 0,

where ∀ i = 1, . . . , s pi ∈ P , pi ̸= 0, yi ∈ L, yi ̸= 0. Write

yi = gi(α),

where ∀ i = 1, . . . , s 0 ̸= gi(x) ∈ K[x] and deg(gi) < n. Since

1 +

s∑
i=1

pigi(α)
2 = 0,

it follows that

1 +

s∑
i=1

pigi(x)
2 = f(x)h(x), for some h(x) ∈ K[x].
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De�ne d := max{deg(gi) : i = 1, . . . , s}. Then d < n and the polynomial
f(x)h(x) has degree 2d: the coe�cient of x2d is of the form

r∑
1=1

pib
2
i ,

with pi ∈ P and bi ∈ K, bi ̸= 0, so

r∑
1=1

pib
2
i >P 0.

Note that deg(h) = 2d− n < n (because d < n) and 2d− n is odd.
Let h1(x) be an irreducible factor of h(x) of odd degree and suppose β is

a root of h1(x). Then

deg(h1) = [K(β) : K] < [L : K] = n.

Since h1(β) = 0, also

f(β)h(β) = 1 +
s∑

i=1

pigi(β)
2 = 0.

Therefore
∑s

i=1 pigi(β)
2 = −1 ∈ TK(β)(P ) and by Corollary 1.4 P does not

extend to an ordering of K(β). This is in contradiction with the minimality
of n. □

4. Real closed fields

De�nition 4.1. (reell abgeschloÿen) A �eld K is said to be real closed if

(1) K is real,
(2) K has no proper real algebraic extension.

Proposition 4.2. (Artin-Schreier, 1926) Let K be a �eld. The following
are equivalent:

(i) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic

extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K2 ∪ −(K2).

Proof. (i) ⇒ (ii). Trivial.

(ii) ⇒ (iii). Let P be an ordering which does not extend to any proper
algebraic extension. By Theorem 3.1, it follows that K has no proper alge-
braic extension of odd degree.
Let b ∈ P . Then b = a2 for some a ∈ K, otherwise by Theorem 2.1 P

extends to an ordering of K(
√
b), which is a proper algebraic extension of

K.
Since K = P ∪ (−P ) and P = {a2 : a ∈ K}, we get (iii).
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(iii) ⇒ (i). Note char(K) = 0 and
√
−1 /∈ K since K is real.

Then K(
√
−1) is the only proper quadratic extension of K: if b ∈ K but√

b /∈ K (i.e. b is not a square), then b = −a2 for some a ̸= 0, a ∈ K, and

K(
√
b) = K(

√
−1

√
a2) = K(

√
−1).

Claim. Every proper algebraic extension of K contains a proper qua-
dratic subextension.

Note that if Claim is established we are done: indeed it follows that no
proper extension can be real since −1 is a square in it.
Let L/K a proper algebraic extension. Without loss of generality assume

that [L : K] is �nite and so even. By Primitive Element Theorem we can
further assume that L is a Galois extension.
Let G = Gal(L/K), |G| = [L : K] = 2am, a ⩾ 1, m odd. Let S be

a 2-Sylow subgroup of G (i.e. |S| = 2a) and let E := Fix(S). By Galois
correspondence we get:

[E : K] = [G : S] = m odd.

Therefore by assumption (iii) we must have [E : K] = [G : S] = 1, so G = S
is a 2-group (|G| = 2a) and it has a subgroup G1 of index 2. By Galois
correspondence, de�ning F1 := Fix(G1) we get a quadratic subextension of
L/K. □


