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1. The field R(x)

Let us consider again the �eld R(x) of the rational functions on R[x]:

Example 1.1. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ R[x] and let
k ∈ N the smallest index such that ak ̸= 0 (and therefore actually f(x) =
anx

n + · · ·+ akx
k). We de�ne

(1.1) f(x) > 0 ⇔ ak > 0

and then for every f(x), g(x) ∈ R[x] with g(x) ̸= 0 we de�ne

f(x)

g(x)
⩾ 0 ⇔ f(x)g(x) ⩾ 0.

This is a total order on

R(x) =
{
f(x)

g(x)
: f(x), g(x) ∈ R[x] and g(x) ̸= 0

}
which makes (R(x),⩽) an ordered �eld.

Remark 1.2. By the de�nition above

f(x) = x− r < 0 ∀ r ∈ R, r > 0.

Therefore the element x ∈ R(x) is such that

0 < x < r ∀ r ∈ R, r > 0.

We can see that there is no other ordering on R(x) which satis�es the above
property:
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Proposition 1.3. Let ⩽ be the ordering on R(x) de�ned in (1.1). Then ⩽
is the unique ordering on R(x) such that

0 < x < r ∀ r ∈ R, r > 0.

Proof. Assume that ⩽ is an ordering on R(x) such that

0 < x < r ∀ r ∈ R, r > 0.

Then (see Proposition 2.4 of last lecture)

0 < xm < r ∀m ⩾ 1, m ∈ N, ∀ r > 0, r ∈ R.

Let f(x) = anx
n + an−1x

n−1 + · · · + akx
k ∈ R[x] with k ∈ N the smallest

index such that ak ̸= 0. We want to prove that sign(f) = sign(ak).

Let g(x) = anx
n−k + · · ·+ ak+1x+ ak. Then f(x) = xkg(x).

If k = 0, then f(x) = g(x). Otherwise f(x) ̸= g(x), and since sign(f) =
sign(xk) sign(g) and sign(xk) = 1, it follows that sign(f) = sign(g). We want
sign(g) = sign(ak).

If g(x) = ak we are done. Otherwise let h(x) = anx
n−k−1 + · · ·+ ak+2x+

ak+1. Then g(x) = ak+xh(x) and h(x) ̸= 0. Since |xm| < 1 for every m ∈ N,
we get

|h(x)| ⩽ |an|+ · · ·+ |ak+1| := c > 0, c ∈ R.

Then

|xh(x)| ⩽ c|x| < |ak|,

otherwise |x| ⩾ |ak|
c , contradiction.

Therefore sign(g) = sign(ak + xh) = sign(ak), as required (Note that one
needs to verify that |a| > |b| ⇒ sign(a+ b) = sign(a)).

□

We now want to classify all orderings on R(x) which make it into an
ordered �eld. For this we need the notion of Dedekind cuts.

2. Dedekind cuts

Notation 2.1. Let (Γ,⩽) be a non-empty totally ordered set and let L,U ⊆
Γ. If we write

L < U

we mean that

x < y ∀x ∈ L, ∀ y ∈ U.

(Similarly for L ⩽ U)

De�nition 2.2. (Dedekindschnitt) Let (Γ,⩽) be a totally ordered set. A
Dedekind cut of (Γ,⩽) is a pair (L,U) such that L,U ⊆ Γ, L∪U = Γ and
L < U .
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Remark 2.3. Since L < U it follows that L∩U = ∅. Therefore the subsets
L,U form a partition of Γ (The letter "L" stands for "lower cut" and the
letter "U" for "upper cut").

Example 2.4. Let (Γ,⩽) be a non-empty totally ordered set. For every
γ ∈ Γ we can consider the following two Dedekind cuts:

γ− := (]−∞, γ[, [γ,∞[)
γ+ := (]−∞, γ], ]γ,∞[)

Moreover if we take L,U ∈ {∅,Γ}, then we have two more cuts:

−∞ := (∅,Γ), +∞ := (Γ,∅)

Example 2.5. Consider the Dedekind cut (L,U) of (Q,⩽) given by

L = {x ∈ Q : x <
√
2} and U = {x ∈ Q : x >

√
2}.

Then there is no γ ∈ Q such that (L,U) = γ− or (L,U) = γ+.

De�nition 2.6. (trivialen und freie Schnitte) Let (L,U) be a Dedekind cut
of a totally ordered set (Γ,⩽). If (L,U) = ±∞ or there is some γ ∈ Γ such
that (L,U) = γ+ or (L,U) = γ− (as de�ned in 2.4), then (L,U) is said to
be a trivial (or realized) Dedekind cut. Otherwise it is said to be a free
Dedekind cut (or gap).

Exercise 2.7. A Dedekind cut (L,U) of a totally ordered set (Γ,⩽) is free
if L ̸= ∅, U ̸= ∅, L has no last element and U has no least element. Show
that a totally ordered set (Γ,⩽) is Dedekind complete if and only if (Γ,⩽)
has no free Dedekind cuts.

De�nition 2.8. (Dedekindvollständing) A totally ordered set (Γ,⩽) is said
to be Dedekind complete if for every pair (L,U) of subsets of Γ with
L ̸= ∅, U ̸= ∅ and L ⩽ U , there exists γ ∈ Γ such that

L ⩽ γ ⩽ U.

Examples 2.9.

- The ordered set of the reals (R,⩽) is Dedekind complete, i.e. the set
of Dedekind cuts of (R,⩽) is {a± : a ∈ R} ∪ {−∞,+∞}.

- We have already seen in 2.5 that (Q,⩽) is not Dedekind complete.
We can generalize 2.5: for every α ∈ R − Q we have the gap given
by ( ]−∞, α[ ∩ Q, ]α,∞ [ ∩ Q).

3. The orderings on R(x)

Theorem 3.1. There is a bijection between the set of the orderings on R(x)
and the set of the Dedekind cuts of R.

Proof. Let ⩽ be an ordering on R(x). Consider the sets L = {v ∈ R : v < x}
and U = {w ∈ R : x < w}. Then C⩽

x := (L,U) is a Dedekind cut of R. (Note
that if ⩽ is the order de�ned in 1.1 then C⩽

x = 0+). So we can de�ne a map
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{⩽ :⩽ is an ordering on R(x)} C−→ {(L,U) : (L,U) is a Dedekind cut of R}

⩽ 7→ C⩽
x

We now want to �nd a map
{(L,U) : (L,U) is a Dedekind cut of R} −→ {⩽ :⩽ is an ordering on R(x)}

which is the inverse of C. Every Dedekind cut of (R,⩽) is of the form −∞,
a−, a+, +∞, with a ∈ R. With a change of variable, respectively, y := −1/x,
y := a− x, y := x− a, y := 1/x, we obtain an ordering on R(y) such that

0 < y < r ∀ r ∈ R, r > 0.

We have seen in 1.3 that there is only one ordering with such a property, so
we have a well-de�ned map from the set of the Dedekind cuts of (R,⩽) into
the set of orderings of R(x). It is precisely the inverse of C.

□

4. Order preserving embeddings

De�nition 4.1. (ordungstreue Einbettung) Let (K,⩽) and (F,⩽) be ordered
�elds. An injective homomorphism of �elds

φ : K ↪→ F

is said to be an order preserving embedding if

a ⩽ b ⇒ φ(a) ⩽ φ(b) ∀ a, b ∈ K.

Theorem 4.2 (Hölder). Let (K,⩽) be an Archimedean ordered �eld. Then
there is an order preserving embedding

φ : K ↪→ R.
Proof. Let a ∈ K. Consider the sets

Ia := ]−∞, a]K ∩ Q and Fa := [a,∞[K ∩ Q.

Then Ia ⩽ Fa and Ia ∪ Fa = Q. So we can de�ne

φ(a) := sup Ia = inf Fa ∈ R.

Since K is Archimedean, φ is well-de�ned. Note that φ(a) ∈ R and

Ia + Ib = {x+ y : x ∈ Ia, y ∈ Ib} ⊆ Ia+b

and
Fa + Fb ⊆ Fa+b,

then φ(a) + φ(b) ⩽ φ(a + b) and φ(a) + φ(b) ⩾ φ(a + b). This proves that
φ is additive. Similarly one gets φ(ab) = φ(a)φ(b).

□


