REAL ALGEBRAIC GEOMETRY LECTURE NOTES (02: 22/10/2009 - BEARBEITET 27/10/2022)

SALMA KUHLMANN

CONTENTS

1. THE FIELD $\mathbb{R}(x)$

Let us consider again the field $\mathbb{R}(x)$ of the rational functions on $\mathbb{R}[x]$:

Example 1.1. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{R}[x]$ and let $k \in \mathbb{N}$ the smallest index such that $a_k \neq 0$ (and therefore actually $f(x) =$ $a_n \mathbf{x}^n + \cdots + a_k \mathbf{x}^k$). We define

(1.1) $f(x) > 0 \Leftrightarrow a_k > 0$

and then for every $f(x), g(x) \in \mathbb{R}[x]$ with $g(x) \neq 0$ we define

$$
\frac{f(\mathbf{x})}{g(\mathbf{x})} \geq 0 \iff f(\mathbf{x})g(\mathbf{x}) \geq 0.
$$

This is a total order on

$$
\mathbb{R}(\mathbf{x}) = \left\{ \frac{f(\mathbf{x})}{g(\mathbf{x})} : f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}] \text{ and } g(\mathbf{x}) \neq 0 \right\}
$$

which makes $(\mathbb{R}(x), \leqslant)$ an ordered field.

Remark 1.2. By the definition above

$$
f(\mathbf{x}) = \mathbf{x} - r < 0 \quad \forall r \in \mathbb{R}, \ r > 0.
$$

Therefore the element $x \in \mathbb{R}(x)$ is such that

$$
0 < x < r \quad \forall \, r \in \mathbb{R}, \ r > 0.
$$

We can see that there is no other ordering on $\mathbb{R}(x)$ which satisfies the above property:

Proposition 1.3. Let \leq be the ordering on $\mathbb{R}(x)$ defined in (1.1). Then \leq is the unique ordering on $\mathbb{R}(x)$ such that

$$
0 < x < r \quad \forall \, r \in \mathbb{R}, \ r > 0.
$$

Proof. Assume that \leq is an ordering on $\mathbb{R}(x)$ such that

$$
0 < x < r \quad \forall \, r \in \mathbb{R}, \ r > 0.
$$

Then (see Proposition 2.4 of last lecture)

$$
0 < \mathbf{x}^m < r \quad \forall \, m \geqslant 1, \ m \in \mathbb{N}, \ \forall \, r > 0, \ r \in \mathbb{R}.
$$

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_k x^k \in \mathbb{R}[x]$ with $k \in \mathbb{N}$ the smallest index such that $a_k \neq 0$. We want to prove that $sign(f) = sign(a_k)$.

Let $g(x) = a_n x^{n-k} + \cdots + a_{k+1}x + a_k$. Then $f(x) = x^k g(x)$.

If $k = 0$, then $f(x) = g(x)$. Otherwise $f(x) \neq g(x)$, and since sign(f) = $sign(x^k)$ sign(g) and $sign(x^k) = 1$, it follows that $sign(f) = sign(g)$. We want $sign(g) = sign(a_k)$.

If $g(x) = a_k$ we are done. Otherwise let $h(x) = a_n x^{n-k-1} + \cdots + a_{k+2} x +$ a_{k+1} . Then $g(x) = a_k + xh(x)$ and $h(x) \neq 0$. Since $|x^m| < 1$ for every $m \in \mathbb{N}$, we get

$$
|h(x)| \le |a_n| + \cdots + |a_{k+1}| := c > 0, \qquad c \in \mathbb{R}.
$$

Then

$$
|\mathbf{x}h(\mathbf{x})| \leq c|\mathbf{x}| < |a_k|,
$$

otherwise $|x| \geqslant \frac{|a_k|}{c}$ $\frac{u_{k\parallel}}{c}$, contradiction.

Therefore $sign(g) = sign(a_k + xh) = sign(a_k)$, as required (Note that one needs to verify that $|a| > |b| \Rightarrow sign(a+b) = sign(a)$.

□

We now want to classify all orderings on $\mathbb{R}(x)$ which make it into an ordered field. For this we need the notion of Dedekind cuts.

2. DEDEKIND CUTS

Notation 2.1. Let (Γ, \leqslant) be a non-empty totally ordered set and let $L, U \subseteq$ Γ. If we write

 $L < U$

we mean that

$$
x < y \quad \forall x \in L, \ \forall y \in U.
$$

(Similarly for $L \leqslant U$)

Definition 2.2. (*Dedekindschnitt*) Let (Γ, \leq) be a totally ordered set. A **Dedekind cut** of (Γ, \leqslant) is a pair (L, U) such that $L, U \subseteq \Gamma, L \cup U = \Gamma$ and $L < U$.

Remark 2.3. Since $L < U$ it follows that $L \cap U = \emptyset$. Therefore the subsets L, U form a partition of Γ (The letter "L" stands for "lower cut" and the letter " U " for "upper cut").

Example 2.4. Let (Γ, \leqslant) be a non-empty totally ordered set. For every $\gamma \in \Gamma$ we can consider the following two Dedekind cuts:

$$
\begin{array}{l} \gamma_- := (]-\infty, \gamma[, \ [\gamma, \infty[) \\ \gamma_+ := (]-\infty, \gamma], \ [\gamma, \infty[) \end{array}
$$

Moreover if we take $L, U \in \{ \varnothing, \Gamma \}$, then we have two more cuts:

 $-\infty := (\emptyset, \Gamma), \quad +\infty := (\Gamma, \emptyset)$

Example 2.5. Consider the Dedekind cut (L, U) of (\mathbb{Q}, \leqslant) given by

$$
L = \{x \in \mathbb{Q} : x < \sqrt{2}\} \quad \text{and} \quad U = \{x \in \mathbb{Q} : x > \sqrt{2}\}.
$$

Then there is no $\gamma \in \mathbb{Q}$ such that $(L, U) = \gamma_{-}$ or $(L, U) = \gamma_{+}$.

Definition 2.6. (trivialen und freie Schnitte) Let (L, U) be a Dedekind cut of a totally ordered set (Γ, \leq) . If $(L, U) = \pm \infty$ or there is some $\gamma \in \Gamma$ such that $(L, U) = \gamma_+$ or $(L, U) = \gamma_-$ (as defined in 2.4), then (L, U) is said to be a trivial (or realized) Dedekind cut. Otherwise it is said to be a free Dedekind cut (or gap).

Exercise 2.7. A Dedekind cut (L, U) of a totally ordered set (Γ, \leqslant) is free if $L \neq \emptyset$, $U \neq \emptyset$, L has no last element and U has no least element. Show that a totally ordered set (Γ, \leqslant) is Dedekind complete if and only if (Γ, \leqslant) has no free Dedekind cuts.

Definition 2.8. (*Dedekindvollständing*) A totally ordered set (Γ, \leqslant) is said to be Dedekind complete if for every pair (L, U) of subsets of Γ with $L \neq \emptyset$, $U \neq \emptyset$ and $L \leq U$, there exists $\gamma \in \Gamma$ such that

$$
L\leqslant \gamma \leqslant U.
$$

Examples 2.9.

- The ordered set of the reals (\mathbb{R}, \leqslant) is Dedekind complete, i.e. the set of Dedekind cuts of (\mathbb{R}, \leq) is $\{a_{\pm} : a \in \mathbb{R}\} \cup \{-\infty, +\infty\}.$
- We have already seen in 2.5 that (\mathbb{Q}, \leq) is not Dedekind complete. We can generalize 2.5: for every $\alpha \in \mathbb{R} - \mathbb{Q}$ we have the gap given by $($ $] - \infty$, α $[$ \cap Q, $] \alpha$, ∞ $[$ \cap Q).

3. THE ORDERINGS ON $\mathbb{R}(x)$

Theorem 3.1. There is a bijection between the set of the orderings on $\mathbb{R}(x)$ and the set of the Dedekind cuts of R.

Proof. Let \leq be an ordering on $\mathbb{R}(x)$. Consider the sets $L = \{v \in \mathbb{R} : v < x\}$ and $U = \{w \in \mathbb{R} : x < w\}$. Then $\mathcal{C}_X^{\leqslant} := (L, U)$ is a Dedekind cut of \mathbb{R} . (Note that if \leq is the order defined in 1.1 then $\mathcal{C}_{\mathbf{X}}^{\leq -}$ = 0₊). So we can define a map

SALMA KUHLMANN

 $\{\leqslant:\leqslant\text{ is an ordering on }\mathbb{R}(\mathbf{x})\}\ \stackrel{C}{\longrightarrow}\ \{(L,U):(L,U)\text{ is a Dedekind cut of }\mathbb{R}\}\$

$$
\leqslant \qquad \ \ \mapsto \qquad \qquad \mathcal{C}^{\leqslant}_X
$$

We now want to find a map

 $\{(L, U) : (L, U)$ is a Dedekind cut of $\mathbb{R}\}\longrightarrow \{\leqslant \mathbb{R}^3 \leqslant \mathbb{R}^3$ is an ordering on $\mathbb{R}(x)\}\$

which is the inverse of C. Every Dedekind cut of (\mathbb{R}, \leq) is of the form $-\infty$, $a_-, a_+, +\infty$, with $a \in \mathbb{R}$. With a change of variable, respectively, $y := -1/x$. $y := a - x$, $y := x - a$, $y := 1/x$, we obtain an ordering on $\mathbb{R}(y)$ such that

$$
0 < y < r \quad \forall \, r \in \mathbb{R}, \ r > 0.
$$

We have seen in 1.3 that there is only one ordering with such a property, so we have a well-defined map from the set of the Dedekind cuts of (\mathbb{R}, \leq) into the set of orderings of $\mathbb{R}(x)$. It is precisely the inverse of C.

□

4. Order preserving embeddings

Definition 4.1. (*ordungstreue Einbettung*) Let (K, \leq) and (F, \leq) be ordered fields. An injective homomorphism of fields

$$
\varphi\colon K\,\,\hookrightarrow\,\,F
$$

is said to be an order preserving embedding if

$$
a \leqslant b \Rightarrow \varphi(a) \leqslant \varphi(b) \qquad \forall \, a, b \in K.
$$

Theorem 4.2 (Hölder). Let (K,\leqslant) be an Archimedean ordered field. Then there is an order preserving embedding

$$
\varphi\colon K\ \hookrightarrow\ \mathbb{R}.
$$

Proof. Let $a \in K$. Consider the sets

$$
I_a :=]-\infty, a]_K \cap \mathbb{Q} \text{ and } F_a := [a, \infty[_K \cap \mathbb{Q}].
$$

Then $I_a \leq F_a$ and $I_a \cup F_a = \mathbb{Q}$. So we can define

$$
\varphi(a) := \sup I_a = \inf F_a \in \mathbb{R}.
$$

Since K is Archimedean, φ is well-defined. Note that $\varphi(a) \in \mathbb{R}$ and

$$
I_a + I_b = \{x + y : x \in I_a, y \in I_b\} \subseteq I_{a+b}
$$

and

$$
F_a + F_b \subseteq F_{a+b},
$$

then $\varphi(a) + \varphi(b) \leq \varphi(a+b)$ and $\varphi(a) + \varphi(b) \geq \varphi(a+b)$. This proves that φ is additive. Similarly one gets $\varphi(ab) = \varphi(a)\varphi(b)$.

□

$$
\boldsymbol{4}
$$