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Positivstellensatz to the moment problem

Seite 133

30. Vorlesung (14. Februar 2019)
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Convention: When a new de�nition is given, the German name appears
between brackets.

1. Orderings

De�nition 1.1. (partielle Anordnung) Let Γ be a non-empty set and let ⩽
be a relation on Γ such that:

(i) γ ⩽ γ ∀ γ ∈ Γ,

(ii) γ1 ⩽ γ2, γ2 ⩽ γ1 ⇒ γ1 = γ2 ∀ γ1, γ2 ∈ Γ,

(iii) γ1 ⩽ γ2, γ2 ⩽ γ3 ⇒ γ1 ⩽ γ3 ∀ γ1, γ2, γ3 ∈ Γ.

Then ⩽ is a partial order on Γ and (Γ,⩽) is said to be a partially ordered
set.

Example 1.2. Let X be a non-empty set. For every A,B ⊆ X, the relation

A ⩽ B ⇐⇒ A ⊆ B,

is a partial order on the power set P(X) = {A : A ⊆ X}.

De�nition 1.3. (totale Anordung) A partial order ⩽ on a set Γ is said to
be total if

∀ γ1, γ2 ∈ Γ γ1 ⩽ γ2 or γ2 ⩽ γ1.

Notation 1.4. If (Γ,⩽) is a partially ordered set and γ1, γ2 ∈ Γ, then we
write:

γ1 < γ2 ⇔ γ1 ⩽ γ2 and γ1 ̸= γ2,
γ1 ⩾ γ2 ⇔ γ2 ⩽ γ1,
γ1 > γ2 ⇔ γ2 ⩽ γ1 and γ1 ̸= γ2.
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Examples 1.5. Let Γ = R× R = {(a, b) : a, b ∈ R}.

(1) For every (a1, b1), (a2, b2) ∈ R× R we can de�ne

(a1, b1) ⩽ (a2, b2) ⇐⇒ a1 ⩽ a2 and b1 ⩽ b2.

Then (R× R,⩽) is a partially ordered set.

(2) For every (a1, b1), (a2, b2) ∈ R× R we can de�ne

(a1, b1) ⩽l (a2, b2) ⇐⇒ [ a1 < a2] or [ a1 = a2 and b1 ⩽ b2].

Then (R × R,⩽l) is a totally ordered set. (Remark: the "l" stands
for "lexicographic").

2. Ordered fields

De�nition 2.1. (angeordneter Körper) Let K be a �eld. Let ⩽ be a total
order on K such that:

(i) x ⩽ y ⇒ x+ z ⩽ y + z ∀x, y, z ∈ K,

(ii) 0 ⩽ x, 0 ⩽ y ⇒ 0 ⩽ xy ∀x, y ∈ K.

Then the pair (K,⩽) is said to be an ordered �eld.

Examples 2.2. The �eld of the rational numbers (Q,⩽) and the �eld of the
real numbers (R,⩽) are ordered �elds, where ⩽ denotes the usual order.

De�nition 2.3. (formal reell Körper) A �eld K is said to be (formally)
real if there is an order ⩽ on K such that (K,⩽) is an ordered �eld.

Proposition 2.4. Let (K,⩽) be an ordered �eld. The following hold:

• a ⩽ b ⇔ 0 ⩽ b− a ∀ a, b ∈ K

• 0 ⩽ a2 ∀ a ∈ K

• a ⩽ b, 0 ⩽ c ⇒ ac ⩽ bc ∀ a, b, c ∈ K

• 0 < a ⩽ b ⇒ 0 < 1/b ⩽ 1/a ∀ a, b ∈ K

• 0 < n ∀n ∈ N

Remark 2.5. If K is a real �eld then char(K) = 0 and K contains a copy
of Q.
Notation 2.6. Let (K,⩽) be an ordered �eld and let a ∈ K.

sign(a) :=


1 if a > 0,

0 if a = 0,

−1 if a < 0.



REAL ALGEBRAIC GEOMETRY LECTURE NOTES(01: 20/10/2009 - BEARBEITET 25/10/2022)3

|a| := sign(a)a.

Fact 2.7. Let (K,⩽) be an ordered �eld and let a, b ∈ K. Then

(i) sign(ab) = sign(a) sign(b),

(ii) | ab | = | a || b |,

(iii) | a+ b | ⩽ | a |+ | b |.

3. Archimedean fields

De�nition 3.1. (archimedischer Körper) Let (K,⩽) be an ordered �eld.
We say that K is Archimedean if

∀ a ∈ K ∃n ∈ N such that a < n.

De�nition 3.2. Let (Γ ⩽) be an ordered set and let ∆ ⊆ Γ. Then

• ∆ is co�nal (ko�nal) in Γ if

∀ γ ∈ Γ ∃ δ ∈ ∆ such that γ ⩽ δ.

• ∆ is coinitial (koinitial) in Γ if

∀ γ ∈ Γ ∃ δ ∈ ∆ such that δ ⩽ γ.

• ∆ is coterminal (koterminal) in Γ if ∆ is co�nal and coinitial in Γ.

Example 3.3. Let (K ⩽) be an Archimedean �eld. Then N is co�nal in K,
−N is coinitial in K and Z = −N ∪ N is coterminal in K.

Remark 3.4.

- If (K,⩽) is an Archimedean �eld and Q ⊆ K is a sub�eld, then
(Q,⩽) is an Archimedean �eld.

- (R,⩽) is an Archimedean �eld and therefore also (Q,⩽) is.

Remark 3.5. Let (K,⩽) be an ordered �eld. Then K is Archimedean if
and only if ∀ a, b ∈ K∗ ∃n ∈ N such that

|a| ⩽ n| b | and | b | ⩽ n|a|.

Example 3.6. Let R[x] be the ring of the polynomials with coe�cients in
R. We denote by ff(R[x]) the �eld of the rational functions of R[x], i.e.

ff(R[x]) = R(x) :=
{
f(x)

g(x)
: f(x), g(x) ∈ R[x] and g(x) ̸= 0

}
.
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Let f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0 ∈ R[x] and let k ∈ N the smallest
index such that ak ̸= 0 (and therefore actually f(x) = anx

n + · · · + akx
k).

We de�ne
f(x) > 0 ⇔ ak > 0

and then for every f(x), g(x) ∈ R[x] with g(x) ̸= 0 we de�ne

f(x)

g(x)
⩾ 0 ⇔ f(x)g(x) ⩾ 0.

This is a total order on K = ff(R[x]) which makes (K,⩽) an ordered �eld.
We claim that (K,⩽) contains

(i) an in�nite positive element, i.e.

∃A ∈ K such that A > n ∀n ∈ N,

(ii) an in�nitesimal positive element, i.e.

∃ a ∈ K such that 0 < a < 1/n ∀n ∈ N.

For instance the element x ∈ K is in�nitesimal and the element 1/x ∈ K is
in�nite. Therefore (K,⩽) is not Archimedean.
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1. The field R(x)

Let us consider again the �eld R(x) of the rational functions on R[x]:

Example 1.1. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ R[x] and let
k ∈ N the smallest index such that ak ̸= 0 (and therefore actually f(x) =
anx

n + · · ·+ akx
k). We de�ne

(1.1) f(x) > 0 ⇔ ak > 0

and then for every f(x), g(x) ∈ R[x] with g(x) ̸= 0 we de�ne

f(x)

g(x)
⩾ 0 ⇔ f(x)g(x) ⩾ 0.

This is a total order on

R(x) =
{
f(x)

g(x)
: f(x), g(x) ∈ R[x] and g(x) ̸= 0

}
which makes (R(x),⩽) an ordered �eld.

Remark 1.2. By the de�nition above

f(x) = x− r < 0 ∀ r ∈ R, r > 0.

Therefore the element x ∈ R(x) is such that

0 < x < r ∀ r ∈ R, r > 0.

We can see that there is no other ordering on R(x) which satis�es the above
property:

1
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Proposition 1.3. Let ⩽ be the ordering on R(x) de�ned in (1.1). Then ⩽
is the unique ordering on R(x) such that

0 < x < r ∀ r ∈ R, r > 0.

Proof. Assume that ⩽ is an ordering on R(x) such that

0 < x < r ∀ r ∈ R, r > 0.

Then (see Proposition 2.4 of last lecture)

0 < xm < r ∀m ⩾ 1, m ∈ N, ∀ r > 0, r ∈ R.

Let f(x) = anx
n + an−1x

n−1 + · · · + akx
k ∈ R[x] with k ∈ N the smallest

index such that ak ̸= 0. We want to prove that sign(f) = sign(ak).

Let g(x) = anx
n−k + · · ·+ ak+1x+ ak. Then f(x) = xkg(x).

If k = 0, then f(x) = g(x). Otherwise f(x) ̸= g(x), and since sign(f) =
sign(xk) sign(g) and sign(xk) = 1, it follows that sign(f) = sign(g). We want
sign(g) = sign(ak).

If g(x) = ak we are done. Otherwise let h(x) = anx
n−k−1 + · · ·+ ak+2x+

ak+1. Then g(x) = ak+xh(x) and h(x) ̸= 0. Since |xm| < 1 for every m ∈ N,
we get

|h(x)| ⩽ |an|+ · · ·+ |ak+1| := c > 0, c ∈ R.

Then

|xh(x)| ⩽ c|x| < |ak|,

otherwise |x| ⩾ |ak|
c , contradiction.

Therefore sign(g) = sign(ak + xh) = sign(ak), as required (Note that one
needs to verify that |a| > |b| ⇒ sign(a+ b) = sign(a)).

□

We now want to classify all orderings on R(x) which make it into an
ordered �eld. For this we need the notion of Dedekind cuts.

2. Dedekind cuts

Notation 2.1. Let (Γ,⩽) be a non-empty totally ordered set and let L,U ⊆
Γ. If we write

L < U

we mean that

x < y ∀x ∈ L, ∀ y ∈ U.

(Similarly for L ⩽ U)

De�nition 2.2. (Dedekindschnitt) Let (Γ,⩽) be a totally ordered set. A
Dedekind cut of (Γ,⩽) is a pair (L,U) such that L,U ⊆ Γ, L∪U = Γ and
L < U .
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Remark 2.3. Since L < U it follows that L∩U = ∅. Therefore the subsets
L,U form a partition of Γ (The letter "L" stands for "lower cut" and the
letter "U" for "upper cut").

Example 2.4. Let (Γ,⩽) be a non-empty totally ordered set. For every
γ ∈ Γ we can consider the following two Dedekind cuts:

γ− := (]−∞, γ[, [γ,∞[)
γ+ := (]−∞, γ], ]γ,∞[)

Moreover if we take L,U ∈ {∅,Γ}, then we have two more cuts:

−∞ := (∅,Γ), +∞ := (Γ,∅)

Example 2.5. Consider the Dedekind cut (L,U) of (Q,⩽) given by

L = {x ∈ Q : x <
√
2} and U = {x ∈ Q : x >

√
2}.

Then there is no γ ∈ Q such that (L,U) = γ− or (L,U) = γ+.

De�nition 2.6. (trivialen und freie Schnitte) Let (L,U) be a Dedekind cut
of a totally ordered set (Γ,⩽). If (L,U) = ±∞ or there is some γ ∈ Γ such
that (L,U) = γ+ or (L,U) = γ− (as de�ned in 2.4), then (L,U) is said to
be a trivial (or realized) Dedekind cut. Otherwise it is said to be a free
Dedekind cut (or gap).

Exercise 2.7. A Dedekind cut (L,U) of a totally ordered set (Γ,⩽) is free
if L ̸= ∅, U ̸= ∅, L has no last element and U has no least element. Show
that a totally ordered set (Γ,⩽) is Dedekind complete if and only if (Γ,⩽)
has no free Dedekind cuts.

De�nition 2.8. (Dedekindvollständing) A totally ordered set (Γ,⩽) is said
to be Dedekind complete if for every pair (L,U) of subsets of Γ with
L ̸= ∅, U ̸= ∅ and L ⩽ U , there exists γ ∈ Γ such that

L ⩽ γ ⩽ U.

Examples 2.9.

- The ordered set of the reals (R,⩽) is Dedekind complete, i.e. the set
of Dedekind cuts of (R,⩽) is {a± : a ∈ R} ∪ {−∞,+∞}.

- We have already seen in 2.5 that (Q,⩽) is not Dedekind complete.
We can generalize 2.5: for every α ∈ R − Q we have the gap given
by ( ]−∞, α[ ∩ Q, ]α,∞ [ ∩ Q).

3. The orderings on R(x)

Theorem 3.1. There is a bijection between the set of the orderings on R(x)
and the set of the Dedekind cuts of R.

Proof. Let ⩽ be an ordering on R(x). Consider the sets L = {v ∈ R : v < x}
and U = {w ∈ R : x < w}. Then C⩽

x := (L,U) is a Dedekind cut of R. (Note
that if ⩽ is the order de�ned in 1.1 then C⩽

x = 0+). So we can de�ne a map
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{⩽ :⩽ is an ordering on R(x)} C−→ {(L,U) : (L,U) is a Dedekind cut of R}

⩽ 7→ C⩽
x

We now want to �nd a map
{(L,U) : (L,U) is a Dedekind cut of R} −→ {⩽ :⩽ is an ordering on R(x)}

which is the inverse of C. Every Dedekind cut of (R,⩽) is of the form −∞,
a−, a+, +∞, with a ∈ R. With a change of variable, respectively, y := −1/x,
y := a− x, y := x− a, y := 1/x, we obtain an ordering on R(y) such that

0 < y < r ∀ r ∈ R, r > 0.

We have seen in 1.3 that there is only one ordering with such a property, so
we have a well-de�ned map from the set of the Dedekind cuts of (R,⩽) into
the set of orderings of R(x). It is precisely the inverse of C.

□

4. Order preserving embeddings

De�nition 4.1. (ordungstreue Einbettung) Let (K,⩽) and (F,⩽) be ordered
�elds. An injective homomorphism of �elds

φ : K ↪→ F

is said to be an order preserving embedding if

a ⩽ b ⇒ φ(a) ⩽ φ(b) ∀ a, b ∈ K.

Theorem 4.2 (Hölder). Let (K,⩽) be an Archimedean ordered �eld. Then
there is an order preserving embedding

φ : K ↪→ R.
Proof. Let a ∈ K. Consider the sets

Ia := ]−∞, a]K ∩ Q and Fa := [a,∞[K ∩ Q.

Then Ia ⩽ Fa and Ia ∪ Fa = Q. So we can de�ne

φ(a) := sup Ia = inf Fa ∈ R.

Since K is Archimedean, φ is well-de�ned. Note that φ(a) ∈ R and

Ia + Ib = {x+ y : x ∈ Ia, y ∈ Ib} ⊆ Ia+b

and
Fa + Fb ⊆ Fa+b,

then φ(a) + φ(b) ⩽ φ(a + b) and φ(a) + φ(b) ⩾ φ(a + b). This proves that
φ is additive. Similarly one gets φ(ab) = φ(a)φ(b).

□
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1. Preorderings and positive cones

De�nition 1.1. (Präordnung) Let K be a �eld and let T ⊆ K such that

(i) T + T ⊆ T ,

(ii) TT ⊆ T ,

(iii) a2 ∈ T for every a ∈ K.

(where T + T := {t1 + t2 : t1, t2 ∈ T} and TT := {t1t2 : t1, t2 ∈ T}).
Then T is said to be a preordering (or cone) of K.

De�nition 1.2. (echte Präordnung) A preordering T of a �eld K is said to
be proper if −1 /∈ T .

De�nition 1.3. (Positivkegel) A proper preordering T of a �eld K is said to
be a positive cone (or ordering) if −T ∪T = K, where −T := {−t : t ∈ T}.

Proposition 1.4. Let (K,⩽) be an ordered �eld. Then the set

P := {x ∈ K : x ⩾ 0}

is a positive cone of K. Conversely, if P is a positive cone of a �eld K, then
∀x, y ∈ K

x ⩽P y ⇔ y − x ∈ P

de�nes an ordering on K such that (K,⩽P ) is an ordered �eld.
Therefore for every �eld K there is a bijection between the set of the or-

derings on K and the set of the positive cones of K.

Notation 1.5. Let K be a �eld. We denote by
∑

K2 the set

{a21 + · · ·+ a2n : n ∈ N, ai ∈ K, i = 1, . . . , n}.

1



2 SALMA KUHLMANN

Exercise 1.6. Let K be a �eld. Then

(1)
∑

K2 is a preordering of K.

(2)
∑

K2 is the smallest preordering of K, i.e. if T is a preordering of
K, then

∑
K2 ⊆ T .

(3) If K is real then −1 /∈
∑

K2 (i.e.
∑

K2 is a proper preordering).

(4) If K is algebraically closed then it is not real.

(5) Let (K,P ) be an ordered real �eld, F a �eld and

φ : F −→ K

an homomorphism of �elds. Then Q := φ−1(P ) is an ordering of F
(Q is said to be the pullback of P ).

(6) If P , Q are positive cones of K with P ⊆ Q, then P = Q.

(7) In particular, if
∑

K2 is a positive cone (or ordering: see 1.4) of K,
then it is the unique ordering of K.

Remark 1.7. Let K be a �eld with char(K) ̸= 2. If T ⊆ K is a preordering
which is not proper (i.e. −1 ∈ T ), then T = K.

Proof. For every x ∈ K,

x =

(
x+ 1

2

)2

+ (−1)

(
x− 1

2

)2

∈ T.

□

Remark 1.8. Let T = {Ti : i ∈ I} be a family of preorderings of a �eld K.
Then

(i) ⋂
i∈I

Ti

is a preordering of K.

(ii) if ∀ i, j ∈ I ∃k ∈ I such that Ti ∪ Tj ⊆ Tk, then⋃
i∈I

Ti

is a preordering of K.
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2. A crucial Lemma

Lemma 2.1. Let K be a �eld and T a proper preordering of K. If a ∈ K
and a /∈ T , then

T − aT = {t1 − at2 : t1, t2 ∈ T}

is a proper preordering of K.

Proof. Since K2 ⊆ T , also K2 ⊆ T − aT . Clearly (T − aT ) + (T − aT ) ⊆
T − aT . Moreover ∀ t1, t2, t3, t4 ∈ T ,

(t1 − at2)(t3 − at4) = t1t3 + a2t2t4 − a(t1t4 + t2t3) ∈ T − aT,

therefore (T − aT )(T − aT ) ⊆ (T − aT ) and T − aT is a preordering of K.
If (T − aT ) is not proper, then −1 = t1 − at2 for some t1, t2 ∈ T with

t2 ̸= 0, since T is proper. Therefore

a =
1

t22
(1 + t1)t2 ∈ T,

contradiction. □

3. Several consequences

Corollary 3.1. Every maximal proper preordering of a �eld K is an ordering
(positive cone: see 1.4) of K.

Corollary 3.2. Every proper preordering of a �eld K is contained in an
ordering of K.

Proof. Let T be a proper preordering. Let

T = {T ′ : T ′ ⊇ T, T ′ is a proper preordering of K }.

T is non-empty and for every ascending chain of T

Ti1 ⊆ Ti2 ⊆ . . . ⊆ Tik ⊆ . . .

by 1.8(ii)
⋃
Tij is a proper preordering containing T and Zorn's Lemma

applies.
Let P be a maximal element of T . Then P is a maximal proper preordering

of K containing T , and P is an ordering by Corollary 3.1.
□

Corollary 3.3. Let T be a proper preordering of a �eld K. Then

T =
⋂

{P : T ⊆ P, P positive cone of K}.

Proof. (⊆) It is obvious.

(⊇) Let a ∈ K such that a is contained in every positive cone containing
T . If a /∈ T , then by Lemma 2.1 T − aT is a proper preordering of
K. By Corollary 3.2, T − aT is contained in a positive cone P of K.
Then −a ∈ P and a /∈ P .

□
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Corollary 3.4. (Characterization of real �elds) Let K be a �eld. The fol-
lowing are equivalent:

(1) K is real (i.e. K has an ordering).

(2) K has a proper preordering.

(3)
∑

K2 is a proper preordering (i.e. −1 /∈
∑

K2).

(4) ∀n ∈ N, ∀ a1, . . . , an ∈ K

n∑
i=1

a2i = 0 ⇒ a1 = · · · = an = 0.

Proof. (1) ⇒ (2) ⇒ (3) obvious. We show now (3) ⇔ (4).

(⇒) Let
∑n

i=1 a
2
i = 0 and suppose ai ̸= 0 for some 1 ⩽ i ⩽ n. Say an ̸= 0.

Then
a21 + · · ·+ a2n

a2n
= 0,

and (
a1
an

)2

+ · · ·+
(
an−1

an

)2

+ 1 = 0.

Therefore −1 ∈
∑

K2, contradiction.

(⇐) Suppose −1 ∈
∑

K2, so

−1 = b21 + · · ·+ b2s,

for some s ∈ N and b1, . . . , bs ∈ K. Then

1 + b21 + · · ·+ b2s = 0

and 1 = 0, contradiction.

To complete the proof note that if −1 /∈
∑

K2 then
∑

K2 is a proper
preordering, and by Corollary 3.2K has an ordering. This proves (3) ⇒ (1).

□

Corollary 3.5. (Artin) Let K be a real �eld. Then∑
K2 =

⋂
{P : P is an ordering of K}.

In other words, if K is a real �eld and a ∈ K, then

a ⩾P 0 for every ordering P ⇔ a ∈
∑

K2.
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1. Ordering extensions

De�nition 1.1. Let L/K be a �eld extension and P an ordering on K.
An ordering Q of L is said to be an extension (Fortsetzung) of P if

P ⊆ Q, or equivalently Q ∩K = P .

De�nition 1.2. Let L/K be a �eld extension and P an ordering on K. We
de�ne

TL(P ) := {
n∑

i=1

piy
2
i : n ∈ N, pi ∈ P, yi ∈ L }.

Remark 1.3. Let L/K be a �eld extension and P an ordering on K.
Then TL(P ) is the smallest preordering of L containing P .

Corollary 1.4. Let L/K be a �eld extension and P an ordering on K.
Then P has an extension to an ordering Q of L if and only if TL(P ) is a

proper preordering.

2. Quadratic extensions

Theorem 2.1. Let K be a �eld, a ∈ K and de�ne L := K(
√
a). Then an

ordering P of K extends to an ordering Q of L if and only if a ∈ P .

Proof.

(⇒) Assume Q is an extension of P , then a = (
√
a)2 ∈ Q ∩K = P .

(⇐) Let a ∈ P , without loss of generality we can assume L ̸= K or√
a /∈ K. We show that TL(P ) is a proper preordering (and then the

thesis follows by Corollary 1.4).
If not, there is n ∈ N and there are x1, . . . , xn, y1, . . . , yn ∈ K,

p1, . . . , pn ∈ P such that
1
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−1 =
n∑

i=1

pi(xi + yi
√
a)2

=
n∑

i=1

pi(x
2
i + ay2i + 2xiyi

√
a).

On the other hand −1 ∈ K, and since every x ∈ K(
√
a) can be

written in a unique way as x = k1+ k2
√
a with k1, k2 ∈ K, it follows

that

−1 =

n∑
i=1

pi(x
2
i + ay2i ) ∈ P,

contradiction.

□

3. Odd degree field extensions

Theorem 3.1. Let L/K be a �eld extension such that [L : K] is �nite and
odd. Then every ordering of K extends to an ordering of L.

Proof. Otherwise, let n ∈ N the minimal odd degree of a �eld extension for
which the theorem fails.
Let L/K be a �nite �eld extension such that [L : K] = n and let P be an

ordering of K not extending to an ordering of L.
Since char(K) = 0 Primitive Element Theorem applies and there is some

α ∈ L \ K such that

L = K(α) ∼= K[x]/(f),

where f is the minimal polynomial of α over K. Therefore deg(f) = n,
f(α) = 0 and for every g(x) ∈ K[x] such that deg(g) < n, we have g(α) ̸= 0.
By Corollary 1.4, −1 ∈ TL(P ), so

1 +

s∑
i=1

piy
2
i = 0,

where ∀ i = 1, . . . , s pi ∈ P , pi ̸= 0, yi ∈ L, yi ̸= 0. Write

yi = gi(α),

where ∀ i = 1, . . . , s 0 ̸= gi(x) ∈ K[x] and deg(gi) < n. Since

1 +

s∑
i=1

pigi(α)
2 = 0,

it follows that

1 +

s∑
i=1

pigi(x)
2 = f(x)h(x), for some h(x) ∈ K[x].
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De�ne d := max{deg(gi) : i = 1, . . . , s}. Then d < n and the polynomial
f(x)h(x) has degree 2d: the coe�cient of x2d is of the form

r∑
1=1

pib
2
i ,

with pi ∈ P and bi ∈ K, bi ̸= 0, so

r∑
1=1

pib
2
i >P 0.

Note that deg(h) = 2d− n < n (because d < n) and 2d− n is odd.
Let h1(x) be an irreducible factor of h(x) of odd degree and suppose β is

a root of h1(x). Then

deg(h1) = [K(β) : K] < [L : K] = n.

Since h1(β) = 0, also

f(β)h(β) = 1 +
s∑

i=1

pigi(β)
2 = 0.

Therefore
∑s

i=1 pigi(β)
2 = −1 ∈ TK(β)(P ) and by Corollary 1.4 P does not

extend to an ordering of K(β). This is in contradiction with the minimality
of n. □

4. Real closed fields

De�nition 4.1. (reell abgeschloÿen) A �eld K is said to be real closed if

(1) K is real,
(2) K has no proper real algebraic extension.

Proposition 4.2. (Artin-Schreier, 1926) Let K be a �eld. The following
are equivalent:

(i) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic

extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K2 ∪ −(K2).

Proof. (i) ⇒ (ii). Trivial.

(ii) ⇒ (iii). Let P be an ordering which does not extend to any proper
algebraic extension. By Theorem 3.1, it follows that K has no proper alge-
braic extension of odd degree.
Let b ∈ P . Then b = a2 for some a ∈ K, otherwise by Theorem 2.1 P

extends to an ordering of K(
√
b), which is a proper algebraic extension of

K.
Since K = P ∪ (−P ) and P = {a2 : a ∈ K}, we get (iii).
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(iii) ⇒ (i). Note char(K) = 0 and
√
−1 /∈ K since K is real.

Then K(
√
−1) is the only proper quadratic extension of K: if b ∈ K but√

b /∈ K (i.e. b is not a square), then b = −a2 for some a ̸= 0, a ∈ K, and

K(
√
b) = K(

√
−1

√
a2) = K(

√
−1).

Claim. Every proper algebraic extension of K contains a proper qua-
dratic subextension.

Note that if Claim is established we are done: indeed it follows that no
proper extension can be real since −1 is a square in it.
Let L/K a proper algebraic extension. Without loss of generality assume

that [L : K] is �nite and so even. By Primitive Element Theorem we can
further assume that L is a Galois extension.
Let G = Gal(L/K), |G| = [L : K] = 2am, a ⩾ 1, m odd. Let S be

a 2-Sylow subgroup of G (i.e. |S| = 2a) and let E := Fix(S). By Galois
correspondence we get:

[E : K] = [G : S] = m odd.

Therefore by assumption (iii) we must have [E : K] = [G : S] = 1, so G = S
is a 2-group (|G| = 2a) and it has a subgroup G1 of index 2. By Galois
correspondence, de�ning F1 := Fix(G1) we get a quadratic subextension of
L/K. □
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1. Real closed fields

We �rst recall Artin-Schreier characterization of real closed �elds:

Proposition 1.1. (Artin-Schreier, 1926) Let K be a �eld. The following
are equivalent:

(i) K is real closed.
(ii) K has an ordering P which does not extend to any proper algebraic

extension.
(iii) K is real, has no proper algebraic extension of odd degree, and

K = K2 ∪ −(K2).

Corollary 1.2. If K is a real closed �eld then

K2 = {a2 : a ∈ K}

is the unique ordering of K.

Proof. Since K is a real closed �eld, by (ii) it has an ordering P which does
not extend to any proper algebraic extension.

Let b ∈ P . Then b = a2 for some a ∈ K, otherwise P extends to an
ordering of K(

√
b), which is a proper algebraic extension of K.

Therefore P = K2. □

Remark 1.3. We denote by
∑

K2 the unique ordering of a real closed �eld
K, even though we know that

∑
K2 = K2, to avoid any confusion with the

cartesian product K ×K.

Corollary 1.4. Let (K,⩽) be an ordered �eld. Then K is real closed if and
only if

(a) every positive element in K has a square root in K, and
(b) every polynomial of odd degree has a root in K.

Examples 1.5. R is real closed and Q is not.

1
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2. The algebraic closure of a real closed field

Lemma 2.1. (Hilfslemma) If K is a �eld such that K2 is an ordering of K,
then every element of K(

√
−1) is a square.

Proof. Let x = a +
√
−1 b ∈ K(

√
−1) := L, a, b ∈ K, b ̸= 0. We want to

�nd y ∈ L such that x = y2.

K2 is an ordering ⇒ a2 + b2 ∈ K2. Let c ∈ K, c ⩾ 0 such that

a2 + b2 = c2.

Since a2 ⩽ a2 + b2 = c2, |a| ⩽ c, so c+ a ⩾ 0, c− a ⩾ 0 (−c ⩽ a ⩽ c).
Therefore 1

2(c± a) ∈ K2. Let d, e ∈ K, d, e ⩾ 0 such that

1

2
(c+ a) = d2

1

2
(c− a) = e2.

So

d =

√
c+ a√
2

e =

√
c− a√
2

Now set y := d+ e
√
−1. Then

y2 = (d+ e
√
−1)2

= d2 + (e
√
−1)2 + 2de

√
−1

=
1

2
(c+ a)− 1

2
(c− a) + 2

1

2

√
(c− a)(c+ a)

√
−1

=
1

2
a+

1

2
a+

√
c2 − a2

√
−1

= a+
√
b2
√
−1

= a+ b
√
−1

= x.

□

Theorem 2.2. (Fundamental Theorem of Algebra) If K is a real closed �eld
then K(

√
−1) is algebraically closed.

Proof. Let L ⊇ K(
√
−1) be an algebraic extension of K(

√
−1). We show

L = K(
√
−1). Without loss of generality, assume it is a �nite Galois exten-

sion.
Set G := Gal(L/K). Then [L : K] = |G| = 2am, a ⩾ 1, m odd.
Let S ⩽ G be a 2-Sylow subgroup (|S| = 2a), and F := Fix(S). We have

[F : K] = [G : S] = m odd.

Since K is real closed, it follows that m = 1, so G = S and |G| = 2a. Now

[L : K(
√
−1)][K(

√
−1) : K] = [L : K] = 2a.
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Therefore [L : K(
√
−1)] = 2a−1. We claim that a = 1.

If not, set G1 := Gal(L/K(
√
−1)), let S1 be a subgroup of G1 of index 2,

and F1 := Fix(S1). So

[F1 : K(
√
−1)] = [G1 : S1] = 2,

and F1 is a quadratic extension of K(
√
−1). But every element of K(

√
−1)

is a square by Lemma 2.1, contradiction. □

Notation. We denote by K̄ the algebraic closure of a �eld K, i.e. the
smallest algebraically closed �eld containing K.

We have just proved that if K is real closed then K̄ = K(
√
−1).

3. Factorization in R[x]

Corollary 3.1. (Irreducible elements in R[x] and prime factorizaction in
R[x]). Let R be a real closed �eld, f(x) ∈ R[x]. Then

(1) if f(x) is monic and irreducible then

f(x) = x− a or f(x) = (x− a)2 + b2, b ̸= 0;

(2)

f(x) = d
n∏

i=1

(x− ai)
m∏
j=1

(x− dj)
2 + b2j , bj ̸= 0.

Proof. Let f(x) ∈ R[x] be monic and irreducible. Then deg(f) ⩽ 2.
Suppose not, and let α ∈ R̄ a root of f(x). Then

[R(α) : R] = deg(f) > 2.

On the other hand, by Theorem 2.2

[R(α) : R] ⩽ [R̄ : R] = 2,

contradiction.

If deg(f) = 1, then f(x) = x− a, for some a ∈ R.

If deg(f) = 2, then f(x) = x2 − 2ax + c = (x − a)2 + (c − a2), for some
a, c ∈ R.

We claim that c− a2 > 0. If not,

c− a2 ⩽ 0 ⇒ −(c− a2) ⩾ 0 ⇒ a2 − c ⩾ 0,

the discriminant 4(a2 − c) ⩾ 0, f(x) has a root in R and factors, contra-
diction.

Therefore (c− a2) ∈ R2 and there is b ∈ R such that (c− a2) = b2 ̸= 0.
□
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Corollary 3.2. (Zwischenwertsatz : Intermediate value Theorem) Let R be
a real closed �eld, f(x) ∈ R[x]. Assume a < b ∈ R with f(a) < 0 < f(b).
Then ∃ c ∈ R, a < c < b such that f(c) = 0.

Proof. By previous Corollary,

f(x) = d

n∏
i=1

(x− ai)

m∏
j=1

(x− dj)
2 + b2j

= d

n∏
i=1

li(x)q(x),

where li(x) := x− ai, ∀ i = 1, . . . , n and q(x) :=
∏m

j=1(x− dj)
2 + b2j .

We claim that there is some k ∈ {1, . . . , n} such that lk(a)lk(b) < 0. Since

sign(f) = sign(d)

n∏
i=1

sign(li) sign(q) and sign(q) = 1,

if we had that

sign(li(a)) = sign(li(b)) ∀ i ∈ {1, . . . , n},

we would have
sign(f(a)) = sign(f(b)),

in contradiction with f(a)f(b) < 0.

For such a k,
lk(a) < 0 < lk(b),

i.e.
a− ak < 0 < b− ak,

and c := ak ∈ ]a, b[ is a root of f(x). □

Corollary 3.3. (Rolle) Let R be a real closed �eld, f(x) ∈ R[x], Assume
that a, b ∈ R, a < b and f(a) = f(b) = 0. Then ∃ c ∈ R, a < c < b such that
f ′(c) = 0.

Proof. See lecture 6. □
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Let R be a real closed �eld (for all this lecture).

1. Counting roots in an interval

De�nition 1.1. Let f(x) ∈ R[x], a ∈ R,

f(x) = (x− a)mh(x)

with m ∈ N, m ⩾ 1 and h(a) ̸= 0 (i.e. (x− a) is not a factor of h(x)).
We say that m is the multiplicity (Vielfachheit) of f at a.

Corollary 1.2. (Generalized Intermediate Value Theorem: Verstärkung Zwis-
chenwertsatz). Let f(x) ∈ R[x]; a, b ∈ R, a < b, f(a)f(b) < 0 (i.e.
f(a) < 0 < f(b) or f(b) < 0 < f(a)). Then the number of roots of f(x)
counting multiplicities in the interval ]a, b[ ⊆ R is odd (in particular, f has
a root in ]a, b[).

Proof. By Corollary 3.1 of 5th lecture (3/11/09), we can write

f(x) =
n∏

i=1

(x− ci)
mig(x)

with g(x) = dq(x), where d ∈ R is the leading coe�cient of f(x) and q(x) is
the product of the irreducible quadratic factors of f(x).

Note that g(x) has constant sign on R (i.e. g(r) > 0 ∀ r ∈ R or g(r) <
0 ∀ r ∈ R). Without loss of generality, we can suppose d = 1 (and so g(x) is
positive everywhere).

Set ∀ i = 1, . . . , n {
Li(x) := (x− ci)

mi

li(x) := x− ci.

If li(a)li(b) < 0, then we must have li(a) < 0 < li(b). Note that Li(a)Li(b) <
0 if and only if li(a)li(b) < 0 and mi is odd.

1
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In particular if Li(a)Li(b) < 0, then we must have Li(a) < 0 < Li(b) as
well.

Let us count the number of distinct i ∈ {1, . . . , n} for which Li(a) < 0 <
Li(b). We claim that this number must be odd. If not, we get an even
number of i such that Li(a)Li(b) < 0, so their product would be positive, in
contradiction with the fact that f(a)f(b) < 0.

Set

|{i ∈ {1, . . . , n} : Li(a) < 0 < Li(b)}| = M ⩾ 1 odd.

Say these are L1, . . . , LM . So the total number of roots of f in ]a, b[ counting
multiplicity is ∑

:= m1 + · · ·+mM .

Since mi is odd ∀ i = 1, . . . ,M and M is odd, it follows that
∑

is odd as
well.

□

2. Bounding the roots

Corollary 2.1. Let f(x) ∈ R[x], f(x) = dxm + dm−1x
m−1 + · · ·+ d0, d ̸= 0.

Set

D := 1 +
0∑

i=m−1

∣∣∣∣did
∣∣∣∣ ∈ R.

Then

(i) a ∈ R, f(a) = 0 ⇒ |a| < D;
(i.e. f has no root in ]−∞,−D] ∪ [D +∞[ )

(ii) y ∈ [D,+∞[ ⇒ sign(f(y)) = sign(d);

(iii) y ∈ ]−∞,−D[ ⇒ sign(f(y)) = (−1)m sign(d).

Proof. W log assume ∃i such that di ̸= 0.

(i) For every i = 0, . . . ,m− 1 set bi :=
di
d and compute for |y| ⩾ D:

f(y) = dym(1 + bm−1y
−1 + · · ·+ b0y

−m).

Now

|bm−1y
−1 + · · ·+ b0y

−m| ⩽ (|bm−1|+ · · ·+ |b0|)D−1 < 1

because D > 1, so f(y) ̸= 0.

(ii) If y ⩾ D then f(y) = d
∏
(y− ai)

miq(y) where deg(q) is even and by
(i), we have |ai| < D, so y − ai > 0.

(iii) If y ⩽ −D then by (i), (y − ai)
mi < 0 if and only if mi is odd.

Moreover m is odd if and only if
∑

mi is odd.

□
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Corollary 2.2. (Rolle's Satz) Let f(x) ∈ R[x], a < b ∈ R such that f(a) =
f(b). Then there is c ∈ R, a < c < b such that f ′(c) = 0.

Proof. We can suppose f(a) = f(b) = 0 (otherwise if f(a) = f(b) = k ̸= 0,
we can consider the polynomial (f − k)(x)).

We can also assume that f(x) has no root in ]a, b[. So

f(x) = (x− a)m(x− b)ng(x),

where g(x) has no root in [a, b], and by Corollary 1.2 (IVT) g(x) has constant
sign in [a, b]. Compute

f ′(x) = (x− a)m−1(x− b)n−1g1(x),

where

g1(x) := m(x− b)g(x) + n(x− a)g(x) + (x− a)(x− b)g′(x).

Therefore

g1(a) = m(a− b)g(a)

g1(b) = n(b− a)g(b).

Since g1(a)g1(b) < 0, by the Intermediate Value Theorem (1.2) g1(x) has
a root in ]a, b[ and so does f ′(x). □

Corollary 2.3. (Mittelwertsatz: Mean Value Theorem) Let f(x) ∈ R[x],
a < b ∈ R. Then there is c ∈ R, a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. We can apply Rolle's Theorem to

F (x) := f(x)− (x− a)
f(b)− f(a)

b− a
,

since F (a) = F (b). □

Corollary 2.4. (Monotonicity Theorem). Let f(x) ∈ R[x], a < b ∈ R. If
f ′ is positive (respectively negative) on ]a, b[, then f is strictly increasing
(respectively strictly decreasing) on [a, b].

Proof. If a ⩽ a1 < b1 ⩽ b, by the Mean Value Theorem there is some c ∈ R,
a1 < c < b1 such that

f ′(c) =
f(b1)− f(a1)

b1 − a1
.

□
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3. Changes of sign

De�nition 3.1.

(i) Let (c1, . . . , cn) a �nite sequence in R. An index i ∈ {1, . . . , n − 1}
is a change of sign (Vorzeichenwechsel) if cici+1 < 0.

(ii) Let (c1, . . . , cn) a �nite sequence in R. After we have removed all
zero's by the sequence, we de�ne

Var(c1, . . . , cn) : = |{i ∈ {1, . . . , n− 1} : i is a change of sign}|
= |{i ∈ {1, . . . , n− 1} : cici+1 < 0}|.

Theorem 3.2. (Lemma von Descartes) Let f(x) = anx
n + · · ·+ a0 ∈ R[x],

an ̸= 0. Then

|{a ∈ R : a > 0 and f(a) = 0}| ⩽ Var(an, . . . , a1, a0).

Proof. By induction on n = deg(f). The case n = 1 is obvious, so suppose
n > 1. W log assume that a0 ̸= 0.

Let r > 0 be the smallest positive index such that ar ̸= 0. By induction
applied to

f ′(x) = nanx
n−1 + · · ·+ rarx

r−1 = xr−1h(x) with h(0) = ar,

We know that there are at most Var(nan, . . . , rar) = Var(an, . . . , ar) many
positive roots of f ′. Set c := the smallest such positive root of f ′ (by con-
vention c := +∞ if none exists)

Apply Rolle's Theorem: f has at most 1 +Var(an, . . . , ar) positive roots.
We consider the following two cases:

Case 1. If the number of positive roots of f is strictly less than 1 +
Var(an, . . . , ar), then the number of positive roots of f is ⩽ Var(an, . . . , ar) ⩽
Var(an, . . . , ar, a0) and we are done.

Case 2. Assume f has exactly 1 + Var(an, . . . , ar) positive roots. We
claim that in this case

1 + Var(an, . . . , ar) = Var(an, . . . , ar, a0).

We observe that f has a root a in ]0, c[.
For 0 < x < c we have that sign(f ′(x)) = sign(ar) ̸= 0, so f is strictly

monotone in the interval [0, c] (Monotonicity Theorem). So

ar > 0 ⇒ a0 = f(0) < f(a) = 0 ⇒ a0 < 0,

ar < 0 ⇒ a0 = f(0) > f(a) = 0 ⇒ a0 > 0.

In both cases a0ar < 0 and the claim is established. □

Corollary 3.3. Let f(x) ∈ R[x] a polynomial with m monomials. Then f
has at most 2m− 1 roots in R.
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Proof. Consider f(x) and f(−x). By previous Theorem they have both at
most m−1 strictly positive roots in R. So f(x) has at most 2m−2 non-zero
roots and therefore at most 2m− 1 roots in R. □
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Let R be a real closed �eld.

1. Sturm's Theorem

De�nition 1.1.

(i) Let f ∈ R[x] be a non-constant polynomial, deg(f) ⩾ 1. The Sturm
sequence of f is de�ned recursively as the sequence (f0, . . . , fr) of
polynomials in R[x] such that:

f0 := f, f1 := f ′ and

f0 = f1q1 − f2

f1 = f2q2 − f3

. . .

fi−1 = fiqi − fi+1

. . .

fr−2 = fr−1qr−1 − fr

fr−1 = frqr,

where fi, qi ∈ R[x], fi ̸= 0 and deg(fi) < deg(fi−1) r, fi, qi uniquely
determined.

(ii) Let x ∈ R. Set

Vf (x) := Var(f0(x), . . . , fr(x)).

We recall that after we have removed all zero's by the sequence
(c1, . . . , cn), we de�ned Var(c1, . . . , cn) as the number of changes of
sign in (c1, . . . , cn), i.e.

Var(c1, . . . , cn) = |{i ∈ {1, . . . , n− 1} : cici+1 < 0}|.

Theorem 1.2. (Sturm 1829). Let a, b ∈ R, a < b, f(a)f(b) ̸= 0. Then

|{c : a ⩽ c ⩽ b , f(c) = 0}| = Vf (a)− Vf (b).
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Proof. For the proof we study the function Vf (x), x ∈ R, locally constant
except around �nitely many roots for f0, . . . , fr.

(1) Suppose gcd(f0, f1) = 1.

(2) Hilfslemma (ÜA) Let c ∈ R be a root of f0. Then ∃ δ such that

|x− c| < δ ⇒ sign(f0(x)f1(x)) = sign(x− c) =


−1 if x < c

0 if x = c

1 if x > c.

(3) ∀ i ∈ {1, . . . , r − 1}: gcd(fi−1, fi) = 1 and

fi−1 = qifi − fi+1, with fi+1 ̸= 0.

So if fi(c) = 0 then

fi−1(c)fi+1(c) < 0.

(4) Let fi(c) = 0 for some i ∈ {0, . . . , r − 1}. Then fi+1(c) ̸= 0 (so
sign(fi+1(c)) = ±1).

We shall now compare for fi(c) = 0,

sign(fi(x)) sign(fi+1(x))

for |x− c| < δ and count.

We �rst examine the case i = 0.

Observe that sign(f1(x)) ̸= 0 ∀x such that |x− c| < δ because of
Hilfslemma. So in particular sign(f1(x)) is constant for |x − c| < δ
and it is equal to sign(f1(c):

x → c− x = c x → c+
f0(x) − sign(f1(c)) 0 sign(f1(c))
f1(x) sign(f1(c)) sign(f1(c)) sign(f1(c))

contribution to Vf (x) 1 0 0

Now consider i ∈ {1, . . . , r − 1} and use (3), i.e.

fi(d) = 0 =⇒ fi−1(d)fi+1(d) < 0 :

x → d− x = d x → d+
fi−1(x) − sign(fi+1(d)) − sign(fi+1(d)) − sign(fi+1(d))
fi(x) 0
fi+1(x) sign(fi+1(d)) sign(fi+1(d)) sign(fi+1(d))

contribution to Vf (x) 1 1 1

Therefore for a < b, Vf (a)−Vf (b) is the number of roots of f in ]a, b[.
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Let us consider now the general case. Set

gi := fi/fr i = 0, . . . , r.

The sequence of polynomials (g0, . . . , gr) satis�es the previous con-
ditions (1)− (4). We can conclude by noticing that:
(i) Var(g0(x), . . . , gr(x)) = Var(f0(x), . . . , fr(x)) (because fi(x) =

fr(x)gi(x)),

(ii) f = f0 and g0 = f/fr have the same zeros (fr = gcd(f, f ′),
so g = f/fr has only simple roots, whereas f has roots with
multiplicities.)

□

For i = 0, . . . , r set di := deg(fi) and φi := the leading coe�cient of fi.
Set

Vf (−∞) :=Var((−1)d0φ0, (−1)d1φ1, . . . , (−1)drφr)

Vf (+∞) :=Var(φ0, φ1, . . . , φr).

Then we have:

Corollary 1.3. The number of distinct roots of f is Vf (−∞)− Vf (+∞).
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1. Real closure

De�nition 1.1. Let (K,P ) be an ordered �eld. R is a real closure of (K,P )
if

(1) R is real closed,
(2) R ⊇ K, R |K is algebraic,
(3) P =

∑
R2 ∩K (i.e. the order on K is the restriction of the unique

order R to K).

Theorem 1.2. Every ordered �eld (K,P ) has a real closure.

Proof. Apply Zorn's Lemma and Proposition 5.1.1(ii) to

L := {(L,Q) : L |K algebraic, Q ∩K = P}.

□

Proposition 1.3. (Corollary to Sturm's Theorem) Let K be a �eld. Let R1,
R2 be two real closed �elds such that

K ⊆ R1 and K ⊆ R2

with

P := K ∩
∑

R2
1 = K ∩

∑
R2

2

(i.e. R1 and R2 induce the same ordering P on K).
Let f(x) ∈ K[x]; then the number of roots of f(x) in R1 is equal to the

number of roots of f(x) in R2.
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2. Order preserving extensions

Proposition 2.1. Let (K,P ) be an ordered �eld. Let R be a real closed �eld
containing (K,P ). Let K ⊆ L ⊆ R be such that [L : K] < ∞. Let S be a
real closed �eld with

φ : (K,P ) ↪→ (S,
∑

S2)

an order preserving embedding. Then φ extends to an order preserving em-
bedding

ψ : (L,
∑

R2 ∩ L) ↪→ (S,
∑

S2).

Proof. We recall that if (K,P ) and (L,Q) are ordered �elds, a �eld homo-
morphism φ : K −→ L is called order preserving with respect to P and Q
if φ(P ) ⊆ Q (equivalently P = φ−1(Q)).

By the Theorem of the Primitive Element L = K(α).
Consider f = MinPol(α |K). Since α ∈ R, φ(f) has at least one root β

in S by Proposition 1.3

L := K(α)
ψ←→ φ(K)(β),

so there is at least one extension of φ from K to L.
Let ψ1, . . . , ψr all such extensions of φ to L = K(α), and for a con-

tradiction assume that none of them is order preserving with respect to
Q = L ∩

∑
R2. Then ∃ b1, . . . , br ∈ L, bi > 0 (in R) and ψi(bi) < 0 (in S)

∀ i = 1, . . . , r.
Consider L′ := L(

√
b1, . . . ,

√
br) ⊂ R. Since [L : K] < ∞, also [L′ :

K] < ∞.
So let τ be an extension of φ from K to L′. In particular τ|L is one of the

ψi's. Say τ|L = ψ1.
Now compute for b1 ∈ L,

ψ1(b1) = τ(b1) = τ((
√
b1)

2) = (τ(
√
b1))

2 ∈
∑

S2,

in contradiction with the fact that ψ1(b1) < 0.
□

Theorem 2.2. Let (K,P ) be an ordered �eld and (R,
∑
R2) be a real closure

of (K,P ). Let (S,
∑
S2) be a real closed �eld and assume that

φ : (K,P ) ↪→ (S,
∑

S2)

is an order preserving embedding. Then φ has a uniquely determined exten-
sion

ψ : (R,
∑

R2) ↪→ (S,
∑

S2).

Proof. Consider

L := {(L,ψ) : K ⊂ L ⊂ R; ψ : L ↪→ S, ψ|K = φ}.
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Let (L,ψ) be a maximal element. Then by Proposition 2.1 we must have
L = R.

Therefore we have an order preserving embedding ψ of R extending φ

ψ : R ↪→ S.

We want to prove that ψ is unique. We show that ψ(α) ∈ S is uniquely
determined for every α ∈ R.

Let f =MinPol(α |K) and let α1 < · · · < αr all the real roots of f in R.
Let β1 < · · · < βr be all the real roots of ψ(f) in S. Since ψ : R ↪→ S is order
preserving, we must have ψ(αi) = βi for every i = 1, . . . , r. In particular
α = αj for some 1 ⩽ j ⩽ r and ψ(α) = βj ∈ S. □

Corollary 2.3. Let (K,P ) be an ordered �eld, R1, R2 two real closures of
(K,P ). Then there exists a unique

φ : R1 −→ R2

K-isomorphism (i.e. with φ|K = id).

Corollary 2.4. Let R be a real closure of (K,P ). Then the onlyK-automorphism
of R is the identity.

Corollary 2.5. Let R be a real closed �eld, K ⊆ R a sub�eld. Set P :=
K ∩

∑
R2 the induced order. Then

Kralg = {α ∈ R : α is algebraic over K}

is relatively algebraic closed in R and is a real closure of (K,P ).

Proof. It is enough to show that Kralg is real closed.
Kralg is real because Q := Kralg ∩

∑
R2 is an induced ordering.

Let a ∈ Q, a = b2, b ∈ R. So p(x) = x2 − a ∈ Kralg[x] has a root in R.
One can see that b is algebraic over K (so b ∈ Kralg).
Similarly one shows that every odd polynomial with coe�cients in Kralg

has a root in Kralg. □

Corollary 2.6. Let (K,P ) be an ordered �eld, S a real closed �eld and
φ : (K,P ) ↪→ S an order preserving embedding. Let L |K an algebraic ex-
tension. Then there is a bijective correspondence

{extensions ψ : L→ S of φ} E−→ {extensions Q of P to L}

ψ 7→ ψ−1(
∑

S2)

Proof.

(⇒) Let ψ : L ↪→ S an extension of φ. Then indeed Q := ψ−1(
∑
S2) is

an ordering on L. Furthermore ψ−1(
∑
S2) ∩K = φ−1(

∑
S2) = P .

So the extension ψ induces the extension Q.
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(⇐) Conversely assume that Q is an extension of P from K to L (Q∩K =
P ). Note that if R is a real closure of (L,Q) then R is a real closure
of (K,P ) as well.

Now apply Theorem 2.2 to extend φ to σ : R → S. Set ψ := σ|L
which is order preserving with respect to Q.

So the map E is well-de�ned and surjective. To see that it is also
injective, assume

ψ1 : L −→ S, ψ2 : L −→ S, ψ1|K
= ψ2|K

= φ

which induce the same order

Q = ψ−1
1 (

∑
S2) = ψ−1

2 (
∑

S2)

on L. Let R be the real closure of (L,Q). Apply Theorem 2.2 to ψ1

and ψ2 to get uniquely determined extensions

σ1 : R −→ S, σ2 : R −→ S,

of ψ1 and ψ2 respectively.
But now σ1|K = σ2|K = φ. By the uniqueness part of Theorem

2.2 we get σ1 = σ2 and a fortiori ψ1 = ψ2.

□

Corollary 2.7. Let (K,P ) be an ordered �eld, R a real closure, [L : K] <∞.
Let L = K(α), f =MinPol(α |K). Then there is a bijection

{roots of f in R} −→ {extensions Q of P to L}.

Proof. If β is a root we consider the K-embedding

φα : L ↪→ R

such that φα(α) = β. Set Q := φ−1(
∑
R2) ordering on L extending P . □

Example 2.8. K = Q(
√
2) has 2 orderings P1 ̸= P2, with

√
2 ∈ P1,

√
2 /∈

P2. The Minimum Polynomial of
√
2 over Q is p(x) = x2 − 2.
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1. Basic version of Tarski-Seidenberg

Basic version: Let (R,⩽) be a real closed �eld. We are interested in a
system of equations and inequalities (Gleichungen und Ungleichungen) for
X = (X1, . . . , Xn) of the form

S(X) :=


f1(X)�1 0
...

fk(X)�k 0

where ∀ i = 1, . . . , k �i ∈ {⩾, >,=, ̸=} and fi(X) ∈ Q[X] or fi(X) ∈ R[X].
We say that S(X) is a system of polynomial equalities and inequalities with
coe�cients in Q (or with coe�cients in R) in n variables.

Theorem 1.1. (Tarski-Seidenberg Theorem: Basic Version) Let S(T ;X) be
a system with coe�cients in Q in m+n variables, with T = (T1, . . . , Tm) and
X = (X1, . . . , Xn). Then there exist S1(T ), . . . , Sl(T ) systems in m variables
and coe�cients in Q such that:

for every real closed �eld R and every t = (t1, . . . , tm) ∈ Rm the system
S(t;X) of polynomial equalities and inequalities in n variables and coe�-
cients in R obtained by substituting Ti with ti in S(T ,X) for every i =
1, . . . ,m, has a solution x = (x1, . . . , xn) ∈ Rn if and only if t is a solution
for one of the systems S1(T ), . . . , Sl(T ).

Example 1.2. Let m = 3 and n = 1, so T = (T1, T2, T3) and X = X, and

S(T ,X) :=
{
T1X

2 + T2X + T3 = 0

1
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Let R be a real closed �eld and (t1, t2, t3) ∈ R3. Then S(t;X) has a solution
in R if and only if

(t1 ̸= 0 ∧ t22 − 4t1t3 ⩾ 0) ∨ (t1 = 0 ∧ t2 ̸= 0) ∨ (t1 = t2 = t3 = 0).
| | |

S1(T1, T2, T3) S2(T1, T2, T3) S3(T1, T2, T3)

Concise version:

∀T [ (∃X : S(T ;X)) ⇔ (
l∨

i=1

Si(T )) ].

Remark 1.3. The proof is by induction on n.
The case n = 1 is the heart of the proof and we will show it later.
For now, let us just convince ourselves that the induction step is straight-

forward.

Assume n > 1, so

S(T ;X1, . . . , Xn) = S(T ,X1, . . . , Xn−1;Xn).

By case n = 1 we have �nitely many systems S1(T ,X1, . . . , Xn−1), . . . , Sl(T ,X1, . . . , Xn−1)
such that

for any real closed �eld R and any (t1, . . . , tm, x1, . . . , xn−1) ∈ Rm+n−1 we
have

∃Xn : S(t1, . . . , tm, x1, . . . , xn−1;Xn) ←→
l∨

i=1

Si(t1, . . . , tm, x1, . . . , xn−1).

By induction hypothesis on n− 1:

for every �xed i, 1 ⩽ i ⩽ l, ∃ systems Sij(T ), j = 1, . . . , li such that: for
each real closed �eld R and each t ∈ Rm the system

Si(t;X1, . . . , Xn−1)

has a solution (x1, . . . , xn−1) ∈ Rn−1 if and only if t is a solution for one of
the systems Sij(T ); j = 1, . . . , li.

Therefore for any real closed �eld R and any t ∈ Rm

S(t;X1, . . . , Xn) has a solution x ∈ Rn if and only if

t is a solution to one of the systems {Sij(T ); i = 1, . . . , l, j = 1, . . . , li}

2. Tarski Transfer Principle I

Theorem 2.1. Let S(T ,X) be a system with coe�cients in Q in m + n
variables. Let (K,⩽) be an ordered �eld. Let R1, R2 be two real closed
extensions of (K,⩽). Then for every t ∈ Km, the system S(t,X) has a
solution x ∈ Rn

1 if and only if it has a solution x ∈ Rn
2 .
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Proof. Let t ∈ Km ⊆ Rm
1 ∩Rm

2 . There are systems Si(T ) (i = 1, . . . , l) with
coe�cients in Q and variables T1, . . . , Tm such that

∃x ∈ R1
n : S(t, x) ←→ t satis�es

l∨
i=1

Si(T ) ←→ ∃x ∈ R2
n : S(t, x).

□

3. Tarski Transfer Principle II

Theorem 3.1. Let (K,⩽) be an ordered �eld, R1, R2 two real closed exten-
sions of (K,⩽). Then a system of polynomial equations and inequalities of
the form

S(X) :=


f1(X)�1 0
...

fk(X)�k 0

where ∀ i = 1, . . . , k �i ∈ {⩾, >,=, ̸=} and fi(X) ∈ K[X1, . . . , Xn],

has a solution x ∈ Rn
1 ⇐⇒ it has a solution x ∈ Rn

2 .

Proof. Let t1, . . . , tm be the coe�cients of the polynomials f1, . . . , fk, listed
in some �xed order. Replacing the coe�cients t1, . . . , tm by variables T1, . . . , Tm
yields a system σ(T ,X) in m+ n variables with coe�cients in Q (in fact in
Z) for which

σ(t1, . . . , tm, X) = S(X).

Now we can apply Tarski Transfer I. □

4. Tarski Transfer Principle III

Theorem 4.1. Suppose that R ⊆ R1 are real closed �elds. Then a system
of polynomial equations and inequalities with coe�cients in R

S(X) :=


f1(X)�1 0
...

fk(X)�k 0

where ∀ i = 1, . . . , k �i ∈ {⩾, >,=, ̸=} and fi(X) ∈ R[X1, . . . , Xn]

has a solution x ∈ Rn
1 ⇐⇒ it has a solution x ∈ Rn.

Proof. Apply Tarski Transfer II with K = R2 = R. □
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5. Tarski Transfer Principle IV

Theorem 5.1. Let R be a real closed �eld and (F,⩽) an ordered �eld ex-
tension of R. Then a system of polynomial equations and inequalities of the
form

S(X) :=


f1(X)�1 0
...

fk(X)�k 0

where ∀ i = 1, . . . , k �i ∈ {⩾, >,=, ̸=} and fi(X) ∈ R[X1, . . . , Xn]

has a solution x ∈ Fn ⇐⇒ it has a solution x ∈ Rn.

Proof. Let R1 be the real closure of the ordered �eld (F,⩽) and apply Tarski
Transfer III. □

6. Lang's Homomorphism Theorem

Corollary 6.1. Suppose R and R1 are real closed �elds, R ⊆ R1. Then a
system of polynomial equations of the form

S(X) :=


f1(X) = 0
... fi(x) ∈ R[X1, . . . , Xn]

fk(X) = 0

has a solution x ∈ Rn
1 if and only if it has a solution x ∈ Rn.

Proof. Apply Tarski Transfer III. □

The previous Corollary is equivalent to the following:

Theorem 6.2. (Homomorphism Theorem I). Let R and R1 be real closed
�elds, R ⊆ R1. For any ideal I ⊆ R[X], if there exists an R-algebra homo-
morphism

φ : R[X]/I −→ R1

then there exists an R-algebra homomorphism

ψ : R[X]/I −→ R.

Proof. By Hilbert's Basis Theorem, I is �nitely generated, say I = ⟨f1, . . . , fk⟩,
with f1, . . . , fk ∈ R[X]. Consider the system

S(X) :=


f1(X) = 0
...

fk(X) = 0

Claim. There is a bijection

{x ∈ Rn
1 solution to S(X)} ←→ {φ : R[X]/I → R1 R-algebra homomorphism}
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Proof of the claim:

Let x ∈ Rn
1 be a solution to S(X); then the evaluation homomorphism

φ : R[X]/I −→ R1

f + I 7→ f(x)

is well-de�ned and is an R-algebra homomorphism.

Conversely: assume that

φ : R[X]/I −→ R1

is anR-algebra homomorphism. Then for e = (e1, . . . , en) and f =
∑
aeX

e =∑
ae1...enX

e1
1 . . . Xen

n ∈ R[X],

φ(f+I) =
∑

aeφ(X1+I)
e1 · · ·φ(Xn+I)

en = f(φ(X1+I), . . . , φ(Xn+I)).

In other words set (x1, . . . , xn) ∈ Rn
1 to be de�ned by x1 := φ(X1 +

I), . . . , xn := φ(Xn + I), then (x1, . . . , xn) is a solution to S(X) and the
R-algebra homomorphism φ is indeed given by point evaluation at x =
(x1, . . . , xn) ∈ Rn

1 .

Now apply Corollary 6.1. □
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1. Homomorphism Theorems

Theorem 1.1. (Homomorphism Theorem I) Let R ⊆ R1 be real closed �elds
and I ⊂ R[x] an ideal. Then

∃ R-alg. hom. φ :
R[x]

I
−→ R1 ⇒ ∃ R-alg. hom. ψ :

R[x]

I
−→ R.

Corollary 1.2. (Homomorphism Theorem II) Suppose R and R1 are real
closed �elds, R ⊆ R1. Let A be a �nitely generated R-algebra. If there is an
R-algebra homomorphism

φ : A −→ R1

then there is an R-algebra homomorphism

ψ : A −→ R.

Proof. We want to use Homomorphism Theorem I. For this we just prove
the following:

Claim 1.3. A is a �nitely generated R-algebra if and only if there is a
surjective R-algebra homomorphism ϑ : R[x1, . . . , xn] −→ A (for some n ∈
N).

Proof.

(⇒) LetA be a �nitely generatedR-algebra, say with generators r1, . . . , rn.
De�ne ϑ : R[x1, . . . , xn] −→ A by setting ϑ(xi) := ri for every i =
1, . . . , n, and ϑ(a) := a for every a ∈ R.

(⇐) Given a surjective homomorphism ϑ : R[x1, . . . , xn] −→ A set ri :=
ϑ(xi) ∈ A for every i = 1, . . . , n. Then {r1, . . . , rn} generate A over
R.

□

So we get A ∼= R[x]/I with I = kerϑ.
□

1
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We can see that Homomorphism Theorem II implies T-T-III:

Let R ⊂ R1 be real closed �elds. S(X) with coe�cients in R has a solu-
tion x ∈ Rn

1 if and only if it has a solution x ∈ Rn.

We �rst need the following:

Proposition 1.4. Let

S(x) :=


f1(x)�1 0

...

fk(x)�k 0

be a system with coe�cients in R, where �i ∈ {⩾, >,=, ̸=}. Then S(x) can
be written as a system of the form

σ(x) :=


g1(x) ⩾ 0

...

gs(x) ⩾ 0

g(x) ̸= 0

for some g1, . . . , gs, g ∈ R[x].

Proof.

• Replace each equality in the original system by a pair of inequalities:

fi = 0 ⇔

{
fi ⩾ 0

−fi ⩾ 0

• Replace each strict inequality

fi > 0 by

{
fi ⩾ 0

fi ̸= 0

• Finally collect all inequalities fi ̸= 0, i = 1, . . . , t as

g :=
t∏

i=1

fi ̸= 0.

□

Now we show that Homomorphism Theorem II implies T-T-III:

Proof. Let R ⊆ R1 and let S(x) be a system with coe�cients in R:

S(x) :=


f1(x)�1 0
...

fk(x)�k 0

Rewrite it as
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S(x) :=


f1(x) ⩾ 0
...

fk(x) ⩾ 0

g(x) ̸= 0

with fi(x), g(x) ∈ R[x1, . . . , xn].
Suppose x ∈ Rn

1 is a solution of S(x). Consider

A :=
R[X1, . . . , Xn, Y1, . . . , Yk, Z]

⟨Y 2
1 − f1, . . . , Y 2

k − fk; gZ − 1⟩
,

which is a �nitely generated R-algebra. Consider the R-algebra homo-
morphism φ such that

φ : A −→ R1

X̄i 7→ xi

Ȳj 7→
√
fj(x)

Z̄ 7→ 1/g(x).

By Homomorphism Theorem II there is an R-algebra homomorphism
ψ : A −→ R. Then ψ(X̄1), . . . , ψ(X̄n) is the required solution in Rn.

□

2. Hilbert's 17th problem

De�nition 2.1. Let R be a real closed �eld. We say that a polynomial
f(x) ∈ R[x] is positive semi-de�nite if f(x1, . . . , xn) ⩾ 0 ∀ (x1, . . . , xn) ∈
Rn. We write f ⩾ 0.

We know that

f ∈
∑

R[x]2 ⇒ f ⩾ 0.

Now take R = R. Conversely, for any f ∈ R[x] is it true that

f ⩾ 0 on Rn ?⇒ f ∈
∑

R(x)2. (Hilbert's 17th problem).

Remark 2.2.

(1) Hilbert knew that the answer is NO to the more natural question

f ∈ R[x], f ⩾ 0 on Rn ⇒ f ∈
∑

R[x]2 ?

(2) If n = 1 then indeed f ⩾ 0 on R ⇒ f = f21 + f22 .
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(3) More generally Hilbert showed that:

Set Pd,n := the set of homogeneous polynomials of degree d in
n-variables which are positive semi-de�nite

and set
∑

d,n := the subset of Pd,n consisting of sums of squares.

Then

Pd,n =
∑

d,n ⇐⇒ n ⩽ 2 or d = 2 or (n = 3 and d = 4).

Note: only d even is interesting because

Lemma 2.3. 0 ̸= f ∈
∑

R[x]2 ⇒ deg(f) is even. More precisely, if

f =
∑k

i=1 f
2
i , with fi ∈ R[x] fi ̸= 0, then deg(f) = 2max{deg(fi) :

i = 1, . . . , k}.

Hilbert knew that P6,3 \
∑

6,3 ̸= ∅.

The �rst example was given by Motzkin 1967:

m(X,Y, Z) = X6 + Y 4Z2 + Y 2Z4 − 3X2Y 2Z2.

Theorem 2.4. (Artin, 1927) Let R be a real closed �eld and f ∈ R[x], f ⩾ 0
on Rn. Then f ∈

∑
R(x)2.

Proof. Set F = R(x) and T =
∑
F 2 =

∑
R(x)2. Note that since R(x) is

real,
∑
F 2 is a proper preordering.

We want to show:

f /∈ T ⇒ ∃x ∈ Rn : f(x) < 0.

Since f ∈ F \ T , by Zorn's Lemma there is a preordering P ⊇ T of F
which is maximal for the property that f /∈ P . Then P is an ordering of F
(see proof of Crucial Lemma 2.1 of Lecture 3).

Let ⩽P be the ordering such that (F,⩽P ) is an ordered �eld extension of
the real closed �eld R (since R is a real closed �eld, it is uniquely ordered
and we know that (F,⩽P ) is an ordered �eld extension). By construction
f /∈ P so f < 0. Consider the system

S(x) :=
{
f(x) < 0, f(x) ∈ R[x].

This system has a solution in F = R(x), namely

X = (X1, . . . , Xn) Xi ∈ R(x) = F.

thus by T-T-IV ∃x ∈ Rn with f(x) < 0. □
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1. Normal form of semialgebraic sets

Let R be a �xed real closed �eld and n ⩾ 1. We consider 3 operations on
subsets of Rn:

(1) �nite unions,
(2) �nite intersections,
(3) complements.

De�nition 1.1.

(i) The class of semialgebraic sets in Rn is de�ned to be the smallest
class of subsets of Rn closed under operations (1), (2), (3), and which
contains all sets of the form

{x ∈ Rn : f(x)� 0},

where f ∈ R[x] = R[x1, . . . , xn] and � ∈ {⩾, >,=, ̸=}.

(ii) Equivalently a subset S ⊆ Rn is semialgebraic if and only if it is a
�nite boolean combination of sets of the form

{x ∈ Rn : f(x) > 0},

where f(x) ∈ R[x].

(iii) Consider

(∗) S(x) :=


f1(x)�1 0
...

fk(x)�k 0

with fi(x) ∈ R[x]; �i ∈ {⩾, >,=, ̸=}.
The set of solutions of S(x) is precisely the semialgebraic set

1
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S :=
k⋂

i=1

{x ∈ Rn : fi(x)�i 0}.

The solution set S of a system (∗) is called a basic semialgebraic
subset of Rn.

(iv) Let f1, . . . , fk ∈ R[x] = R[x1, . . . , xn]. A set of the form

Z(f1, . . . , fk) := {x ∈ Rn : f1(x) = · · · = fk(x) = 0}

is called an algebraic set.

(v) A subset of Rn of the form

U(f) : = {x ∈ Rn : f(x) > 0},
U(f1, . . . , fk) : = {x ∈ Rn : f1(x) > 0, . . . , fk(x) > 0}

= U(f1) ∩ · · · ∩ U(fk)

is called a basic open semialgebraic set.

(vi) A subset of Rn of the form

K(f) : = {x ∈ Rn : f(x) ⩾ 0},
K(f1, . . . , fk) = K(f1) ∩ · · · ∩ K(fk)

is called a basic closed semialgebraic set.

Remark 1.2.

(a) An algebraic set is in particular a basic semialgebraic set.

(b) Z(f1, . . . , fk) = Z(f), where f =
∑k

i=1 f
2
i .

Proposition 1.3.

(1) A subset of Rn is semialgebraic if and only if it is a �nite union of
basic semialgebraic sets.

(2) A subset is semialgebraic if and only if it is a �nite union of basic
semialgebraic sets of the form

Z(f) ∩ U(f1, . . . , fk)

(normal form).

Proof. (1) ((2) is similar).

(⇐) Clear.
(⇒) To show that the class of semialgebraic sets is included in the class of

�nite unions of basic semialgebraic sets it su�ces to show that this
last class is closed under �nitary boolean operations: union, inter-
section, complement.
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The closure by union is by de�nition.

Intersection:

(∪iCi) ∩ (∪jDj) = ∪i,j (Ci ∩Dj).

Complement: It is enough to show that the complement of

{x ∈ Rn : f(x)� 0} � ∈ {⩾, >,=, ̸=},

is a �nite union of basic semialgebraic, since

(C ∩D)c = Cc ∪Dc and (C ∪D)c = Cc ∩Dc.

Let us consider the possible cases for � ∈ {⩾, >,=, ̸=}:
{x ∈ Rn : f(x) ⩾ 0}c = {x ∈ Rn : −f(x) > 0}
{x ∈ Rn : f(x) > 0}c = {x ∈ Rn : f(x) = 0} ∪ {x ∈ Rn : −f(x) > 0}
{x ∈ Rn : f(x) = 0}c = {x ∈ Rn : f(x) ̸= 0}.

□

2. Geometric version of Tarski-Seidenberg

We shall return to a systematic study of the class of semialgebraic sets
and its property in the next lectures.

For now we want to derive an important property of this class from Tarski-
Seidenberg's theorem:

Theorem 2.1. (Tarski-Seidenberg geometric version)
Consider the projection map

π : Rm+n = Rm ×Rn −→ Rm

( t, x ) 7→ t.

Then for any semialgebraic set A ⊆ Rm+n, π(A) is a semialgebraic set in
Rm.

Proof. Since

π(
⋃
i

Ai) =
⋃
i

π(Ai),

it su�ces to show the result for a basic semialgebraic subset A of Rm+n; i.e.
show that π(A) is semialgebraic in Rm.

Let u := (u1, . . . , uq) be the coe�cients of all polynomials f1(T ,X), . . . , fk(T ,X) ∈
R[T1, . . . , Tm, X1, . . . , Xn] of the system S(T ,X) = S describing A.

So we can view S as a system of polynomial equations and inequalities
S(U, T ,X) with coe�cient in Q such that A is the set of solutions in Rm+n

of the system S(u, T ,X), i.e.
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A = {(t, x) ∈ Rm+n : (t, x) is solution of S(u, T ,X)}.

By Tarski-Seidenberg's theorem, we have systems of polynomial equalities
and inequalities with coe�cients in Q, say

S1(U, T ), . . . , Sl(U, T ),

such that for any t ∈ Rm the system S(u, t,X) has a solution x = (x1, . . . , xn) ∈
Rn if and only if (u, t) is a solution for one of S1(U, T ), . . . , Sl(U, T ), i.e.

π(A) = {t ∈ Rm : ∃x ∈ Rn with (t, x) ∈ A}
= {t ∈ Rm : ∃x ∈ Rn s.t. (t, x) is a solution of S(u, T ,X)}
= {t ∈ Rm : the system S(u, t,X) has a solution x ∈ Rn}
= {t ∈ Rm : t is a solution for one of the Si(u, T ), i = 1, . . . , l}

=
⋃

i=1,...,l

{t ∈ Rm : t is a solution of Si(u, T )}.

□

We shall show many important consequences such as the image of a semi-
algebraic function is semialgebraic and the closure and the interior of a semi-
algebraic set are semialgebraic.

De�nition 2.2. Let A ⊆ Rm and B ⊆ Rn. We say that f : A → B, is a
semialgebraic map if A and B are semialgebraic and

Γ(f) = {(x, y) ∈ Rm+n : x ∈ A, y ∈ B, y = f(x)}

is semialgebraic.

3. Formulas in the language of real closed fields

De�nition 3.1. A �rst order formula in the language of real closed
�elds is obtained as follows recursively:

(1) if f(x) ∈ Q[x1, . . . , xn], n ⩾ 1, then

f(x) ⩾ 0, f(x) > 0, f(x) = 0, f(x) ̸= 0

are �rst order formulas (with free variables x = (x1, . . . , xn));

(2) if Φ and Ψ are �rst order formulas, then

Φ ∧Ψ, Φ ∨Ψ, ¬Φ

are also �rst order formulas (with free variables given by the union
of the free variables of Φ and the free variables of Ψ);
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(3) if Φ is a �rst order formula then

∃xΦ and ∀xΦ
are �rst order formulas (with the same free variables as Φminus {x}).

The formulas obtained using just (1) and (2) are called quanti�er free.
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1. Quantifier eliminaton for the theory of real closed fields

We recall from last lecture the de�nition of �rst order formulas in the
language of real closed �eld:

De�nition 1.1. A �rst order formula in the language of real closed
�elds is obtained as follows recursively:

(1) if f(x) ∈ Q[x1, . . . , xn], n ⩾ 1, then

f(x) ⩾ 0, f(x) > 0, f(x) = 0, f(x) ̸= 0

are �rst order formulas (with free variables x = (x1, . . . , xn));

(2) if Φ and Ψ are �rst order formulas, then

Φ ∧Ψ, Φ ∨Ψ, ¬Φ

are also �rst order formulas (with free variables given by the union
of the free variables of Φ and the free variables of Ψ);

(3) if Φ is a �rst order formula then

∃ xΦ and ∀xΦ

are �rst order formulas (with same free variables as Φ minus {x}).

The formulas obtained using just (1) and (2) are called quanti�er free.

De�nition 1.2. Let Φ(x1, . . . , xn) and Ψ(x1, . . . , xn) be �rst order formu-
las in the language of real closed �elds with free variables contained in
{x1, . . . , xn}. We say that Φ(x) and Ψ(x) are equivalent if for every real
closed �eld R and every r ∈ Rn,

Φ(r) holds in R ⇐⇒ Ψ(r) holds in R.
1
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If Φ and Ψ are equivalent, we write Φ ∼ Ψ.

Remark 1.3. (Normal form of quanti�er free formulas). Every quanti�er
free formula is equivalent to a �nite disjunction of �nite conjuctions of for-
mulas obtained using construction (1).

Proof. Like showing that every semialgebraic subset of Rn is a �nite union (=
�nite disjunction) of basic semialgebraic sets (= �nite conjuction of formulas
of type (1)). □

Theorem 1.4. (Tarski's quanti�er elimination theorem for real closed �elds).
Every �rst order formula in the language of real closed �elds is equivalent to
a quanti�er free formula.

Proof. Since all formulas of type (1) are quanti�er free, it su�ces to show
that

C := the set of �rst order formulas which are equivalent to quanti�er free formulas

is closed under constructions of (2) and (3).

Closure under 2. If Φ ∼ Φ′ and Ψ ∼ Ψ′, then

Φ ∨Ψ ∼ Φ′ ∨Ψ′

Φ ∧Ψ ∼ Φ′ ∧Ψ′

¬Φ ∼ ¬Φ′.

Closure under 3. It is enough to consider ∃ xΦ, because

∀ xΦ ↔ ¬∃x (¬Φ).

We claim that if Φ is equivalent to a quanti�er free formula then ∃ xΦ is
equivalent to a quanti�er free formula. Since

∃ x (Φ1 ∨ · · · ∨ Φk) ∼ (∃ xΦ1) ∨ · · · ∨ (∃ xΦk),

using the normal form of quanti�er free formulas (Remark 1.3), we can
assume that Φ is a �nite conjunction of polynomial equations and inequali-
ties (i.e. a system S(T , x)).

Applying Tarski-Seidenberg's Theorem:

∃ x S(T ; x) ⇔
l∨

i=1

Si(t),

there exist �nitely many �nite conjunctions of polynomial equalities and
inequalities ϑ1, . . . , ϑl (corresponding to the systems S1(T ), . . . , Sl(T )) such
that

∃ x Φ ∼ ϑ1 ∨ · · · ∨ ϑl.

□
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2. Definable sets

De�nition 2.1. Let Φ(T ,X) a �rst order formula with free variables
T1, . . . , Tm, X1, . . . , Xn. Let R be a real closed �eld and t ∈ Rm. Then
Φ(t,X) is a �rst order formula with parameters in R, and t1, . . . , tm
are called the parameters.

De�nition 2.2. Let R be a real closed �eld, n ⩾ 1. A subset A ⊆ Rn is said
to be de�nable (with parameters from R) in R if there is a �rst order for-
mula Φ(t,X) with parameters t ∈ Rm and free variables X = (X1, . . . , Xn),
such that

A = {r ∈ Rn : Φ(t, r) is true in R}.

Corollary 2.3. For any real closed �eld R the class of de�nable sets (with
parameters) in R coincides with the class of semialgebraic sets.
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THE TARSKI-SEIDENBERG PRINCIPLE

Recall. Let R be a real closed field, a ∈ R. Define

sign(a) :=


1 if a > 0,

0 if a = 0,

−1 if a < 0.

The Tarski-Seidenberg Principle is the following result.

Theorem 1. Let fi(T ,X) = hi,mi
(T )Xmi + . . . + hi,0(T ) for i = 1, . . . , s

be a sequence of polynomials in n + 1 variables (T = (T1, . . . , Tn), X) with
coefficients in Z. Let ϵ be a function from {1, . . . , s} to {−1, 0, 1}. Then there
exists a finite boolean combination B(T ) := S1(T )∨. . .∨Sp(T ) of polynomial
equations and inequalities in the variables T1, . . . , Tn with coefficients in Z
such that for every real closed field R and for every t ∈ Rn, the system

sign(f1(t,X)) = ϵ(1)
...

sign(fs(t,X)) = ϵ(s)

has a solution x ∈ R if and only if B(t) holds true in R.

Notation I. Let f1(X), . . . , fs(X) be a sequence of polynomials in R[X].
Let x1 < . . . < xN be the roots in R of all fi that are not identically zero.

Set x0 := −∞ , xN+1 := +∞

Remark 1. Let m := max(degfi, i = 1, . . . , s). Then N ≤ sm.
Set Ik :=]xk, xk+1[ , k = 0, . . . , N

Remark 2. sign(fi(x)) is constant on Ik, for each i ∈ {1, . . . , s}, for each
k ∈ {0, . . . , N}.

1
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Set sign(fi(Ik)) := sign(fi(x)), x ∈ Ik

Notation II. Let SIGNR(f1, . . . , fs) be the matrix with s rows and 2N +1
columns whose ith row (for i = {1, . . . , s}) is

sign
(
fi(I0)

)
, sign

(
fi(x1)

)
, sign

(
fi(I1)

)
, . . . , sign

(
fi(xN)

)
, sign

(
fi(IN)

)
.

i.e. SIGNR(f1, . . . , fs) is the s×(2N+1) matrix with coefficients in {−1, 0, 1}
defined as

SIGNR(f1, ..., fs) :=


signf1(I0) signf1(x1) . . . signf1(xN) signf1(IN)
signf2(I0) signf2(x1) . . . signf2(xN) signf2(IN)

...
...

...
...

signfs(I0) signfs(x1) . . . signfs(xN) signfs(IN)


Remark 3. Let f1, . . . , fs ∈ R[X] and ϵ : {1, . . . , s} → {−1, 0, 1}. The
system 

sign(f1(X)) = ϵ(1)
...

sign(fs(X)) = ϵ(s)

has a solution x ∈ R if and only if one column of SIGNR(f1, . . . , fs) is

precisely the matrix

ϵ(1)...
ϵ(s)

.
Notation III. Let MP×Q := the set of P×Q matrices with coefficients in
{−1, 0,+1}.

Set Ws,m := the disjoint union of Ms×(2l+1), for l = 0, . . . , sm.

Notation IV. Let ϵ : {1, . . . , s} → {−1, 0, 1}. Set

W (ϵ) = {M ∈ Ws,m : one column of M is

ϵ(1)...
ϵ(s)

} ⊆ Ws,m

Lemma 2. (Reformulation of Remark 3 using notation IV)
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Let ϵ : {1, . . . , s} → {−1, 0, 1}, R real closed field and f1(X), . . . , fs(X) ∈
R[X] of degree ≤ m. Then the system

sign(f1(X)) = ϵ(1)
...

sign(fs(X)) = ϵ(s)

has a solution x ∈ R if and only if SIGNR(f1, . . . , fs) ∈ W (ϵ).

By Lemma 2 (setting W ′ = W (ϵ)), we see that the proof of Theorem 1
reduces to showing the following proposition:

Main Proposition 3. Let fi(T ,X) := hi,mi
(T )Xmi + . . . + hi,0(T ) for

i = 1, . . . , s be a sequence of polynomials in n+ 1 variables with coefficients
in Z, and let m := max{mi|i = 1, . . . , s}. Let W ′

be a subset of Ws,m. Then
there exists a boolean combination B(T ) = S1(T )∨ . . .∨Sp(T ) of polynomial
equations and inequalities in the variables T with coefficients in Z, such that,
for every real closed field R and every t ∈ Rn, we have

SIGNR(f1(t,X), . . . , fs(t,X) ∈ W
′ ⇔ B(t) holds true in R.

The proof of the main Proposition will follow by induction from the next
main lemma, where we will show that SIGNR(f1, . . . , fs) is completely de-
termined by the �SIGNR�of a (possibly) longer but simpler sequence of
polynomials, i.e. SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs), where f

′
s = the deriva-

tive of fs, and g1, . . . , gs are the remainders of the euclidean division of fs by
f1, . . . , fs−1, f

′
s, respectively.

First we will state and prove the main lemma and then prove the main
proposition.
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Main Lemma. For any real closed field R and every sequence of polynomials
f1, . . . , fs ∈ R[X] of degrees ≤ m, with fs nonconstant and none of the
f1, . . . , fs−1 identically zero, we have
SIGNR(f1, . . . , fs) ∈ Ws,m is completely determined by
SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs) ∈ W2s,m, where f

′
s is the derivative of fs,

and g1, . . . , gs are the remainders of the euclidean division of fs by f1, . . . , fs−1, f
′
s,

respectively.
Equivalently, the map φ : W2s,m −→ Ws,m

SIGNR(f1, . . . , fs−1, f
′

s, g1, . . . , gs) 7−→ SIGNR(f1, . . . , fs)

is well defined.
In other words, for any (f1, . . . , fs), (F1, . . . , Fs) ∈ R[X],
SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs) = SIGNR(F1, . . . , Fs−1, F

′
s, G1, . . . , Gs)

⇒ SIGNR(f1, . . . , fs) = SIGNR(F1, . . . , Fs).

Proof. Assume w = SIGNR(f1, . . . , fs−1, f
′
s, g1, . . . , gs) is given.

Let x1 < . . . < xN , with N ≤ 2sm, be the roots in R of those polyno-
mials among f1, . . . , fs−1, f

′
s, g1, . . . , gs that are not identically zero. Extract

from these the subsequence xi1 < . . . < xiM of the roots of the polynomials
f1, . . . , fs−1, f

′
s. By convention, let xi0 := x0 = −∞ ; xiM+1

:= xN+1 = +∞.
Note that the sequence i1 < . . . < iM depends only on w.
For k = 1, . . . ,M one of the polynomials f1, . . . , fs−1, f

′
s vanishes at xik . This

allows to choose a map (determined by w)

θ : {1, . . . ,M} → {1, . . . , s}
such that fs(xik) = gθ(k)(xik)(
This goes via polynomial division fs = fθ(k)qθ(k)+gθ(k), where fθ(k)(xik) = 0

)
.

Claim I. The existence of a root of fs in an interval ]xik , xik+1
[, for k =

0, . . . ,M depends only on w.

1
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Proof of Claim I .
Case 1: fs has a root in ]−∞, xi1 [ (if M ̸= 0) if and only if

sign
(
f

′
s( ]−∞, x1[ )

)
sign

(
gθ(1)(xi1)

)
= 1,

equivalently iff
sign

(
f

′
s( ]−∞, x1[ )

)
= signfs(xi1).

(⇐) We want to show that if sign
(
f

′
s( ]−∞, x1[ )

)
= signfs(xi1),

then fs has a root in ]−∞, xi1 [.
Suppose on contradiction that fs has no root in ] − ∞, xi1 [, then
signfs must be constant and nonzero on ]−∞, xi1 ], so we get
0 ̸= signfs( ]−∞, x1[ ) = signfs( ]−∞, xi1 ] ) = signfs(xi1) =
signf

′
s( ]−∞, x1[ )

⇒ signfs( ]−∞, x1[ ) = signf
′
s( ]−∞, x1[ ), a contradiction

[
because

on ] −∞,−D[ : signf(x) = (−1)msign(d) for f = dxm + . . . + d0
and signf

′
(x) = (−1)m−1sign(md) for f

′
= mdxm−1 + . . . ,

see Corollary 2.1 of lecture 6 (05/11/09)
]
.

(⇒) Assume that fs has a root (say) x ∈ ]−∞, xi1 [.

Note that signfs(xi1) ̸= 0
[
otherwise fs(xi1) = fs(x) = 0, so (by

Rolle’s theorem) f
′
s has a root in ]x, xi1 [ and the only possibility is

x1 ∈ ]x, xi1 [ (by our listing), but then x1 = xi1 , a contradiction
]
.

Note also that fs cannot have two roots (counting multiplicity) in

]−∞, xi1 [
[
otherwise f

′
s will be forced to have a root in ]−∞, xi1 [,

a contradiction as before
]
.

By Corollary 2.4, lecture 6, fs must change sign around its root x,
so

−signfs
(
]−∞, x[

)
= signfs

(
]x, xi1 ]

)
= signfs(xi1),

Also (by the same argument as before)

−signfs
(
]−∞, x[

)
= signf

′
s

(
]−∞, x1[

)
,

therefore, we get

signf
′
s

(
]−∞, x1[

)
= signfs(xi1). □ (case 1)

Case 2: Similarly one proves that: fs has a root in ]xiM ,+∞[ (if M ̸= 0) if
and only if

sign
(
f

′
s( ]xN ,+∞[ )

)
sign

(
gθ(M)(xiM )

)
= −1,(

i.e. iff signf
′
s( ]xN ,+∞[ ) = −signfs(xiM ) ̸= 0

)
.

Case 3: fs has a root in ]xik , xik+1
[, for k = 1, . . . ,M − 1, if and only if
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sign
(
gθ(k)(xik)

)
sign

(
gθ(k+1)(xik+1

)
)
= −1,

equivalently iff
signfs(xik) = −signfs(xik+1

).(
Proof is clear because if fs has a root in ]xik , xik+1

[, then this root is
of multipilicty 1 and therefore a sign change must occur (by Corollary

2.4, lecture 6).
)

Case 4: fs has exactly one root in ]−∞,+∞[ if M = 0. □ (claim I)

Claim II. SIGNR(f1, . . . , fs) depends only on w.
Proof of Claim II .
Notation: Let y1 < . . . < yL, with L ≤ sm, be the roots in R of the
polynomials f1, . . . , fs. As before, let y0 := −∞, yL+1 := +∞.
Set Ik :=]yk, yk+1[, k = 0, . . . , L.

Define

ρ : {0, . . . , L+ 1} −→ {0, . . . ,M + 1} ∪ {(k, k + 1) | k = 0, . . . ,M}

l 7−→

{
k if yl = xik ,

(k, k + 1) if yl ∈]xik , xik+1
[

Note that by Claim I, L and ρ depends only on w. So, to prove claim II it is
enough to show that SIGNR(f1, . . . , fs) depends only on ρ and w.

Also,

SIGNR(f1, ..., fs) :=


signf1(I0) signf1(y1) . . . signf1(yL) signf1(IL)

...
...

...
...

signfs−1(I0) signfs−1(y1) . . . signfs−1(yL) signfs−1(IL)
signfs(I0) signfs(y1) . . . signfs(yL) signfs(IL)


is an s×(2L+ 1) matrix with coefficients in {−1, 0,+1}.

Case 1: j = 1, . . . , s− 1
For l ∈ {0, . . . , L+ 1} we have

� if ρ(l) = k ⇒ sign
(
fj(yl)

)
= sign

(
fj(xik)

)
,

� if ρ(l) = (k, k + 1) ⇒ sign
(
fj(yl)

)
= sign

(
fj( ]xik , xik+1

[ )
)
.

So, sign
(
fj(yl)

)
is known from w and ρ, for all j = 1, . . . , s − 1 and l ∈

{0, . . . , L+ 1}.
We also have

� if ρ(l) = k or (k, k+1) ⇒ sign
(
fj( ]yl, yl+1[ )

)
= sign

(
fj( ]xik , xik+1

[ )
)
.
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So, sign
(
fj( ]yl, yl+1[ )

)
is known from w and ρ, for all j = 1, . . . , s− 1 and

l ∈ {0, . . . , L+ 1}.
Thus one can reconstruct the first s− 1 rows of SIGNR(f1, ..., fs) from w.

Case 2: j = s
For l ∈ {0, . . . , L+ 1} we have

� if ρ(l) = k ⇒ sign
(
fs(yl)

)
= sign

(
gθ(k)(xik)

)
,

� if ρ(l) = (k, k + 1) ⇒ sign
(
fs(yl)

)
= 0.

So, sign
(
fs(yl)

)
is known from w and ρ, for all l ∈ {0, . . . , L+1} and therefore

can also be reconstructed from w.
Now remains the most delicate case that concerns sign

(
fs( ]yl, yl+1[ )

)
:

For l ∈ {0, . . . , L+ 1} we have

� if l ̸= 0, ρ(l) = k ⇒

sign
(
fs( ]yl, yl+1[ )

)
=

{
sign

(
gθ(k)(xik)

)
if it is ̸= 0,

sign
(
f

′
s( ]xik , xik+1

[ )
)

otherwise.[
This is because

(
ρ(l) = k if yl = xik , so

)
:

- if gθ(k)(xik) = fs(xik) ̸= 0, then by continuity sign is constant, and

- if gθ(k)(xik) = fs(xik) = 0, then on ]xik , xik+1
[ :{

f
′
s ≥ 0 ⇒ fs(xik) < fs(y) for y < xik+1

, so fs(y) > 0,

f
′
s ≤ 0 ⇒ −fs(xik) < −fs(y) for y < xik+1

, so fs(y) < 0(
using 6. Lecture, Cor. 2.4: In a real closed ordered field, if P is

a nonconstant polynomial s.t. P
′ ≥ 0 on [a, b], a < b, then P (a) <

P (b)
)
.
]

� if l ̸= 0, ρ(l) = (k, k+1) ⇒ sign
(
fs( ]yl, yl+1[ )

)
= sign

(
f

′
s( ]xik , xik+1

[ )
)
.[

We argue as follows
(
noting that ρ(l) = (k, k + 1) if yl ∈]xik , xik+1

[
)
:

sign
(
fs( ]yl, yl+1[ )

)
is constant so at any rate is equal to sign

(
fs( ]yl, xik+1

[ )
)
,

now using the fact that fs(yl) = 0 and the same lemma (stated above)
we get, for any a ∈ ]yl, xik+1

[ :{
f

′
s ≥ 0 ⇒ fs(yl) < fs(a), so fs(a) > 0,

f
′
s ≤ 0 ⇒ −fs(yl) < −fs(a), so fs(a) < 0

i.e. fs has same sign as f
′
s.
]

� if l = 0 ⇒ sign
(
fs( ]−∞, y1[ )

)
= sign

(
f

′
s( ]−∞, x1[ )

)
(as before). □
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Main Proposition. Let fi(T ,X) := hi,mi
(T )Xmi + . . . + hi,0(T ) for i =

1, . . . , s be a sequence of polynomials in n + 1 variables with coefficients in
Z, and let m := max{mi|i = 1, . . . , s}. Let W

′
be a subset of Ws,m. Then

there exists a boolean combination B(T ) = S1(T )∨ . . .∨Sp(T ) of polynomial
equations and inequalities in the variables T with coefficients in Z, such that,
for every real closed field R and every t ∈ Rn, we have

SIGNR

(
f1(t,X), . . . , fs(t,X)

)
∈ W

′ ⇔ B(t) holds true in R.

Proof. Without loss of generality, we assume that none of f1, . . . , fs is
identically zero and that hi,mi

(T ) is not identically zero for i = 1, . . . , s. To
every sequence of polynomials (f1, . . . , fs) associate the s-tuple (m1, . . . ,ms),
where deg(fi) = mi. We compare these finite sequences by defining a strict
order as follows:

σ := (m
′
1, . . . ,m

′
t) ≺ τ := (m1, . . . ,ms)

if there exists p ∈ N such that, for every q > p,
-the number of times q appears in σ = the number of times q appears in τ ,
and
-the number of times p appears in σ < the number of times p appears in τ .

This order ≺ is a total order 1 on the set of finite sequences.

Example: let m = max ({m1, . . . ,ms}) = ms (say), σ and τ be the sequence
of degrees of the sequences (f1, . . . , fs−1, f

′
s, g1, . . . , gs) and (f1, . . . , fs−1, fs)

respectively, i.e.
σ ⇝ (f1, . . . , fs−1, f

′
s, g1, . . . , gs),

τ ⇝ (f1, . . . , fs−1, fs)

1This was a mistake in the book Real Algebraic Geometry of J. Bochnak, M. Coste,
M.-F. Roy. For corrected argument, see Appendix I following this proof.

1
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then σ ≺ τ .

Let m = max{m1, . . . ,ms}.
In particular using p = m we have:(
deg(f1), . . . , deg(fs−1), deg(f

′
s), deg(g1), . . . , deg(gs)

)
≺

(
deg(f1), . . . , deg(fs)

)
.

Ifm = 0, then there is nothing to show, since SIGNR

(
f1(t,X), . . . , fs(t,X)

)
=

SIGNR

(
h1,0(t), . . . , hs,0(t)

) [
the list of signs of �constant terms�

]
.

Suppose that m ≥ 1 and ms = m = max{m1, . . . ,ms}. Let W
′′ ⊂ W2s,m be

the inverse image of W
′ ⊂ Ws,m under the mapping φ (as in main lemma).

Set W
′′
=

{
SIGNR(f1, . . . , fs−1, f

′
s, g1, . . . , gs) | SIGNR(f1, . . . , fs) ∈ W

′}
.

-Case 1. By the main lemma, for every real closed field R and for every
t ∈ Rn such that hi,mi

(t) ̸= 0 for i = 1, . . . , s, we have

SIGNR

(
f1(t,X), . . . , fs(t,X)

)
∈ W

′

⇔

SIGNR

(
f1(t,X), . . . , fs−1(t,X), f

′
s(t,X), g1(t,X), . . . , gs(t,X)

)
∈ W

′′
,

where f
′
s is the derivative of fs with respect to X, and g1, . . . , gs are the re-

mainders of the euclidean division (with respect toX) of fs by f1, . . . , fs−1, f
′
s,

respectively (multiplied by appropriate even powers of h1,m1 , . . . , hs,ms , re-
spectively, to clear the denominators).
Now, the sequence of degrees in X of f1, . . . , fs−1, f

′
s, g1, . . . , gs is smaller than

[the sequence of degrees in X of f1, . . . , fs i.e.] (m1, . . . ,ms) w.r.t. the order
≺.

-Case 2. At least one of hi,mi
(t) is zero

In this case we can truncate the corresponding polynomial fi and obtain
a sequence of polynomials, whose sequence of degrees in X is smaller than
(m1, . . . ,ms) w.r.t. the order ≺.

This completes the proof of main propostion and also proves the Tarski-
Seidenberg principle. □□



APPENDIX I: ORDER ON THE SET OF TUPLES OF INTEGERS

Set N :=

t
nœN Nn

We define on N an equivalence relation ≥:

for ‡ := (n1, . . . , n

s

) and · := (m1, . . . , m

t

) in N , we write ‡ ≥ · if and only if

the following holds:

s = t and there exists a permutation g of {1, . . . , s} such that m

i

= n

g(i) for all

i œ {1, . . . , s}.

For any ‡ œ N , the equivalence class of ‡ will be denoted by [‡]

For any ‡ œ N and p œ N, we set f

p

(‡) := (number of occurrences of p in ‡).

For any ‡, · œ N and p œ N we define the property P(p, ‡, ·) by:

P(p, ‡, ·) © (f

p

(‡) < f

p

(·)) · (’q > p, f

q

(‡) = f

q

(·)).

Set M := N/ ≥
Note that if ‡

Õ
, ·

Õ
are permutations of ‡ and · , then P(p, ‡, ·) is equivalent to

P(p, ‡

Õ
, ·

Õ
) for all p œ N. This allows us to define a binary relation < on M :

[‡] < [· ] if and only if there exists p œ N such that P(p, ‡, ·) is satisfied.

Remark 1

If p œ N satisfies P(p, ‡, ·), then for all q Ø p, f

q

(‡) Æ f

q

(·)

Proposition 1

< defines a strict order on M .

Proof. We want to prove that < is antisymmetric and transitive:

antisymmetry: Let ‡, · œ N such that [‡] < [· ]; we want to show [· ] ⌅ [‡]

Choose p œ N satisfying P(p, ‡, ·) and let q œ N.

If q Ø p, then by remark 1 we have f

q

(·) ⌅ f

q

(‡) so the first condition of

P(q, ·, ‡) fails. Moreover, we have f

p

(‡) < f

p

(·), so if q < p the second

condition of P(q, ·, ‡) fails.

Thus, P(q, ·, ‡) fails for every q œ N, which proves [· ] ⌅ [‡].

1



transitivity: Let ‡, ·, fl œ N such that [fl] < [‡] and [‡] < [· ]

Choose p1, p2 œ N such that P(p1, fl, ‡) and P(p2, ‡, ·) hold.

Set p := max(p1, p2).

If q > p, then in particular q > p1 so f

q

(fl) = f

q

(‡); similarly, we have q > p2
so f

q

(‡) = f

q

(·) hence f

q

(fl) = f

q

(·).

Since p Ø p1, p2, we have by remark 1: f

p

(fl) Æ f

p

(‡) Æ f

p

(·). If p = p1,
the first inequality is strict, hence f

p

(fl) < f

p

(·); if p = p2 then the second

inequatlity is strict, which leads to the same conclusion.

This proves that P(p, fl, ·) is satisfied, hence [fl] < [· ].

Proposition 2

The order < is total on M

Proof. Let ‡ = (n1, . . . , n

s

), · = (m1, . . . , m

t

) œ N be non-equivalent.

Set A := {q œ {n1, . . . , n

s

, m1, . . . , m

t

} | f

q

(‡) ”= f

q

(·)}.

Note that A = ? if and only if ‡ ≥ · , so by hypothesis we have A ”= ?. Thus,

we can define p := maxA.

By definition of p, we have f

q

(·) = f

q

(‡) for all q > p.

Moreover, since p œ A, we have f

p

(‡) ”= f

p

(·).

If f

p

(‡) < f

p

(·), then P(p, ‡, ·) is satisfied, so [‡] < [· ]; if f

p

(·) < f

p

(‡), then

P(p, ·, ‡) is satisfied, so [· ] < [‡].

Note that we have an algorithm which determines how to order the pair (‡, ·)

and gives us an apropriate p:

p := max{n1, . . . , n

s

, m1, . . . , m

t

}.

while p Ø 0:

if f

p

(‡) > f

p

(·) return (‡ > ·, p)

if f

p

(‡) < f

p

(·) return (‡ < ·, p)

p := p ≠ 1

Proposition 3

(M, <) is well-ordered:

Proof. For any ‡ = (n1, . . . , n

s

) œ N , set m

‡

:= max(n1, . . . , n

s

). Since m

‡

is left

unchanged by permutation of ‡, so we can define m[‡] := m

‡

unambiguously.

Note that for any a, b œ M , m

a

< m

b

implies a < b. Indeed, if m

a

< m

b

, then

for any p > m

b

, we have f

p

(b) = 0 = f

p

(a); moreover, f

mb
(a) = 0 < f

mb
(b), which

2



proves that P(m

b

, a, b) holds.

Let A be a non-empty subset of M and set m := min{m

a

| a œ A}
We are going to prove by induction on m that A has a smallest element.

m=0: If m = 0, then the set A0 := {[‡] œ A | ‡ only contains zeros } is non-empty.

Let a be the element of A0 of minimal length; then I claim that a is the

smallest element of A.

Indeed: let b œ A, b ”= a.

If b œ A0, then a and b both only contain zeros, so for all p > 0 f

p

(a) = 0 =

f

p

(b); moreover, by choice of a, we have f0(a) = length(a) < length(b) =

f0(b). This proves that P(0, a, b) holds, hence a < b.

If b œ A\A0, then m

b

> 0 = m

a

so b > a.

m ≠ 1 æ m: Assume m Ø 1.

Set B := {a œ A | m

a

= m}, n := min{f

m

(a) | a œ B} and C := {a œ B |
f

m

(a) = n}.

I claim that for any c œ C and any a œ A\C, c < a.

Indeed:

– if a œ B\C, then by definition of C we have f

m

(c) < f

m

(a). Since

a, c œ B, it follows from the definition of B that m is the maximal

element of both a and c, so that f

p

(a) = 0 = f

p

(c) for all p > m. Thus,

P(m, c, a) holds.

– If a /œ B, then by definition of B we have m

a

> m = m

c

, hence a > c.

Thus, it su�ces to prove that C has a smallest element.

For any c œ C, we denote by c

Õ
the element of M obtained from c by removing

every occurrence of m. Set C

Õ
:= {c

Õ | c œ C}. Since m is the maximal

element of every c œ C, we have m

c

Õ Æ m ≠ 1 for every c

Õ œ C

Õ
, hence

min{m

c

Õ | c

Õ œ C

Õ} Æ m ≠ 1. By induction hypothesis, C

Õ
then has a smallest

element c

Õ
. c is then the smallest element of C.

Note that there is a recursive algorithm which takes a subset of M as an

argument and returns its smallest element:

smallest_element(A):

m := min{m

a

| a œ A}

3



B := {a œ A | m

a

= m}
n = min{f

m

(b) | b œ B}
C := {b œ B | f

m

(b) = n}
if C is a singleton then return its only element

C

Õ
:= {c

Õ | c œ C}
c

Õ
:=smallest_element(C

Õ
)

return the concatenation of c

Õ
with (m, . . . , m)

¸ ˚˙ ˝
n times

Proposition 4

The ordinal type of (M, <) is Ê

Ê

Proof. For any n œ N, set A

n

:= {a œ M | m

a

= n}.

We are going to build an isomorpism from Ê

Ê

to M by induction. More precisely,

we are going to build a sequence („

n

)

nœN of maps such that:

• for any n œ N, „

n

is an isomorphism from Ê

n+1
to A

n

.

• for any n œ N, „

n+1 extends „

n

.

Taking „ :=

t
nœN „

n

, we obtain an isomorphism „ from

t
nœN Ê

n+1
= Ê

Ê

tot
nœN A

n

= M .

n = 0 Note that we have (0) < (0, 0) < (0, 0, 0) < (0, 0, 0, 0) < . . . , so an isomor-

phism from Ê to A0 is given by n ‘æ (0, 0, . . . , 0)

¸ ˚˙ ˝
n+1 times

n æ n + 1 Assume we have an isomorphism „

n

: Ê

n+1 æ A

n

. Remember that Ê

n+2
is

the order type of (Ê ◊ Ê

n+1
, <

lex

).

Define: „

n+1(–, —) := „

n

(—) · (n + 1, . . . , n + 1)

¸ ˚˙ ˝
– times

(here ‘·’ means concatenation). This is an isomorphism from (Ê ◊ Ê

n+1
, <

lex

)

to A

n+1.

4
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1. THE POLYNOMIAL RING R[X]

Notation 1.1. R[X] := R[X1, . . . , Xn] is the polynomial ring in n variables and real
coefficients, where R is the set of real numbers.

Note that R[X] is a vector space of countable dimension
(
a basis is {Xα | α ∈ Zn

+},
where Xα := Xα1

1 . . . Xαn
n is a monomial

)
.

Definition 1.2. A polynomial is said to be homogenous if it is a linear combina-
tion of monomials with same degree (or zero polynomial).

Convention: deg (0) := −∞, where `̀ 0´́ is the polynomial with 0 coefficients.

Definition 1.3. Let f ∈ R[x], the homogenous decomposition of f is f = h0 +

. . . + hd, where hi are homogenous (or 0) and deg(hi) = i if hi . 0.

Note that if hd . 0, then d = deg (hd) = deg ( f ).

Remark 1.4. Let f , g ∈ R[x]; f . 0, g . 0, then:

(i) deg ( f g) = deg ( f ) + deg (g)

(ii) deg ( f + g) ≤ max
{
deg ( f ), deg (g)

}
(iii) deg ( f + g) = max

{
deg ( f ), deg (g)

}
, if deg ( f ) , deg (g).

1
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2. BOREL MEASURE

Definition 2.1. Let X be a locally compact Hausdorff topological space (ie. ∀ x ∈
X ∃ U 3 x such that U is compact). A Borel measure `̀ µ´́ on X is a positive
measure such that every B ∈ βδ(X) is measurable, where βδ(X) := the smallest
class of subsets of X which contain all compact sets and is closed under finite
unions, complements and countable intersections.

Further we will assume that µ is regular, ie.
∀ B ∈ βδ(X), ∀ ε > 0 ∃ C,U ∈ βδ(X) with C ⊆ B ⊆ U, where C is compact,U is
open and µ(C) + ε ≥ µ(B) ≥ µ(U) − ε.

Definition 2.2. Let K be a closed compact subset of Rn. K is said to be basic
closed semi-algebraic if there exists a finite S ⊆ R[X], say S = {g1, . . . , gs} (for
s ∈ N) such that K = KS =

{
x ∈ Rn | gi(x) ≥ 0 ∀ i = 1, . . . , s

}
.

Notation 2.3.
∑
R[X]2 :=

{
σ =

m∑
i=1

f 2
i | fi ∈ R[X],m ∈ N

}
.

Theorem 2.4. (Schmüdgen’s Positivstellensatz) Let K ⊆ Rn be a compact semi-
algebraic set, K = KS (as above). Let L : R[X] −→ R be a linear functional.
Then L can be represented by a positive Borel measure µ defined on K

(
ie. L( f ) =∫

K

f dµ for f ∈ R[X]
)

if and only if L(σge1
1 . . . g

es
s ) ≥ 0 ∀ σ ∈

∑
R[X]2 and

e1, . . . , es ∈ {0, 1}.

See Corollary 2.6 in lecture 13.

3. PREORDERING

Definition 3.1. Let A be a commutative ring with 1,
ΣA2 :=

{
Σa2

i | i ≥ 0, ai ∈ A
}
.

(1) A quadratic module M in A is a subset M ⊆ A such that
M + M ⊆ M, a2M ⊆ M ∀ a ∈ A, 1 ∈ M.

(2) A preordering T in A is a quadratic module with TT ⊆ T .
T is said to be proper if −1 < T .



POSITIVE POLYNOMIALS LECTURE NOTES (01: 13/04/10) 3

Remark 3.2. If 1
2 ∈ A then T = A is the only preordering in A that is not proper.

Proof. For a ∈ A one can write: a =
(a+1

2

)2
+ (−1)

(a−1
2

)2
∈ T �

Examples 3.3.

(1) ΣA2︸︷︷︸
(the smallest preordering)

⊆ T for a preordering T in A.

(2) Let S = {g1, . . . , gs} ⊆ A, then

TS :=
{ ∑

e1,...,es∈{0,1}

σe ge1
1 . . . g

es
s | σe ∈ ΣA2, e = (e1, . . . , es)

}
is the preordering generated by g1, . . . , gs.

Definiton 3.4. A preordering T ⊆ A is said to be finitely generated if ∃ a finite
S ⊆ A with T = TS .

For example: ΣA2 is finitely generated with S = φ.

Example 3.5. Let S ⊆ A = R[X] be a finite subset. We associate to S the basic
closed semi-algebraic subset KS ⊆ R

n and the finitely generated preordering TS ⊆

R[X]. We recall that KS :=
{
x ∈ Rn | gi(x) ≥ 0 ∀ i = 1, . . . , s

}
, S = {g1, . . . , gs}.

For example: If S = φ : KS = Rn, TS =
∑
R[X]2.

Definiton 3.6. An element f ∈ TS is said to be positive semidefinite on KS if
f (x) ≥ 0 for all x ∈ KS .

For K ⊆ Rn, set Psd(K) :=
{
f ∈ R[X] | f (x) ≥ 0 ∀ x ∈ K

}
Note that TS ⊆ Psd(KS ).

Question. If f ∈ Psd(KS ), then does f ∈ TS ?

Answer. No.
But there is a connection of f with TS

(
which will become clear through the

Positivstellensatz in the next lecture
)
.
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1. INTRODUCTION

Definiton 1.1. For K ⊆ Rn,

Psd(K) :=
{
f ∈ R[X] | f (x) ≥ 0 ∀ x ∈ K

}
.

Let S = {g1, . . . , gs} ⊆ R[X], then

KS :=
{
x ∈ Rn | gi(x) ≥ 0 ∀ i = 1, . . . , s

}
, the basic closed semi-algebraic set

defined by S and

TS :=
{ ∑

e1,...,es∈{0,1}

σe ge1
1 . . . g

es
s | σe ∈ ΣR[X]2, e = (e1, . . . , es)

}
, the preordering

generated by S .

We also introduce

MS :=
{
σ0+σ1g1+σ2g2 . . .+σsgs | σi ∈ ΣR[X]2}, the quadratic module generated

by S .

Remark 1.2. (i) MS is a quadratic module in R[X].

(ii) MS ⊆ TS ⊆ Psd(KS ).
(We shall study these inclusions in more detail later. In general these inclusions
may be proper.)

1
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(iii) Psd(KS ) is a preordering.

Definiton 1.3. TS (resp. MS ) is called saturated if Psd(KS ) = TS (resp. MS ).

2. EXAMPLES

For the examples that we are about to see, we need the following 2 lemmas:

Lemma 2.1. Let f ∈ R[X]; f . 0, then ∃ x ∈ Rn s.t. f (x) , 0.
[
Here n is such

that X = (X1, . . . , Xn).
]

Proof. By induction on n.
If n = 1, result follows since a nonzero polynomial ∈ R[X] has only finitely many
zeroes.
Let n ≥ 2 and 0 . f ∈ R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn].
f . 0⇒ f = g0 + g1Xn + . . . + gkXk

n; g0, g1, . . . , gk ∈ R[X1, . . . , Xn−1]; gk . 0.
Since gk . 0, so by induction on n :
∃ (x1, x2, . . . , xn−1) s.t. gk(x1, x2, . . . , xn−1) , 0.

⇒ The polynomial in one variable Xn i.e. f (x1, x2, . . . , xn−1, Xn) . 0.
Therefore by induction for n = 1, ∃ xn ∈ R s.t.

f (x1, x2, . . . , xn−1, xn) , 0 □

Remark 2.2. If f ∈ R[X], f . 0, then Rn\Z( f ) =
{
x ∈ Rn | f (x) , 0

}
is dense in

Rn, where Z( f ) :=
{
x ∈ Rn | f (x) = 0

}
is the zero set of f .

Equivalently, Z( f ) has empty interior. In other words, a polynomial which van-
ishes on a nonempty open set is identically the zero polynomial.

Lemma 2.3. Let σ := f 2
1 + . . . + f 2

k ; f1, . . . , fk ∈ R[X] and f1 . 0, then

(i) σ . 0

(ii) deg(σ) = 2 max
{
deg fi ; i = 1, . . . , k

}[
In particular deg(σ) is even.

]
Proof. (i) Since f1 . 0, so by lemma 2.1 ∃ x ∈ Rn s.t. f1(x) , 0.

⇒ σ(x) = f1(x)2 + . . . + fk(x)2 > 0
⇒ σ . 0.

(ii) fi = hi0 + . . . + hid , where d = max
{
deg fi | i = 1, . . . , k

}
; hi j homogeneous
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of degree j or hi j ≡ 0 for i = 1, . . . , k.
Clearly deg(σ) ≤ 2d.
To show deg(σ) = 2d, consider the homogeneous polynomial
h2

1d
+ . . . + h2

kd
:= h2d

Note that if h2d . 0, then deg(h2d) = 2d and h2d is the homogeneous
component of σ of highest degree (i.e. leading term), so deg(σ) = 2d.
Now we know that hid . 0 for some i ∈ {1, . . . , k}, so by (i) we get h2d . 0.

□

Now coming back to the inclusion: TS ⊆ Psd(KS )

Example 2.4.(1) (i) S = ϕ, n = 1⇒ KS = R and TS =
∑
R[X]2

⇒ TS = Psd(R).

(ii) S =
{
(1 − X2)3

}
, n = 1⇒ KS = [−1, 1] (compact),

TS =
{
σ0 + σ1(1 − X2)3 | σ0, σ1 ∈

∑
R[X]2

}
= MS .

Claim. TS ⊊ Psd(KS )
For example: (1 − X2) ∈ Psd[−1, 1] (clearly),
but (1 − X2) < TS , since if we assume for a contradiction that

(1 − X2) = σ0 + σ1(1 − X2)3, (1)

where σ0 . 0, σ0 =
∑

f 2
i , then evaluating (1) at x = ± 1 we get

σ0(±1) =
∑

f 2
i (±1) = 0

⇒ fi(±1) = 0
⇒ fi = (1 − X2)gi , for some gi ∈ R[X]
⇒ σ0 = (1 − X2)2∑ g2

i

Substituting σ0 back in (1) we get

1 = (1 − X2)
∑

g2
i + (1 − X2)2σ1 (2)

Evaluating (2) at x = ±1 yields 1 = 0, a contradiction.

(iii) S =
{
X3
}
, n = 1⇒ KS = [0,∞)

(
noncompact

)
,

TS =
{
σ0 + σ1X3 | σ0, σ1 ∈

∑
R[X]2

}
= MS .

Claim. TS ⊊ Psd(KS )
For example: X ∈ Psd(KS ), but X < TS

(
we will use degree argument to

show this).
We compute the possible degrees of elements t ∈ TS ; t . 0
Let
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t = σ0 + σ1X3; σ0, σ1 ∈
∑
R[X]2,

then
• σ0 . 0⇒ deg(σ0) is even.
• σ1 . 0⇒ deg(σ1) is even.
• σ0 ≡ 0⇒ deg(t) is odd and ≥ 3.
• σ1 ≡ 0⇒ deg(t) is even.
• σ0 . 0, σ1 . 0, then

[even =] deg(σ0) , deg(σ1) [= odd]
So, deg(t) = max

{
deg(σ0), deg(σ1)

}
is even or odd ≥ 3.

This proves that X < TS and hence TS ⊊ Psd(KS ). □

Example 2.4.(2) S = ϕ, n = 2⇒ KS = R
2 and TS = MS =

∑
R[X,Y]2.

We see that TS ⊊ Psd(KS )
For example: m(X,Y) := X2Y4 + X4Y2 − 3X2Y2 + 1 ∈ Psd(R2), but < TS =∑
R[X,Y]2.

3. POSITIVSTELLENSATZ (Geometric Version)

Theorem 3.1. (Positivstellensatz: Geometric Version) Let A = R[X]. Let S =
{g1, . . . , gs} ⊆ R[X], KS ,TS as defined above, f ∈ R[X]. Then

(1) f > 0 on KS ⇔ ∃ p, q ∈ TS s.t. p f = 1 + q

(2) f ≥ 0 on KS ⇔ ∃ m ∈ N0,∃ p, q ∈ TS s.t. p f = f 2m + q

(3) f = 0 on KS ⇔ ∃ m ∈ N0 s.t. − f 2m ∈ TS

(4) KS = ϕ⇔ −1 ∈ TS .

Important corollaries to the PSS are:

(i) The real Nullstellensatz

(ii) Hilbert’s 17th problem

(iii) Abstract Positivstellensatz

The proof of the PSS consists of two parts:
-Step I: prove that (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1)
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-Step II: prove (4) [using Tarski Transfer]

We shall start the proof with step II:

Clearly KS , ϕ ⇒ −1 < TS
(
since −1 ∈ TS ⇒ KS = ϕ

)
, so it only remains to

prove the following proposition:

Proposition 3.2. If −1 < TS
(
i.e. if TS is a proper preordering

)
, then KS , ϕ.

For proving this we need to recall some definitions and results:

Definition 3.3.1. Let A be a commutative ring with 1, a preordering P ⊆ A is said
to be an ordering on A if P ∪ −P = A and p := P ∩ −P is a prime (hence proper)
ideal of A.

Definition 3.3.2. Let P be an ordering in A, then SupportP := p (the prime ideal
P ∩ −P).

Lemma 3.4.1. Let A be a commutative ring with 1. Let P be a maximal proper
preordering in A. Then P is an ordering.

Lemma 3.4.2. Let A be a commutative ring with 1 and P ⊆ A an ordering. Then
P induces uniquely an ordering on F := f f

(
A/p
)

defined by:

∀ a, b ∈ A,
a

b
≥P 0 (in F)⇔ ab ∈ P, where a = a + p.
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1. GEOMETRIC VERSION OF POSITIVSTELLENSATZ

Theorem 1.1. (Recall) (Positivstellensatz: Geometric Version) Let A = R[X].
Let S = {g1, . . . , gs} ⊆ R[X], f ∈ R[X]. Then

(1) f > 0 on KS ⇔ ∃ p, q ∈ TS s.t. p f = 1 + q(
Striktpositivstellensatz

)
(2) f ≥ 0 on KS ⇔ ∃ m ∈ N0,∃ p, q ∈ TS s.t. p f = f 2m + q(

Nonnegativstellensatz
)

(3) f = 0 on KS ⇔ ∃ m ∈ N0 s.t. − f 2m ∈ TS(
Real Nullstellensatz (first form)

)
(4) KS = ϕ⇔ −1 ∈ TS .

Proof. It consists of two parts:
-Step I: prove that (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1)
-Step II: prove (4) [using Tarski Transfer]

We will start with step II:
Clearly KS , ϕ ⇒ −1 < TS

(
since −1 ∈ TS ⇒ KS = ϕ

)
, so it only remains to

prove the following proposition:

1
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Proposition 1.2. (3.2 of last lecture) If −1 < TS
(
i.e. if TS is a proper preordering

)
,

then KS , ϕ.

For proving this we need the following results:

Lemma 1.3.1. (3.4.1 of last lecture) Let A be a commutative ring with 1. Let P
be a maximal proper preordering in A. Then P is an ordering.
Proof. We have to show:

(i) P ∪ −P = A , and
(ii) p := P ∩ −P is a prime ideal of A.

(i) Assume a ∈ A, but a < P ∪ −P.
By maximality of P, we have: −1 ∈ (P + aP) and −1 ∈ (P − aP)
Thus
−1 = s1 + at1 and
−1 = s2 − at2 ; for some s1, s2, t1, t2 ∈ P

So (rewritting)
−at1 = 1 + s1 and

at2 = 1 + s2

Multiplying we get:
−a2t1t2 = 1 + s1 + s2 + s1s2

⇒ −1 = s1 + s2 + s1s2 + a2t1t2 ∈ P, a contradiction.

(ii) Now consider p := P ∩ −P, clearly it is an ideal.
We claim that p is prime.
Let ab ∈ p and a, b < p.
Assume w.l.o.g. that a, b < P.
Then as above in (i), we get:
−1 ∈ (P + aP) and −1 ∈ (P + bP)
So, −1 = s1 + at1 and
−1 = s2 + bt2 ; for some s1, s2, t1, t2 ∈ P

Rearranging and multiplying we get:
(at1)(bt2) = (1 + s1)(1 + s2) = 1 + s1 + s2 + s1s2

⇒ −1 = s1 + s2 + s1s2︸          ︷︷          ︸
∈P

−abt1t2︸  ︷︷  ︸
∈p ⊂ P

⇒ −1 ∈ P, a contradiction. □

Lemma 1.3.2. (3.4.2 of last lecture) Let A be a commutative ring with 1 and
P ⊆ A an ordering. Then P induces uniquely an ordering ≤P on F := f f

(
A/p

)
defined by:
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∀ a, b ∈ A, b < p :
a

b
≥P 0 (in F)⇔ ab ∈ P, where a = a + p. □

Recall 1.3.3. (Tarski Transfer Principle) Suppose (R,≤) ⊆ (F,≤) is an ordered
field extension of R. If x ∈ Fn satisfies a finite system of polynomial equations
and inequalities with coefficients in R, then ∃ r ∈ Rn satisfying the same system.

□

Using lemma 1.3.1, lemma 1.3.2 and TTP (recall 1.3.3), we prove the propo-
sition 1.2 as follows:

Proof of Propostion 1.2. To show: −1 < TS ⇒ KS , ϕ.
Set S =

{
g1, . . . , gs

}
⊆ R[X]

−1 < TS ⇒ TS is a proper preordering.
By Zorn, extend TS to a maximal proper preordering P.

By lemma 1.3.1, P is an ordering on R[X]; p := P ∩ −P is prime.

By lemma 1.3.2, let (F,≤P) =
(

f f
(
R[X]/p

)
, ≤P

)
is an ordered field extension of

(R,≤).

Now consider the system S :=


g1 ≥ 0
...

gs ≥ 0.

Claim: The system S has a solution in Fn, namely X := (X1, . . . , Xn),

i.e. to show: gi(X1, . . . , Xn) ≥P 0 ; i = 1, . . . , s.

Indeed gi(X1, . . . , Xn) = gi(X1, . . . , Xn), and since gi ∈ TS ⊂ P, it follows by
definition of ≤P that gi ≥P 0 .

Now apply TTP (recall 1.3.3) to conclude that:
∃ r ∈ Rn satisfying the system S, i.e. gi(x) ≥ 0 ; i = 1, . . . , s .
⇒ r ∈ KS ⇒ KS , ϕ .

This completes step II. □

Now we will do step I:
i.e. we show (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1)

(1)⇒ (2)

Let f ≥ 0 on KS , f . 0.
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Consider S ′ ⊆ R[X,Y] , S ′ := S ∪
{
Y f − 1,−Y f + 1

}
So, KS ′ =

{
(x, y) | gi(x) ≥ 0, i = 1, ..., n ; y f (x) = 1

}
.

Thus f (X,Y) = f (X) > 0 on KS ′ , so applying (1) ∃ p′, q′ ∈ TS ′ s.t.

p′(X,Y) f (X) = 1 + q′(X,Y)

Substitute Y := 1
f (X) in above equation and clear denominators by multiplying both

sides by f (X)2m for m ∈ N0 sufficiently large to get:

p(X) f (X) = f (X)2m + q(X),

with p(X) := f (X)2m p′
(
X, 1

f (X)

)
∈ R[X] and

q(X) := f (X)2mq′
(
X, 1

f (X)

)
∈ R[X].

To finish the proof we claim that: p(X), q(X) ∈ TS for sufficiently large m.

Observe that p′(X,Y) ∈ TS ′ , so p′ is a sum of terms of the form:

σ(X,Y)︸  ︷︷  ︸
∈ ΣR[X,Y]2

ge1
1 . . . g

es
s
(
Y f (X)−1

)es+1(−Y f (X)+1
)es+2 ; e1, . . . , es, es+1, es+2 ∈ {0, 1}

say σ(X,Y) =
∑

j

h j
(
X,Y

)2.

Now when we substitute Y by 1
f (X) in p′(X,Y), all terms with es+1 or es+2 equal to

1 vanish.

So, the remaining terms are of the form

σ
(
X, 1

f (X)

)
ge1

1 . . . g
es
s =

(∑
j

[
h j

(
X,

1
f (X)

)]2)
ge1

1 . . . g
es
s

So, we want to choose m large enough so that f (X)2m σ
(
X, 1

f (X)

)
∈ ΣR[X]2.

Write h j(X,Y) =
∑

i

hi j(X)Y i

Let m ≥ deg
(
h j(X,Y)

)
in Y , for all j.

Substituting Y = 1
f (X) in h j(X,Y) and multiplying by f (X)m, we get:

f (X)m h j

(
X, 1

f (X)

)
=

∑
i

hi j(X) f (X)m−i, with (m − i) ≥ 0 ∀ i
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so that f (X)m h j

(
X, 1

f (X)

)
∈ R[X] , for all j.

So f (X)2m σ
(
X, 1

f (X)

)
= f (X)2m

(∑
j

[
h j

(
X,

1
f (X)

)]2)
=

∑
j

[
f (X)m h j

(
X,

1
f (X)

)]2

∈ ΣR[X]2

Thus p and (similarly) q ∈ TS , which proves our claim and hence (1)⇒ (2). □

(2)⇒ (3)

Assume f = 0 on KS . Apply (2) to f and − f to get:
p1 f = f 2m1 + q1 and
−p2 f = f 2m2 + q2 ; for some p1, p2, q1, q2 ∈ TS , mi ∈ N0

Multiplying yields:

−p1 p2 f 2 = f 2(m1+m2) + f 2m1q2 + f 2m2q1 + q1q2

⇒ − f 2(m1+m2) = p1 p2 f 2 + f 2m1q2 + f 2m2q1 + q1q2︸                                     ︷︷                                     ︸
∈ TS

i.e. − f 2m ∈ TS . □

(3)⇒ (4)

Assume KS = ϕ
⇒ the constant polynomial f (X) ≡ 1 vanishes on KS .
Applying (3), gives −1 ∈ TS . □

(4)⇒ (1)

Let S
′

= S ∪ {− f }
Since f > 0 on KS we have KS ′ = ϕ , so −1 ∈ TS ′ by (4).
Moreover from S

′

= S ∪ {− f } , we have TS ′ = TS − f TS

⇒ −1 = q − p f ; for some p, q ∈ TS

i.e. p f = 1 + q □

This completes step I and hence the proof of Positivstellensatz. □□

We will now study other forms of the Real Nullstellensatz that will relate it to
Hilbert’s Nullstellensatz.
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2. EXKURS IN COMMUTATIVE ALGEBRA

Recall 2.1. Let K be a field, S ⊆ K[X]. Define

Z(S ) :=
{
x ∈ Kn | g(x) = 0 ∀ g ∈ S

}
, the zero set of S .

Proposition 2.2. Let V ⊆ Kn. Then the following are equivalent:
(1) V = Z(S ) ; for some finite S ⊆ K[X]
(2) V = Z(S ) ; for some set S ⊆ K[X]
(3) V = Z(I) ; for some ideal I ⊆ K[X]

Proof. (1)⇒ (2) Clear.

(2)⇒ (3) Take I :=< S >, the ideal generated by S .

(3)⇒ (1) Using Hilbert Basis Theorem (i.e. for a field K, every ideal in K[X] is
finitely generated):

I =< S >, S finite
⇒ Z(I) = Z(S ). □

Definition 2.3. V ⊆ Kn is an algebraic set if V satisfies one of the equivalent
conditions of Proposition 2.2.

Definition 2.4. Given a subset A ⊆ Kn, we form:

I(A) :=
{
f ∈ K[X] | f (a) = 0 ∀ a ∈ A

}
.

Proposition 2.5. Let A ⊆ Kn. Then

(1) I(A) is an ideal called the ideal of vanishing polynomials on A.

(2) If A = V is an algebraic set in Kn, then Z
(
I(V)

)
= V

(3) the map V 7−→ I(V) is a 1-1 map from the set of algebraic sets in Kn into
the set of ideals of K[X]. □

Remark 2.6. Note that for an ideal I of K[X], the inclusion I ⊆ I
(
Z(I)

)
is always

true.[
Proof. Say (by Hilbert Basis Theorem) I =< g1, . . . , gs >, gi ∈ K[X]. Then
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Z(I) =
{
x ∈ Kn | gi(x) = 0 ∀ i = 1, . . . , s

}
,

I
(
Z(I)

)
=

{
f ∈ K[X] | f (x) = 0 ∀ x ∈ Z(I)

}
.

Assume f = h1g1 + . . . + hsgs ∈ I, then f (x) = 0 ∀ x ∈ Z(I)[
since by definition x ∈ Z(I)⇒ gi(x) = 0 ∀ i = 1, . . . , s

]
⇒ f ∈ I

(
Z(I)

)
. □

]
But in general it is false that I

(
Z(I)

)
= I. Hilbert’s Nullstellensatz studies

necessary and sufficient conditions on K and I so that this identity holds.
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1. EXKURS IN COMMUTATIVE ALGEBRA

Recall 1.1. Let K be a field and I an ideal of K[X], then the inclusion
I ⊆ I

(
Z(I)

)
is always true.

But in general it is false that
I
(
Z(I)

)
= I (1)

Note 1.2. In other words we study the map

I :
{
algebraic sets in Kn

}
⇝

{
Ideals of K[X]

}
V 7−→ I(V )

• Clearly this map is 1-1 (proposition 2.5 of last lecture).

• What is the image of I ? (2)

Let I an ideal, I = I(V )

⇒ Z(I) = Z
(
I(V )

)
= V︸ ︷︷ ︸

(prop. 2.5 of last lecture)

Thus an ideal I is in the image ⇔ I = I
(
Z(I)

)
So studying the equality (1) amounts to studying (2).

1
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2. RADICAL IDEALS AND REAL IDEALS

Remark 2.1. For an ideal I ⊆ K[X], answer to I = I
(
Z(I)

)
is known

• when K is algebraically closed (Hilbert’s Nullstellensatz),
or

• when K is real closed (Real Nullstellensatz).

To formulate these two important theorems we need to introduce some
terminology:

Definition 2.2. Let A be a commutative ring with 1, I ⊆ A, I an ideal of
A. Define

(i)
√
I :=

{
a ∈ A | ∃ m ∈ N s.t. am ∈ I

}
, the radical of I.

(ii) R
√
I :=

{
a ∈ A | ∃ m ∈ N and σ ∈ ΣA2 s.t. a2m + σ ∈ I

}
, the real

radical
of I.

Remark 2.3. It follows from the definition that I ⊆
√
I ⊆ R

√
I.

Definition 2.4. Let I be an ideal of A. Then

(1) I is called radical ideal if I =
√
I, and

(2) I is called real radical ideal (or just real ideal) if I = R
√
I.

Remark 2.5. (i) Every prime ideal is radical, but the converse does not
hold in general.

(ii) I real radical ⇒ I radical (follows from Remark 2.3 and Definition 2.4).

Proposition 2.6. Let A be a commutative ring with 1, I ⊆ A an ideal.
Then

(1) I is radical ⇔ ∀ a ∈ A : a2 ∈ I ⇒ a ∈ I

(2) I is real radical ⇔ for k ∈ N,∀ a1, . . . , ak ∈ A :
k∑

i=1

a2i ∈ I ⇒ a1 ∈ I.
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Proof. (1) (⇒) Trivially follows from definition.

(⇐) Let a ∈
√
I, then ∃ m ≥ 1 s.t. am ∈ I.

Let k (big enough) s.t. 2k ≥ m, then

a2
k
= ama2

k−m ∈ I

Now we show by induction on k that:[
a2 ∈ I ⇒ a ∈ I

]
⇒

[
a2

k ∈ I ⇒ a ∈ I
]

For k = 1, it is clear.

Assume it true for k and show it true for k + 1, i.e. let a2
k+1 ∈ I,

then

a2
k+1

=
(
a2

k
)2

∈ I ⇒︸︷︷︸
(by assumption)

a2
k ∈ I ⇒︸︷︷︸

(induction hypothesis)

a ∈ I.

(2) (⇒) Trivially follows from definition.

(⇐) Let a ∈ R
√
I, then ∃ m ≥ 1, σ = Σai

2 (∈ ΣA2) s.t. a2m + σ ∈ I.

⇒ (am)2 + σ ∈ I ⇒︸︷︷︸
(by assumption)

am ∈ I ⇒︸︷︷︸(
as above in (1)

) a ∈ I. □

Remark 2.7. (i) Since real radical ideal ⇒ radical ideal, so in particular (2)
⇒ (1) in above proposition.

(ii) A prime ideal is always radical (as in Remark 2.5), but need not be real.

Proposition 2.8. Let p ⊆ A be a prime ideal. Then
p is real ⇔ ff

(
A/p

)
is a real field.

Proof. p is not real

⇔ ∃ a, a1, . . . , ak ∈ A; a /∈ p such that a2 +
k∑

i=1

a2i ∈ p

⇔ a2 +
k∑

i=1

ai
2 = 0 and a ̸= 0

(
in A/p

)
⇔ ff

(
A/p

)
is not real. □

Theorem 2.9. Let K be a field, A = K[X], I ⊆ A an ideal. Then
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(1) (Hilbert’s Nullstellensatz) Assume K is algebraically closed, then
I
(
Z(I)

)
=

√
I.

(Proved in B5)

(2) (Real Nullstellensatz) Assume K is real closed, then
I
(
Z(I)

)
= R

√
I.

(Will be deduced from Positivstellensatz)

Corollary 2.10. Consider the map:

I :
{
algebraic sets in Kn

}
−→

{
Ideals of K[X]

}
(1) If K is algebraically closed, then

Image I =
{
I | I is a radical ideal

}
(2) If K is real closed, then

Image I =
{
I | I is real ideal

}
□

Now we want to deduce the Real Nullstellensatz
[
Theorem 2.9 (2)

]
from

part (3) of the Positivstellensatz (PSS)
[
Theorem 1.1 of last lecture

]
.

We need the following 2 (helping) lemmas:

Lemma 2.11. Let A be a commutative ring and M be a quadratic module,
then:

(1) M ∩ (−M) is an ideal of A.

(2) The following are equivalent for a ∈ A:

(i) a ∈
√
M ∩ (−M)

(ii) a2m ∈ M ∩ (−M) for some m ∈ N,m ≥ 1

(iii) −a2m ∈ M for some m ∈ N,m ≥ 1. □

Lemma 2.12. Let A be a ring, M(= MS) a quadratic module (resp. pre-
ordering) of A generated by S = {g1, . . . , gs}; g1, . . . , gs ∈ A. Let I be an
ideal in A generated by h1, . . . , ht , i.e. I =< h1, . . . , ht >;h1, . . . , ht ∈ A.
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Then M + I is the quadratic module (resp. the preordering) generated by
S ∪ {±hi ; i = 1, . . . , t}. □

Recall 2.13.
[
(3) of PSS

]
Let A = R[X], S = {g1, . . . , gs} ⊆ R[X], f ∈

R[X]. Then f = 0 on KS ⇔ ∃ m ∈ Z+ s.t. −f 2m ∈ TS.

Corollary 2.14.
(
to Recall 2.13 and Lemma 2.11

)
Let K = KS ⊆ Rn, T =

TS ⊆ R[X] (as in PSS), then

I(KS) =
√
TS ∩ (−TS).

Proof. f = 0 on KS ⇔︸︷︷︸(
by(3) of PSS

)−f 2m ∈ TS for some m ∈ Z+

⇔︸︷︷︸
(by lemma 2.11)

f ∈
√

TS ∩ (−TS) □

Corollary 2.15. (to Lemma 2.11) Let A be a commutative ring with 1. Let
I be an ideal of A. Consider the preordering T := ΣA2 + I, then

R
√
I =

√
T ∩ (−T ). □

Now Corollary 2.14 and Corollary 2.15 give the proof of the Real Null-
stellensatz (RNSS) as follows:

Proof of RNSS
[
Theorem 2.9 (2)

]
. Let I be an ideal of R[X]

We show that: I
(
Z(I)

)
= R

√
I

R[X] Noetherian ⇒ I =< h1, . . . , ht > (by Hilbert Basis Theorem) .
Consider S := {±hi ; i = 1, . . . , t}
Then KS = Z(I) [clearly]

Now by Lemma 2.12, we have:

T = TS = ΣR[X]2 + I

So we get,

I
(
Z(I)

)
= I

(
KS

)
=︸︷︷︸

(Cor 2.14)

√
T ∩ (−T ) =︸︷︷︸

(Cor 2.15)

R
√
I □

3. THE REAL SPECTRUM
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Definition 3.1. Let A be a commutative ring with 1. Then:

Spec(A) :=
{
p | p is prime ideal of A

}
is called the Spectrum of A.

Sper(A) = Specr(A) :=
{
(p,≤) | p is a prime ideal of A and ≤ is an

ordering on the (formally real) field ff
(
A/p)

}
is called the Real Spectrum

of A.

Remark 3.2. (i) Several orderings may be defined on ff
(
A/p),

(p,≤1) ̸= (p,≤2).

(ii) (p,≤) ∈ Sper(A) ⇒ p is real radical ideal. [see Proposition 2.8 and
Remark 2.5 (i).]

Note 3.3. Sper(A) :=
{
α = (p,≤) | p is a real prime and ≤ an ordering on

ff
(
A/p)

}
.
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1. THE REAL SPECTRUM

Definition 1.1. Let A be a commutative ring with 1. We set:

Sper(A) :=
{
α = (p,≤) | p is a prime ideal of A and ≤ is an ordering on

ff
(
A/p)

}
.

Note 1.2. Sper(A) :=
{
α = (p,≤) | p is a real prime and ≤ an ordering on

ff
(
A/p)

}
.

Definition 1.3. Let α = (p,≤) ∈ Sper(A), then p = Supp(α), the Support
of α.

Recall 1.4. An ordering P ⊆ A is a preordering with P ∪ −P = A and
p := P ∩ −P prime ideal of A.

Definition 1.5. Alternatively, the Real Spectrum of A, Sper(A) can be
defined as:

Sper(A) :=
{
P | P ⊆ A,P is an ordering of A

}
.

Remark 1.6. The two definitions of Sper(A) are equivalent in the following
sense:

1



POSITIVE POLYNOMIALS LECTURE NOTES (05: 27/04/10) 2

The map

φ:
{
Orderings inA

}
⇝

{
(p,≤), p real prime, ≤ ordering on ff

(
A/p)

}
P 7−→ p := P ∩ −P,≤P on ff

(
A/p)(

where
a

b
≥P 0 ⇔ ab ∈ P with a = a+ p

)
is bijective

[
where φ−1

(
p,≤

)
is P :=

{
a ∈ A | a ≥ 0

}]
. □

2. TOPOLOGIES ON Sper(A)

Definition 2.1. The Spectral Topology on Sper(A):
Sper(A) as a topological space, subbasis of open sets is:

U(a) :=
{
P ∈ Sper(A) | a /∈ P

}
, a ∈ A.(

So a basis of open sets consists of finite intersection, i.e. of sets

U(a1, . . . , an) :=
{
P ∈ Sper(A) | a1, . . . , an /∈ P

})
Then close by arbitrary unions to get all open sets.

This is called Spectral Topology.

Definition 2.2. The Constructible (or Patch) Topology on Sper(A) is
the topology that is generated by the open sets U(a) and their complements
Sper(A)\U(a), for a ∈ A.(
Subbasis for constructible topology is U(a), Sper(A)\U(a), for a ∈ A.

)
Remark 2.3. The constructible topology is finer than the Spectral Topology
(i.e. more open sets).

Special case: A = R[X]

Proposition 2.4. There is a natural embedding

P : Rn −→ Sper
(
R[X]

)
given by

x 7−→ Px :=
{
f ∈ R[X] | f(x) ≥ 0

}
.

Proof. The map P is well defined.

Verify that Px is indeed an ordering of A.

Clearly it is a preordering, Px ∪ −Px = R[X].



POSITIVE POLYNOMIALS LECTURE NOTES (05: 27/04/10) 3

p := Px∩−Px =
{
f ∈ R[X] | f(x) = 0

}
is actually a maximal ideal of R[X],

since p = Ker (evx), the kernel of the evaluation map

evx : R[X] −→ R
f 7−→ f(x)

so, R[X]
p

≃ R︸︷︷︸
a field

(by first isomorphism theorem)

⇒ pmaximal⇒ p is prime ideal. □

Theorem 2.5. P(Rn), the image of Rn in Sper
(
R[X]

)
is dense in

(
Sper

(
R[X]

)
,

Constructible Topology
)
and hence in

(
Sper

(
R[X]

)
, Spectral Topology

)
.(

i.e. P(Rn)
patch

= Sper
(
R[X]

))
.

Proof. By definition, a basic open set in Sper
(
R[X]

)
has the form

U =
{
P ∈ Sper

(
R[X]

)
| fi /∈ P, gj ∈ P ; i = i, . . . , s, j = 1, . . . , t

}
, for some

fi, gj ∈ R[X].

Let P ∈ U
(
open neighbourhood of P ∈ Sper

(
R[X]

))
We want to show that: ∃ y ∈ Rn s.t. Py ∈ U

Consider F = ff
(
R[X]/p

)
; p = Supp(P ) = P ∩ −P and ≤ ordering on F

induced by P .

Then
(
F,≤

)
is an ordered field extension of

(
R,≤

)
.

Consider x =
(
x1, . . . , xn

)
∈ F n, where xi = Xi + p

Then by definition of ≤ we have (as in the proof of PSS):

fi(x) < 0 and gj(x) ≥ 0 ; ∀ i = i, . . . , s, j = 1, . . . , t.

By Tarski Transfer, ∃ y ∈ Rn s.t.

fi(y) < 0
(
⇔ fi /∈ Py

)
and gj(y) ≥ 0

(
⇔ gj ∈ Py

)
; i = i, . . . , s, j =

1, . . . , t

⇔ Py ∈ U □
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3. ABSTRACT POSITIVSTELLENSATZ

Recall 3.1. T proper preordering ⇒ ∃ P an ordering of A s.t. P ⊇ T .

Definiton 3.2. Let P be an ordering of A, fix a ∈ A. We define Sign of a
at P :

a(P ) :=


1 if a /∈ −P

0 if a ∈ P ∩ −P

−1 if a /∈ P(
Note that this allows to consider a ∈ A as a map on Sper(A)

)
.

Notation 3.3. We write: a > 0 at P if a(P ) = 1
a = 0 at P if a(P ) = 0
a < 0 at P if a(P ) = −1

Note that (in this notation) a ≥ 0 at P iff a ∈ P .

Definition 3.4. Let T ⊆ A, then theRelative Spectrum of A with respect
to T is

SperT (A) =
{
P | P ⊇ T ;P ∈ Sper(A)

}
.

Proposition 3.5. Let T ⊆ A be a finitely generated preordering, say T =
TS; where S = {g1, . . . , gs} ⊆ A. Then

SperT (A) = SperS(A) =
{
P ∈ Sper(A) | gi ∈ P ; i = i, . . . , s

}
=

{
P ∈ Sper(A) | gi(P ) ≥ 0 ; i = i, . . . , s

}
□

Remark 3.5. Let T ⊆ A

(i) SperT (A) inherits the relative spectral (respectively constructible)
topology.

(ii) In case T = T{g1,...,gs} is a finitely generated preordering, then the
proof of Theorem 2.5 goes through to give the following relative version for
SperT :

Theorem 3.6. (Relative version of Theorem 2.5) Let T = TS = finitely
generated preordering; S = {g1, . . . , gs}. Let K = KS =

{
x ∈ Rn | gi(x) ≥

0
}
⊆ Rn, a basic closed semi-algebraic set. Consider

(
SperT , Constructible

Topology
)
. Then
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P : K ⇝ SperT
(
R[X]

)
(defined as before)

x 7−→ Px =
{
f ∈ R[X] | f(x) ≥ 0

}
is well defined

(
i.e. Px ⊇ T ∀ x ∈ K

)
.

Moreover P(K) is dense in
(
SperT

(
R[X]

)
, Constructible Topology

)
.

Proof. The proof is analogous to the proof of Theorem 2.5.
(Note the fact that T is finitely generated is crucial here to be able to apply
Tarski Transfer.) □

Theorem 3.7. (Abstract Positivstellensatz) Let A be a commutative
ring, T ⊆ A be a preordering of A (not necessarily finitely generated). Then
for a ∈ A:

(1) a > 0 on SperT (A) ⇔ ∃ p, q ∈ T s.t. pa = 1 + q

(2) a ≥ 0 on SperT (A) ⇔ ∃ p, q ∈ T,m ≥ 0 s.t. pa = a2m + q

(3) a = 0 on SperT (A) ⇔ ∃ m ≥ 0 s.t. −a2m ∈ T .

Proof. (1) Let a > 0 on SperT (A). Suppose for a contradiction that there
are no elements p, q ∈ T s.t. pa = 1 + q i.e. s.t. −1 = q − pa

i.e. −1 ̸= q − pa ∀ p, q ∈ T

Thus −1 /∈ T
′
:= T − Ta.

⇒ T
′
is a proper preordering.

So (by recall 3.1) ∃ P an ordering of A with T
′ ⊆ P .

Now observe that T ⊆ P i.e. P ∈ SperT (A) but −a ∈ P (i.e. a(P ) ≤ 0) i.e.
a ≤ 0 on P , a contradiction to the assumption. □

Proposition 3.8. Abstract Positivstellensatz ⇒ Positivstellensatz.

Proof. A = R[X], T = TS = T{g1,...,gs}, K = KS.

It suffices to show (2) of PSS [Theorem 1.1 of lecture 03 on 20/04/10], i.e.
f ≥ 0 on KS ⇔ ∃ m ∈ Z+, ∃ p, q ∈ TS s.t. pf = f 2m + q.

Let f ∈ R[X] and f ≥ 0 on KS.

It suffices [by (2) of Theorem 3.7] to show that f ≥ 0 on SperT
(
R[X]

)
:
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If not then ∃ P ∈ SperT
(
R[X]

)
s.t. f /∈ P

So, P ∈ UT (f)(
open neighbourhood of P ∈ SperT

(
R[X]

))
Now by Theorem 3.6 (i.e. relative density of P(K) in SperT

(
R[X]

)
):

∃ x ∈ K s.t. Px ∈ UT (f)

⇒ f /∈ Px ⇒ f(x) < 0, a contradiction to the assumption. □
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1. GENERALITIES ABOUT POLYNOMIALS

Definition 1.1. For a polynomial p ∈ R[X1, . . . , Xn], we write

p(X) =
∑
i∈Nn

0

ci X
i ; ci ∈ R,

where X i = X i1
1 . . . X in

n is a monomial of degree = |i| =
n∑

k=1

ik and ci X
i is

a term.

Definition 1.2. A polynomial p(X) ∈ R[X] is called homogeneous or
form if all terms in p have the same degree.

Notation 1.3. Fn,m :=
{
F ∈ R[X1, . . . , Xn] | F is a form and deg(F ) = m

}
,

the set of all forms in n variables of degree m (also called set of n-ary m-ics
forms), for n,m ∈ N.
Convention: 0 ∈ Fn,m.

Definition 1.4. Let p ∈ R[X1, . . . , Xn] of degree m. The homogenization
of p w.r.t Xn+1 is defined as

ph(X1, . . . , Xn, Xn+1) := Xm
n+1 p

(
X1

Xn+1

, . . . ,
Xn

Xn+1

)

1
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Note that ph is a homogeneous polynomial of degree m and in n+1 variables
i.e. ph ∈ Fn+1,m, and ph(X1, . . . , Xn, 1) = p(X1, . . . , Xn).

Proposition 1.5. (1) Let p(X) ∈ R[X1, ...Xn], deg(p) = m, then

number of monomials of p ≤
(
m+n
n

)
(2) Let F (X) ∈ Fn,m, then

number of monomials of F ≤ N :=
(
m+n−1
n−1

)
□

Remark 1.6. Fn,m is a finite dimensional real vector space with Fn,m ≃ RN .

2. PSD- AND SOS- POLYNOMIALS

Definition 2.1. (1) p(X) ∈ R[X] is positive semidefinite (psd) if

p(x) ≥ 0 ∀ x ∈ Rn.

(2) p(X) ∈ R[X] is sum of squares (SOS) if ∃ pi ∈ R[X] s.t.

p(X) =
∑
i

pi(X)2.

Notation 2.2. Pn,m := set of all forms F ∈ Fn,m which are psd, and∑
n,m := set of all forms F ∈ Fn,m which are sos.

Lemma 2.3. If a polynomial p is psd then p has even degree. □

Remark 2.4. From now on (using lemma 2.3) we will often write Pn,2d and∑
n,2d.

Lemma 2.5. Let p be a homogeneous polynomial of degree 2d, and p sos.
Then every sos representation of p consists of homogeneous polynomials only,
i.e.

p(X) =
∑
i

pi(X)2 ⇒ pi(X) homogenous of degree d, i.e. pi ∈ Fn,d. □

Remark 2.6. The properties of psd-ness and sos-ness are preserved under
homogenization:

Lemma 2.7. Let p(X) be a polynomial. Then

(1) p is psd iff ph is psd,
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(2) p is sos iff ph is sos. □

So we can focus our investigation of psdness of polynomials versus sosness
of polynomials to those of forms, i.e. study and compare

∑
n,m ⊆ Pn,m .

Theorem 2.8. (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 [i.e. binary forms] or

(ii) m = 2 [i.e. quadratic forms] or

(iii) (n,m) = (3, 4) [i.e. ternary quartics].

For the ternary quartics case (F3,4), we shall study the convex cones Pn,m

and
∑

n,m.

3. CONVEX SETS, CONES AND EXTREMALITY

Definition 3.1. A subset C of Rn is convex set if a, b ∈ C ⇒ λa+(1−λ)b ∈
C, for all 0 < λ < 1.

Proposition 3.2. The intersection of an arbitrary collection of convex sets
is convex.

Notation 3.3. R+ := {x ∈ R | x ≥ 0}.

Definition 3.4. Let c1, . . . , ck ∈ Rn. A convex combination of c1, . . . , ck
is any vector sum

α1c1 + . . .+ αkck, with α1, . . . , αk ∈ R+ and
k∑

i=1

αi = 1.

Proposition 3.5. A subset C ⊆ Rn is convex if and only if it contains all
the convex combinations of its elements.

Proof. (⇐) clear

(⇒) Let C ⊆ Rn be a convex set. By definition C is closed under taking
convex combinations with two summands. We show that it is also closed
under finitely many summands.

Let k > 2. By Induction on k, assuming it true for fewer than k.

Given a convex combination c = α1c1 + . . .+ αkck, with c1, . . . , ck ∈ C

Note that we may assume 0 < αi < 1 for i = i, . . . , k; otherwise we have
fewer than k summands and we are done.
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Consider d =
α2

1− α1

c2 + . . .+
αk

1− α1

ck

we have
α2

1− α1

, . . . ,
αk

1− α1

> 0 and
α2

1− α1

+ . . .+
αk

1− α1

= 1

Thus d is a convex combination of k−1 elements of C and d ∈ C by induction.

Since c = α1c1 + (1− α1)d, it follows that c ∈ C. □

Definition 3.6. The intersection of all convex sets containing a given subset
S ⊆ Rn is called the convex hull of S and is denoted by cvx(S).

Remark 3.7. The convex hull of S ⊆ Rn is a convex set and is the uniquely
defined smallest convex set containing S.

Proposition 3.8. For any S ⊆ Rn,
cvx(S) = the set of all convex combinations of the elements of S.

Proof. (⊇) The elements of S belong to cvx(S), so all their convex combina-
tions belong to cvx(S) by Proposition 3.5.

(⊆) On the other hand we observe that the set of convex combinations of
elements of S is itself a convex set containing S:

let c = α1c1 + . . .+ αkck and d = β1d1 + . . .+ βldl, where ci, di ∈ S, then

λc+(1−λ)d = λα1c1+ . . .+λαkck+(1−λ)β1d1+ . . .+(1−λ)βldl, 0 ≤ λ ≤ 1
is just another convex combination of elements of S.

So by minimality property of cvx(S), it follows that cvx(S) ⊆ the set of all
convex combinations of the elements of S. □

Corollary 3.9. The convex hull of a finite subset {s1, . . . , sk} ⊆ Rn consists
of all the vectors of the form α1s1 + . . . + αksk with α1, . . . , αk ≥ 0 and∑
i

αi = 1. □

Definitions 3.10. (1) A set which is the convex hull of a finite subset of
Rn is called a convex polytope, i.e. C ⊆ Rn is a convex polytope if C =
cvx(S) for some finite S ⊆ Rn.

(2) A point in a polytope is called a vertex if it is not on the line segment
joining any other two distinct points of the polytope.

Remark 3.11. (1) A convex polytope is necessarily closed and bounded,
i.e. compact.
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(2) A convex polytope is always the convex hull of its vertices.

More general version for compact sets is the Krein Milman theorem:

Theorem 3.12. (Krein-Milman) Let C ⊆ Rn be a compact and convex
set. Then C is the convex hull of its extreme points. □
Definition 3.13. x ∈ C is extreme if C \ {x} is convex.
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1. CONVEX CONES AND GENERALIZATION OF KREIN MILMAN
THEOREM

We want to prove: P3,4 =
∑

3,4

To do it , we need several notions and intermediate results.

Definition 1.1. C ⊆ Rk is a convex cone if

x, y ∈ C ⇒ x+ y ∈ C, and

x ∈ C, λ ∈ R+ ⇒ λx ∈ C

(i.e if it is closed under addition and under multiplication by non-negative
scalars.)

Fact 1.2. C ⊆ Rk is a convex cone if and only if it is closed under non-
negative linear combinations of its elements, i.e.
∀ n ∈ N, ∀ x1, . . . , xn ∈ C, ∀ λ1, . . . , λn ∈ R+ : λ1x1 + . . .+ λnxn ∈ C.

Definition 1.3. Let S ⊆ Rk. Then

Cone(S) := {non-negative linear combinations of elements from S}
is the convex cone generated by S.

1
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Fact 1.4. For every S ⊆ Rk, Cone(S) is the smallest convex cone which
includes S.

Fact 1.5. If S ⊆ Rk is convex, then

Cone(S) := {λx | λ ∈ R+, x ∈ S}.

Definition 1.6. R ⊆ Rk is a ray if ∃ x ∈ Rk, x ̸= 0 s.t.

R = {λx | λ ∈ R+} := x+

(A ray R is a half-line.)

Definition 1.7. Let C ⊆ Rk be a convex set:

(1) a point c ∈ C is an extreme point if C \ {c} is convex.

(2) a ray R ⊆ C is an extreme ray if C \R is convex.

Notation 1.8. Let C ⊆ Rk convex.

(1) ext(C) := set of all extreme points in C

(2) rext(C) := set of all extreme rays in C

Definition 1.9. (1) A straight line L ⊆ Rk is a translate of a 1-dimensional
subspace, i.e. L = {x+ λy | λ ∈ R}, for some x, y ∈ Rk, y ̸= 0.

(2) C ⊆ Rk is line free if C contains no straight lines.

Theorem 1.10. (Klee) Let C ⊆ Rk be a closed line free convex set. Then

C = cvx
(
ext(C) ∪ rext(C)

)
Remark 1.11. (a) Let C ⊆ Rk be a convex cone and x ∈ C, x ̸= 0. Then
x is not extreme.
Also x+ ⊂ C.

(b) Let C ⊆ Rk be a line free convex cone. Then ext(C) = {0}.

Proof. If not, then C \ {0} is not convex, so

∃ x, y ∈ C \ {0}, ∃ 0 < λ < 1 s.t. λx+ (1− λ)y /∈ C \ {0}.
But C is convex, so

λx+ (1− λ)y = 0.
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That means that x+ ∪ y+ is a straight line in C, a contradiction. □

Theorem 1.12.
Let C ⊆ Rk be a closed line free convex cone. Then

C = cvx
(
rext(C)

)
Proof. By Remark 1.11, ext(C) = {0}.
Applying Theorem 1.10, we get C = cvx

(
rext(C)

)
. □

Remark 1.13. Let C be a line free convex cone

(1) 0 ̸= x ∈ C belongs to an extreme ray, i.e. x is ray extreme (equivalently,
the ray {λx | λ ∈ R+} generated by x is extreme) if and only if

whenever x = x1+x2 , with x1, x2 ∈ C, then xi = λix ; λi ∈ R+, λ1+λ2 = 1
(i.e. x1, x2 belong to the ray generated by x).

(2) The set of convex linear combinations of points in extremal rays = the
set of sums of points in extremal rays.

2. THE CONES Pn,2d and
∑

n,2d

Lemma 2.1. Pn,2d is a closed convex cone.

Proof. It is trivial that Pn,2d is a convex cone.

Next we prove that Pn,2d is closed:

Let (Pk)k∈N be a sequence in Pn,2d converging to P . Then for all x ∈
Rn, Pk(x) → P (x).

We want (to show that) P ∈ Pn,2d,

otherwise ∃ x0 ∈ Rn, s.t. P (x0) = −ϵ, with ϵ > 0.

And since Pk(x0) → P (x0) in Rn, ∀ ϵ > 0,∃ m ∈ N s.t ∀ k > m : |Pk(x0) −
P (x0)| < ϵ, thus (taking the same ϵ as above): |Pk(x0)+ϵ| < ϵ ⇒ Pk(x0) < 0,
a contradiction (as Pk ∈ Pn,2d ∀ k). So P ∈ Pn,2d, hence Pn,2d is closed. □

Lemma 2.2. The cone Pn,2d is line free.

Proof. Suppose not, then there exists a straight line L in Pn,2d.

Write L = {F + λG | λ ∈ R}; F,G ∈ Pn,2d, G ̸= 0.

Since −G /∈ Pn,2d, take x0 s.t. −G(x0) < 0.
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Then for (large enough λ i.e.) λ → −∞ we have F (x0) + λG(x0) < 0
⇒ L ⊈ Pn,2d.

Hence Pn,2d is line free. □

Corollary 2.3. Pn,2d is the convex hull of its extremal rays.

Proof. By Lemma 2.1 and Lemma 2.2, Pn,2d is a line free closed convex cone.
And therefore by the generalization of Krein-Milmann (Theorem 1.12) it is
the convex hull of its extremal rays. □

Definition 2.4. A form F ∈ Pn,2d is ray extremal in Pn,2d if

F = F1 + F2, F1, F2 ∈ Pn,2d ⇒ Fi = λiF ; i = 1, 2 for λi ∈ R+ satisfying
λ1 + λ2 = 1.

Similar definition for
∑

n,2d.

Note 2.5. By Remark 1.13 this just means that the ray generated by F is
extremal.

Remark 2.6. (1) F ∈
∑

n,2d extremal ⇒ F = G2 for some G ∈ Fn,d.

(2) The converse of (1) is not true in general.

For example: (x2 + y2)2 = (x2 − y2)2 + (2xy)2 is not extremal in
∑

2,4.

(3) G2 is extremal in
∑

n,2d ⇏ G2 is extremal in Pn,2d.

For instance Choi et al showed that

p := f 2, where f(x, y, z) = x4y2+ y4z2+ z4x2− 3x2y2z2+(x2y+ y2z− z2x−
xyz)2 is extremal in

∑
3,12 but not in P3,12.

Notation 2.7. We denote by E(Pn,2d) the set of all extremal forms in Pn,2d.

Lemme 2.8. Let E ∈ Pn,2d. Then E ∈ E(Pn,2d) if and only if ∀ F ∈ Pn,2d

with E ≥ F ∃ α ∈ R+ such that F = αE.

Proof. (⇒) Let E ∈ E(Pn,2d), F ∈ Pn,2d s.t E ≥ F , then

G := E − F ∈ Pn,2d , so E = F +G.

Since E is extremal ∃ α, β ≥ 0, α+ β = 1 such that F = αE and G = βE.

(⇐) Let F1, F2 ∈ Pn,2d so that E = F1 + F2, then E ≥ F1, so ∃ α ≥ 0 such
that F1 = αE. Therefore F2 = E − F1 = (1 − α)E with 1 − α ≥ 0 (since
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E,F2 ∈ Pn,2d).

Thus E is extremal. □

Corollary 2.9. Every F ∈ Pn,2d is a finite sum of forms in E(Pn,2d).

Proof. By Corollary 2.3 and Remark 1.13 (2). □

3. PROOF OF P3,4 =
∑

3,4

Corollary 2.9 is the first main item in the proof of Hilbert’s Theorem (The-
orem 2.8 of lecture 6) for the ternary quartic case. The second main item is
the following lemma (which will be proved in the next lecture):

Lemma 3.1. Let T (x, y, z) ∈ P3,4. Then ∃ a quadratic form q(x, y, z) ̸= 0
s.t. T ≥ q2, i.e. T − q2 is psd.

Theorem 3.2. P3,4 =
∑

3,4

Proof. Let F ∈ P3,4 . By Corollary 2.9,

F = E1 + . . .+ Ek, where Ei is extremal in P3,4 for i = 1, . . . , k.

Applying Lemma 3.1 to each Ei we get

Ei ≥ q2i , for some quadratic form qi ̸= 0

Since Ei is extremal, by Lemma 2.8, we get

q2i = αiEi ; for some αi > 0, ∀ i = 1, . . . , k

and so Ei =
( 1
√
αi

qi

)2

and hence F ∈
∑

3,4. □
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1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 or

(ii) m = 2 or

(iii) (n,m) = (3, 4).

In lecture 21 (Theorem 3.2) we showed the proof of (Hilbert’s) Theorem 1.1
part (iii), i.e. for ternary quartic forms: P3,4 =

∑
3,4 using generalization of

Krein-Milman theorem (applied to our context), plus the following lemma:

Lemma 1.2. Let T (x, y, z) ∈ P3,4. Then ∃ a quadratic form q(x, y, z) ̸= 0
s.t. T ≥ q2, i.e. T − q2 is psd.

Proof. Consider three cases concerning the zero set of T.

Case 1. T > 0, i.e. T has no non trivial zeros.

Let

ϕ(x, y, z) :=
T (x, y, z)

(x2 + y2 + z2)2
,∀ (x, y, z) ̸= 0.

Let µ := inf
S2
ϕ ≥ 0, where S2 is the unit sphere.

Since S2 is compact and ϕ is continous, ∃ (a, b, c) ∈ S2 s.t. µ = ϕ(a, b, c) > 0

1
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Therefore ∀ (x, y, z) ∈ S2 : T (x, y, z) ≥ µ(x2 + y2 + z2)2.

Claim: T (x, y, z) ≥ µ(x2 + y2 + z2)2 for all (x, y, z) ∈ R3.

Indeed, it is trivially true at the point (0, 0, 0), and

for (x, y, z) ∈ R3 \ {0} denote N :=
√

x2 + y2 + z2, then
( x

N
,
y

N
,
z

N

)
∈ S2,

which implies that

T

(
x

N
,
y

N
,
z

N

)
≥ µ

(( x

N

)2
+
( y

N

)2
+
( z

N

)2)2

.

So, by homogeneity we get

T (x, y, z) ≥ µ(x2 + y2 + z2)2 =
(√

µ
(
x2 + y2 + z2

))2
, as claimed.

□(Case1)

Case 2. T has exactly one (nontrivial) zero.

By changing coordinates, we may assume w.l.o.g. that zero to be (1, 0, 0),
i.e. T (1, 0, 0) = 0.

Writing T as a polynomial in x one gets

T (x, y, z) = ax4 + (b1y + b2z)x
3 + f(y, z)x2 + 2g(y, z)x+ h(y, z),

where f , g and h are binary quadratic, cubic and quartic forms respectively.

Reducing T : Since T (1, 0, 0) = 0 we get a = 0.

Further, suppose (b1, b2) ̸= (0, 0), it ⇒ ∃ (y0, z0) ∈ R2 s.t b1y0 + b2z0 < 0,
then taking x big enough ⇒ T (x0, y0, z0) < 0, a contradiction to T ≥ 0.
Thus b1 = b2 = 0 and therefore

T (x, y, z) = f(y, z)x2 + 2g(y, z)x+ h(y, z) (1)

Next, clearly h(y, z) ≥ 0
[
since otherwise T (0, y0, z0) = h(y0, z0) < 0 for some

(y0, z0) ∈ R2, a contradiction
]
.

Also f(y, z) ≥ 0, if not, say f(y0, z0) < 0 for some (y0, z0), then taking x big
enough we get T (x0, y0, z0) < 0, a contradiction.

Thus f, h ≥ 0.

From (1) we can write:

fT (x, y, z) = (xf + g)2 + (fh− g2) (2)

Claim: fh− g2 ≥ 0

If not, say (fh− g2)(y0, z0) < 0 for some (y0, z0). Then there are two cases
to be considered here:
Case (i): f(y0, z0) = 0. In this case we claim g(y0, z0) = 0 because if not
then T (x, y0, z0) = 2g(y0, z0)x + h(y0, z0) and we take |x0| large enough so
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that 2g(y0, z0)x0 + h(y0, z0) < 0, a contradiction.
Case (ii): f(y0, z0) > 0, we take x0 such that x0f(y0, z0)+ g(y0, z0) = 0, then
fT (x0, y0, z0) = (fh− g2)(y0, z0) < 0, a contradiction.

So our claim is established and fh− g2 ≥ 0.

Now the polynomial f is a psd binary quadratic form, thus by Lemma 1.3
below f is sum of two squares. Let us consider the two subcases:

Case 2.1. f is a perfect square. Then f = f 2
1 , with f1 = by + cz for some

b, c ∈ R. Up to multiplication by a constant (−c, b) is the unique zero of f1
and so of f . Thus

(fh− g2)(−c, b) = −(g(−c, b))2 ≤ 0 by (2) evaluated at (−c, b).

which is a contradiction unless g(−c, b) = 0 which means 1 that f1 | g, i.e.
g(y, z) = f1(y, z)g1(y, z). Then from (2) we get

fT ≥ (xf + g)2

= (xf1
2 + f1g1)

2

= f1
2(xf1 + g1)

2

= f(xf1 + g1)
2.

Hence T ≥ (xf1 + g1)
2 as required.

Case 2.2. f = f 2
1 + f 2

2 , with f1, f2 linear in y, z.

Now f1 ̸≡ λf2 [otherwise we are in Case 2.1]

i.e. f1, f2 do not have common non-trivial zeroes, otherwise they would be
multiples of each other and f would be a perfect square. Hence f > 0.

Claim 1: fh− g2 > 0

If not, i.e. if ∃ (y0, z0) ̸= (0, 0) s.t. (fh − g2)(y0, z0) = 0, then (y0, z0)

could be completed to a zero
(
− g(y0, z0)

f(y0, z0)
, y0, z0

)
of T , which contradicts

our hypothesis that T has only 1 zero (1, 0, 0). Thus fh− g2 > 0.

Claim 2:
fh− g2

f 3
has a minimum µ > 0 on the unit circle S1. (clear)

So, just as in Case 1,

fh− g2 ≥ µf 3, ∀ (y, z) ∈ R2.

⇒ fT ≥ fh− g2 ≥ µf 3, by (2)

1See (5) implies (2) of Theorem 4.5.1 in Real Algebraic Geometry by J. Bochnak, M.
Coste, M.-F. Roy or (5) implies (2) of Theorem 12.7 in Positive Polynomials and Sum of
Squares by M. Marshall.
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⇒ T ≥ µf 2 =
(√

µf
)2
, as claimed. □(Case 2)

Case 3. T has more than one zero.

Without loss of generality, assume (1, 0, 0) and (0, 1, 0) are two of the zeros
of T .

As in case 2, reduction ⇒ T is of degree at most 2 in x as well as in y and
so we can write:

T (x, y, z) = f(y, z)x2 + 2g(y, z)zx+ z2h(y, z),

where f, g, h are binary quadratic forms and f, h ≥ 0.

And so

fT = (xf + zg)2 + z2(fh− g2), (3)

with fh− g2 ≥ 0 [Indeed, if (fh− g2)(y0, z0) < 0 for some (y0, z0), then we
must have case distinction case (i) or case (ii) as on bottom of page 2 i.e.
f(y0, z0) = 0 or f(y0, z0) > 0].

Using Lemma 1.3 if f or h is a perfect square, then we get the desired result
as in the Case 2.1. Hence we suppose f and h to be sum of two squares
and again as before (as in Case 2.2) f, h > 0. We consider the following
two possible subcases on fh− g2:

Case 3.1. Suppose fh− g2 has a zero (y0, z0) ̸= (0, 0).

Set x0 = − g(y0, z0)

f(y0, z0)
and

T1 := T (x+ x0z, y, z) = x2f + 2xz(g + x0f) + z2(h+ 2x0g + x2
0f) (4)

Evaluating (3) at (x+ x0z, y, z), we get

fT1 = fT (x+ x0z, y, z) =
(
(x+ x0z)f + zg

)2
+ z2(fh− g2), (3)

′
.

Multiplying (4) by f , we get

fT1 = x2f 2 + 2xzf(g + x0f) + z2f(h+ 2x0g + x2
0f) (4)

′

Now compare the coefficients of z2 in (3)
′
and (4)

′
to get

(x0f + g)2 + (fh− g2) = f(h+ 2x0g + x2
0f),

i.e. h+ 2x0g + x2
0f =

(fh− g2) + (x0f + g)2

f
∀ (y, z) ̸= (0, 0)

In particular, h+ 2x0g + x2
0f is psd and has a zero, namely (y0, z0) ̸= (0, 0).

Thus (h+ 2x0g + x2
0f), being a psd quadratic in y, z, which has a nontrivial

zero (y0, z0), is a perfect square [since by the arguments similar to Case 2.2,
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it cannot be a sum of two (or more) squares].

Say (h+ 2x0g + x2
0f) = h2

1, with h1(y, z) linear and h1(y0, z0) = 0

Now (g + x0f)(y0, z0) = g(y0, z0) + x0f(y0, z0) = 0. So, g + x0f vanishes at
every zero of the linear form h1. Therefore, we have g+ x0f = g1h1 for some
g1.

So (from (4)), T1 = fx2 + 2xzg1h1 + z2h2
1

= (zh1 + xg1)
2 + x2(f − g21)

⇒ h2
1T1 = h2

1(zh1 + xg1)
2 + x2

(
h2
1f − (h1g1)

2
)

= h2
1(zh1 + xg1)

2 + x2 (hf − g2)︸ ︷︷ ︸
≥ 0

⇒ h2
1T1 ≥ h2

1(zh1 + xg1)
2

⇒ T (x+ x0z, y, z) =: T1 ≥ (zh1 + xg1)
2

By change of variables (x → x − x0z), we get T ≥ a square of a quadratic
form, as desired.

Case 3.2. Suppose fh− g2 > 0 (i.e. fh− g2 has no zero).

Then (as in Case 2.2), ∃ µ > 0 s.t
fh− g2

(y2 + z2)f
≥ µ on S1

and so fh− g2 ≥ µ(y2 + z2)f ∀ (y, z) ∈ R2.

Hence, by (3) we get

fT = (xf + zg)2 + z2 (fh− g2)︸ ︷︷ ︸
>0

≥ z2(fh− g2)

≥ µz2(y2 + z2)f ,

giving as required

T ≥ (
√
µzy)2 + (

√
µz2)2

⇒ T ≥ (
√
µz2)2 □(Case 3)

This completes the proof of the Lemma 1.2. □□

Next we prove Theorem 1.1 part (i), i.e. for binary forms. This was also
used as a helping lemma in the proof of above lemma:

Lemma 1.3. If f is a binary psd form of degree m, then f is a sum of
squares of binary forms of degree m/2, that is, P2,m =

∑
2,m . In fact, f is
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sum of two squares.

Proof. If f is a binary form of degree m, we can write

f(x, y) =
m∑
k=0

ckx
kym−k; ck ∈ R

= ym
m∑
k=0

ck

(
x

y

)k

,

where m is an even number and cm ̸= 0, since f is psd.

Without loss of generality let cm = 1.

Put g(t) =
m∑
k=0

ckt
k.

Over C, g(t) =
m/2∏
k=1

(t− zk)(t− zk); zk = ak + ibk, ak, bk ∈ R

=

m/2∏
k=1

(
(t− ak)

2 + b2k

)

⇒ f(x, y) = ymg
(x
y

)
=

m/2∏
k=1

(
(x− aky)

2 + b2ky
2
)
.

Then, using iteratively the identity

(X2 + Y 2)(Z2 +W 2) = (XZ − YW )2 + (Y Z +XW )2,

we obtain that f(x, y) is a sum of two squares. □

Example 1.4. Using the ideas in the proof of above lemma, we write the
binary form

f(x, y) = 2x6 + y6 − 3x4y2

as a sum of two squares:

Consider f written in the form

f(x, y) = y6

(
2
(x
y

)6
+ 1− 3

(x
y

)4)
.

The polynomial g(t) = 2t6−3t4+1. This polynomial has double roots 1 and

−1 and complex roots ± 1√
2
i.

Thus
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g(t) = 2(t− 1)2(t+ 1)2(t2 +
1

2
) = (t2 − 1)2(2t2 + 1).

Therefore, we have

f(x, y) = y6g
(x
y

)
= (x2 − y2)2(2x2 + y2) = 2x2(x2 − y2)2 + y2(x2 − y2)2

written as a sum of two squares. □

Next we prove Theorem 1.1 part (ii), i.e. for quadratic forms:

Lemma 1.5. If f(x1, . . . , , xn) is a psd quadratic form, then f(x1, . . . , , xn)
is sos of linear forms, that is, Pn,2 =

∑
n,2.

Proof. If f(x1, . . . , xn) is a quadratic form, then we can write

f(x1, . . . , xn) =
n∑

i,j=1

xiaijxj, where A = [aij] is a symmetric matrix with

aij ∈ R.

We have f = XTAX, where XT = [x1, . . . xn].

By the spectral theorem for Hermitian matrices, there exists a real orthogonal
matrix S and a diagonal matrix D = diag(d1, . . . , dn) such that D = STAS.
Then

f = XTSSTA SSTX = (STX)TSTA S (STX).

Putting Y = [y1, . . . , yn]
T = STX, we get

f = Y TSTA SY = Y TD Y =
n∑

i=1

diyi
2, di ∈ R .

Since f is psd, we have di ≥ 0 ∀ i, and so

f =
n∑

i=1

(√
diyi

)2
.

Thus,

f(x1, . . . , xn) =
n∑

i=1

(√
di(s1,ix1 + . . .+ sn,ixn)

)2
,

that is, f is sos of linear forms. □
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1. PROOF OF HILBERT’S THEOREM (Continued)

Theorem 1.1. (Recall) (Hilbert)
∑

n,m = Pn,m iff

(i) n = 2 or

(ii) m = 2 or

(iii) (n,m) = (3, 4).

And in all other cases
∑

n,m ( Pn,m .

We have shown one direction (⇐) of Hilbert’s Theorem (1.1 above), i.e.
if n = 2 or m = 2 or (n,m) = (3, 4), then

∑
n,m = Pn,m. To prove the other

direction we have to show that:∑
n,m ( Pn,m ∀(n,m) s.t. n ≥ 3,m ≥ 4 (m even) with (n,m) 6= (3, 4).

(1)

Hilbert showed (using algebraic geometry) that
∑

3,6 ( P3,6 and
∑

4,4 ( P4,4.
This is a reduction of the general problem (1), indeed we have:

Lemma 1.2. If
∑

3,6 ( P3,6 and
∑

4,4 ( P4,4, then

1
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∑
n,m ( Pn,m for all n ≥ 3,m ≥ 4 and (n,m) 6= (3, 4), (m even).

Proof. Clearly, given F ∈ Pn,m \
∑

n,m, then F ∈ Pn+j, m \
∑

n+j, m for all
j ≥ 0.

Moreover, we claim: F ∈ Pn,m \
∑

n,m ⇒ x2i1 F ∈ Pn, m+2i \
∑

n, m+2i ∀ i ≥ 0

Proof of claim: Assume for a contradiction that

for i = 1 x21F (x1, . . . , xn) =
k∑
j=1

f 2
j (x1, . . . , xn),

then L.H.S vanishes at x1 = 0, so R.H.S also vanishes at x1 = 0.

So x1|fj ∀ j, so x21|f 2
j ∀ i. So, R.H.S is divisible by x21. Dividing both sides

by x21 we get a sos representation of F , a contradiction since F /∈
∑

n,m . �

So we just need to show that:
∑

3,6 ( P3,6, and
∑

4,4 ( P4,4.

Hilbert described a method (non constructive) to produce counter examples
in the 2 crucial cases, but no explicit examples appeared in literature for next
80 years.
In 1967 Motzkin presented a specific example of a ternary sextic form that
is positive semidefinite but not a sum of squares.

2. THE MOTZKIN FORM

Proposition 2.1. The Motzkin form

M(x, y, z) = z6 + x4y2 + x2y4 − 3x2y2z2 ∈ P3,6 \
∑

3,6.

Proof. Using the arithmetic geometric inequality (Lemma 2.2 below) with
a1 = z6, a2 = x4y2, a3 = x2y4 and n = 3, clearly gives M ≥ 0.

Degree arguments give M is not a sum of squares �

Lemma 2.2. (Arithmetic-geometric inequality I) Let a1, a2, . . . , an ≥ 0
; n ≥ 1. Then

a1 + a2 + . . .+ an
n

≥ (a1a2 . . . an)
1
n .

Lemma 2.3. (Arithmetic-geometric inequality II) Let αi ≥ 0, ai ≥ 0;

i = 1, . . . , n with
n∑
i=1

αi = 1.Then
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α1a1 + . . .+ αnan − aα1
1 . . . aαn

n ≥ 0

3. ROBINSON’S METHOD (1970)

In 1970’s R. M. Robinson gave a ternary sextic based on the method described
by Hilbert, but after drastically simplifying Hilbert’s original ideas. He used
it to construct examples of forms in P4,4 \

∑
4,4 as well as forms in P3,6 \

∑
3,6

.

This method is based on the following lemma:

Lemma 3.1. A polynomial P (x, y) of degree at most 3 which vanishes at
eight of the nine points (x, y) ∈ {−1, 0, 1} × {−1, 0, 1} must also vanish at
the ninth point.

Proof. Assign weights to the following nine points:

w(x, y) =


1 , if x, y = ±1

−2 , if (x = ±1, y = 0) or (x = 0, y = ±1)

4 , if x, y = 0

Define the weight of a monomial as:

w(xkyl) :=
9∑
i=1

w(qi)x
kyl(qi) , for qi ∈ {−1, 0, 1} × {−1, 0, 1}

Define the weight of a polynomial P (x, y) =
∑
k,l

ck,l x
kyl as:

w(P ) :=
∑
k,l

ck,l w(xkyl) for ck,l ∈ R.

Claim 1: w(xkyl) = 0 unless k and l are both strictly positive and even.

Proof of claim 1: Let us compute the monomial weights

• if k = 0, l ≥ 0: then we have

w(xkyl) = 1 + (−1)l + 1 + (−1)l + (−2) + (−2)(−1)l = 0

• if l = 0, k ≥ 0: then similarly we have w(xkyl) = 0, and

• if k, l > 0: then we have

w(xkyl) = 1+(−1)l+(−1)k+(−1)k+l =

{
0 , if either k or l is odd

4 , otherwise
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� (claim 1)

Claim 2: w(P ) =
9∑
i=1

w(qi)P (qi)

Proof of claim 2: w(P ) :=
∑
k,l

ck,l w(xkyl) =
∑
k,l

ck,l

9∑
i=1

w(qi)x
kyl(qi)

=
9∑
i=1

w(qi)
∑
k,l

ck,lx
kyl(qi) =

9∑
i=1

w(qi)P (qi)

� (claim 2)

Now, claim 1 and definition of w(P ) ⇒ if deg(P (x, y)) ≤ 3 then w(P ) = 0.

Also, from claim 2 we get:
P (1, 1)+P (1,−1)+P (−1, 1)+P (−1,−1)+(−2)P (1, 0)+(−2)P (−1, 0)+

(−2)P (0, 1) + (−2)P (0,−1) + 4P (0, 0) = 0

Now verify that if P (x, y) = 0 for any eight (of the nine) points, then we are
left with αP (x, y) = 0 (for some α 6= 0) at the ninth point. �

4. THE ROBINSON FORM

Theorem 4.1. Robinsons form

R(x, y, z) = x6 +y6 + z6− (x4y2 +x4z2 +y4x2 +y4z2 + z4x2 + z4y2) + 3x2y2z2

is psd but not a sos, i.e. R ∈ P3,6 \
∑

3,6 .

Proof. Consider the polynomial

P (x, y) = (x2 + y2 − 1)(x2 − y2)2 + (x2 − 1)(y2 − 1) (2)

Note that R(x, y, z) = Ph(x, y, z) = z6P (x/z, y/z).

By our observation: Ph is psd iff P psd; Ph is sos iff P is sos,

We shall show that P (x, y) is psd but not sos.

Multiplying both sides of (2) by (x2 + y2 − 1) and adding to (2) we get:

(x2 + y2)P (x, y) = x2(x2− 1)2 + y2(y2− 1)2 + (x2 + y2− 1)2(x2− y2)2 (3)

From (3) we see that P (x, y) ≥ 0, i.e. P (x, y) is psd.

Assume P (x, y) =
∑
j

Pj(x, y)2 is sos

degP (x, y) = 6, so degPj ≤ 3 ∀ j.
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By (2) it is easy to see that P (0, 0) = 1 and P (x, y) = 0 for all other eight
points (x, y) ∈ {−1, 0, 1}2 \{(0, 0)}, therefore every Pj(x, y) must also vanish
at these eight points.

Hence by Lemma 3.1 (above) it follows that: Pj(0, 0) = 0 ∀ j.
So P (0, 0) = 0 , which is a contradiction. �

Proposition 4.2. The quarternary quartic Q(x, y, z, w) = w4+x2y2+y2z2+
x2z2 − 4xyzw is psd, but not sos, i.e., Q ∈ P4,4 \

∑
4,4 .

Proof. The arithmetic-geometric inequality clearly implies Q ≥ 0.

Assume now that Q =
∑
j

q2j , qj ∈ F4,2 .

Forms in F4,2 can only have the following monomials:

x2, y2, z2, w2, xy, xz, xw, yz, yw, zw

If x2 occurs in some of the qj, then x4 occurs in q2j with positive coefficient

and hence in
∑

q2j with positive coefficient too, but this is not the case.

Similarly qj does not contain y2 and z2.

The only way to write x2w2 as a product of allowed monomials is x2w2 =
(xw)2.

Similarly for y2w2 and z2w2.

Thus each qj involves only the monomials xy, xz, yz and w2.

But now there is no way to get the monomial xyzw from
∑
j

q2j , hence a

contradiction.
�

Proposition 4.3. The ternary sextic S(x, y, z) = x4y2+y4z2+z4x2−3x2y2z2

is psd, but not a sos, i.e., S ∈ P3,6 \
∑

3,6 .

�
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1. RING OF FORMAL POWER SERIES

Definition 1.1. (Recall) Let S = {g1, . . . , gs} ⊆ R[X1, . . . , Xn], then

KS :=
{
x ∈ Rn | gi(x) ≥ 0 ∀ i = 1, . . . , s

}
,

TS :=
{ ∑
e1,...,es∈{0,1}

σe g
e1
1 . . . gess | σe ∈ ΣR[X]2, e = (e1, . . . , es)

}
is the pre-

ordering generated by S.

Proposition 1.2. Let n ≥ 3. Let S be a finite subset of R[X] such that
KS ⊆ Rn has non empty interior. Then ∃ f ∈ R[X] such that f ≥ 0 on Rn

and f /∈ TS .

To prove proposition 1.2 we need to learn a few facts about formal power
series rings:

Definition 1.3. R[[X]] := R[[X1, . . . , Xn]] ring of formal power series
in X = (X1, . . . , Xn) with coefficients in R, i.e. , f ∈ R[[X]] is expressible
uniquely in the form

f = f0 + f1 + . . .,

where fi is a homogenous polynomial of degree i in the variables X1, . . . , Xn

.

1
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Here:

• Addition is defined point wise, and

• multiplication is defined using distributive law:( ∞∑
i=0

fi

)( ∞∑
i=0

gi

)
= (f0g0)+(f0g1+f1g0)+(f0g2+f1g1+f2g0)+. . . =

∞∑
k=0

( ∑
i+j=k

(figj)
)

So, both addition and multiplication are well defined and R[[X]] is an integral
domain and R[X] ⊆ R[[X]] .

Notation 1.4. Fraction field of R[[X]] is denoted by

ff(R[[X]]) := R((X)).

The valuation v : R[[X]]→ Z ∪ {∞} defined by:

v(f) =

{
least i s.t. fi 6= 0 , if f 6= 0

∞ , if f = 0

extends to R((X)) via

v

(
f

g

)
:= v(f)− v(g) .

Lemma 1.5. Let f ∈ R[[X]]; f = fk + fk+1 + . . ., where fi homogeneous of
degree i, fk 6= 0. Assume that f is a sos in R[[X]].

Then k is even and fk is a sum of squares of forms of degree k
2
.

Proof. f = g21 + . . .+ g2l , and

gi = gij + gi(j+1) + . . . , with j = min{v(gi) ; i = 1, . . . , l}

Then f0 = . . . = f2j−1 = 0 and f2j =
k∑
i=1

g2ij 6= 0

So, k = 2j. �

1.6. Units in R[[X]]: Let f = f0 + f1 + . . . , with v(f) = 0 i.e. f0 6= 0.
Then f factors as

f = a(1 + t); where a ∈ R×,

t ∈ R[[X]] and v(t) ≥ 1. Indeed, set a := f0 ∈ R \ {0}; t := 1
f0

(f1 + f2 + . . .)
.
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Lemma 1.7. f ∈ R[[X]] is a unit of R[[X]] if and only if f0 6= 0
(
i.e.

v(f) = 0
)
.

Proof:
1

1 + t
= 1− t+ t2 − . . ., for t ∈ R[[X]] ; v(t) ≥ 1

is a well defined element of R[[X]].

So, if v(f) = 0, then f = a(1 + t) with a ∈ R× gives

f−1 =
1

a

1

(1 + t)
∈ R[[X]]. �

Corollary 1.8. It follows that R[[X]] is a local ring, with I = {f | v(f) ≥ 1}
as its unique maximal ideal (the quotient is a field R).

Lemma 1.9. Let f ∈ R[[X]] a positive unit, i.e. f0 > 0. Then f is a square
in R[[X]].

Proof. f = a(1 + t); a ∈ R, a > 0, v(t) ≥ 1
√
f =
√
a
√

1 + t ,

where
√

1 + t := (1 + t)1/2 = 1 +
1

2
t− 1

8
t2 + . . . is a well defined element of

R[[X]]

�

Remark: For u ∈ R[[X]] with v(u) > 0 (i.e. u(0) = 0) and α ∈ R, one can

define (1 + u)α :=
+∞∑
n=0

αn

n!
un ∈ R[[X]] where αn = α(α − 1) · · · (α − n + 1).

Then pu : α → (1 + u)α is a group morphism (R,+) → (R[[X]],×) with
pu(1) = 1 + u.

Lemma 1.10. Suppose n ≥ 3. Then ∃ f ∈ R[X] such that f ≥ 0 on Rn

and f is not a sum of squares in R[[X]] .

Proof. Let f ∈ R[X] be any homogeneous polynomial which is ≥ 0 on Rn

but is not a sum of squares in R[X] (by Hilbert’s Theorem such a polynomial
exists). Now by lemma 1.5 it follows that f is not sos in R[[X]] . �

Now we prove Proposition 1.2:

Proof of Proposition 1.2. Let S = {g1, . . . , gs}
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• W.l.o.g. assume gi 6≡ 0, for each i = 1, . . . , s. So g :=
s∏
i=1

gi 6≡ 0

int(KS) 6= ∅ ⇒ ∃ p := (p1, . . . , pn) ∈ int(KS) with g(p) 6= 0.
Thus gi(p) > 0 ∀ i = i, . . . , s .

• W.l.o.g. assume p = 0 the origin(
by making a variable change Yi := Xi − pi , and noting that

R[Y1, . . . , Yn] = R[X1, . . . , Xn]
)

So gi(0, . . . , 0) > 0 for each i = i, . . . , s (i.e. has positive constant term),

that means gi ∈ R[[X]] is a positive unit in R[[X]] ∀ i = 1, . . . , s .

By Lemma 1.9 (on positive units in power series): gi ∈ R[[X]]2 ∀ i = i, . . . , s.

So the preordering TS
A generated by S = {g1, . . . , gs} in the ring A := R[[X]]

is just ΣR[[X]]2.

Now using Lemma 1.10 : ∃ f ∈ R[X], f ≥ 0 on Rn but f is not a sum of
squares in R[[X]] (i.e. f /∈ ΣR[[X]]2 = TAS ) .

So f /∈ TS = TAS ∩ R[[X]] . �(Proposition 1.2)

Proposition 1.2 that we just proved is just a special case of the following
result due to Scheiderer:

Theorem 1.11. Let S be a finite subset of R[X] such that KS has dimension
≥ 3. Then ∃ f ∈ R[X]; f ≥ 0 on Rn and f /∈ TS .

To understand this result we need a reminder about dimension of semi
algebraic sets from B5.

2. ALGEBRAIC INDEPENDENCE

Let E/F be a field extension:

Definition 2.1. (1) a ∈ E is algebraic over F if it is a root of some non
zero polynomial f(X) ∈ F [X], otherwise a is a transcendental over F .

(2) {a1, . . . , an} ⊆ E is called algebraically independent over F if there is
no nonzero polynomial f(x1, . . . , xn) ∈ F [X1, . . . , Xn] s.t. f(a1, . . . , an) = 0.

In general A ⊆ E is algebraically independent over F if every finite subset
of A is algebraic independent over F .

(3) A transcendence base of E/F is a maximal subset (w.r.t. inclusion)
of E which is algebraically independent over F .
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1. ALGEBRAIC INDEPENDENCE AND TRANSCENDENCE DEGREE

Definition 1.1. (Recall) Let E/F be a field extension:

(1) A ⊆ E is called algebraically independent over F if ∀ a1, . . . , an ∈ A
there exists no nonzero polynomial f ∈ F [X1, . . . , Xn] s.t. f(a1, . . . , an) = 0.

(2) A ⊆ E is called a transcendence basis of E/F if A is a maximal subset
(w.r.t. inclusion) of E which is algebraically independent over F .

Lemma 1.2. Let E/F be a field extension.

(1) (Steinitz exchange) S ⊆ E is algebraically independent over F iff ∀ s ∈
S : s is transcendental over F (S − {s})

(
the subfield of E generated by

S − {s}
)
.

(2) S ⊆ E is a transcendence base for E/F iff S is algebraically independent
over F and E is algebraic over F (S). �

Theorem 1.3. The extension E/F has a transcendence base and any two
transcendence bases of E/F have the same cardinality.

Proof. The existence follows by Zorn’s lemma and the second statement uses
the Steinitz exchange lemma (above). �

1
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Definition 1.4. The cardinality of a transcendence base of E/F is called
the transcendence degree of E/F , denoted by trdegF (E).

2. KRULL DIMENSION OF A RING

Definition 2.1 Let A be a commutative ring with 1.

(1) A chain of prime ideals of A is of the form
{0} ⊆ ℘0 ( ℘1 ( . . . ( ℘k ( . . . ( A, where ℘i are prime ideals of A.

(2) The Krull dimension of A, denoted by dim (A) is defined to be the
maximum k such that there is a chain of prime ideals of length k in A, i.e.
℘0 ( ℘1 ( . . . ( ℘k

[
dim(A) can be infinite if arbitrary long chains

]
.

Theorem 2.2. Let F be a field and I be any prime ideal in F [X]. Then

dim

(
F [X]

I

)
= trdegF

(
ff

(
F [X]

I

))
.

�
Recall 2.3. For S ⊆ F n

I(S) = {f ∈ F [X] | f(x) = 0,∀ x ∈ S}
is the ideal of polynomials vanishing on S.

Definition 2.4. Dimension of semi-algebraic sets ⊆ Rn: Let K ⊆ Rn

be a semi-algebraic set. Then

dim (K) := dim
(

R[X]
I(K)

)
.

In the last lecture, we proved the following proposition:

Proposition 2.5. Suppose n ≥ 3. Let S = {g1, . . . , gs} be a finite subset of
R[X] such that int(KS)6= ∅. Then there exists f ∈ R[X] such that f ≥ 0 on
Rn and f /∈ TS .

This is just a special case of the following result due to Scheiderer:

Theorem 2.6. Let S be a finite subset of R[X] and KS ⊆ Rn s.t. dimKS ≥
3. Then there exists f ∈ R[X]; f ≥ 0 on Rn and f /∈ TS.

To deduce Proposition 2.5 using Theorem 2.6 it suffices to prove the following
lemma:
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Lemma 2.7. Let K ⊆ Rn be a semi algebraic subset. Then

int(K) 6= φ⇒ dim (K) = n

Proof. We claim that I(K) = {0} :

f ∈ I(K)⇒ f = 0 on K ⇒ f = 0 on int (K)︸ ︷︷ ︸
( 6=φ)

⇒ f vanishes on a nonempty

open set ⇒ f ≡ 0 (by Remark 2.2 of lecture 2).

So, dim (K) = dim (R[X]) = trdegF (R(X) = n.
�

3. LOW DIMENSIONS

Proposition 3.1. Let n = 2, KS ⊆ R2 and KS contains a 2-dimensional
cone. Then ∃ f ∈ R[X, Y ]; f ≥ 0 on R2; f /∈ TS.

Definition 3.2. (For n = 1) Let K be a basic closed semi algebraic subset
of R. Then K is a finite union of intervals.
The natural description S of K as a basic closed semi algebraic subset is
defined as

1. if a ∈ R is the smallest element of K, then take X − a ∈ S

2. if a ∈ R is the greatest element of K, then take a−X ∈ S

3. if a, b ∈ K, a < b, (a, b) ∩K = φ, then take (X − a)(X − b) ∈ S

4. no other polynomial should be in S.

Proposition 3.3. Let K ⊆ R be a non-empty basic closed semi algebraic
subset and S is the natural description of K. Then ∀ f ∈ R[X] :

f ≥ 0 on K ⇔ f ∈ TS,

i.e. for every basic semi algebraic subset K of R, there exists a description
S (namely the natural) so that TS is saturated.

Proposition 3.4. Let K ⊆ R be a non-compact basic semi algebraic subset
and S

′
be a description of K. Then

TS′ is saturated ⇔ S
′ ⊇ S (up to a scalar multiple factor).

Remark 3.5. Summarizing:
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(1) dim(KS) ≥ 3⇒ TS is not saturated.

(2) dim(KS) = 2⇒ TS can be or cannot be saturated (depending on the

geometry of K and S).

(3) dim(KS) = 1⇒ TS can be or cannot be saturated [but depends on K

and description S of K).

After all this discussion about positive polynomials, strictly positive poly-
nomials, we now want to show Schmüdgen’s Positivstellensatz:

Theorem 3.6. (Schmüdgen’s Positivstellensatz) Let S = {g1, . . . , gs} be a
finite subset of R[X1, . . . , Xn] and KS ⊆ Rn be a compact non-empty basic
closed semi algebraic set. And let f ∈ R[X] s.t. f > 0 on KS. Then f ∈ TS.

Note that this holds for every finite description S of K.

To prove this we first need Representation Theorem (Stone-Krivine, Kadison-
Dubois), which will be proved in the next lecture.
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1. SCHMÜDGEN’S POSITIVSTELLENSATZ

Theorem 1.1. Let S = {g1, . . . , gs} be a finite subset of R[X1, . . . , Xn] and
KS ⊆ Rn be a compact basic closed semi algebraic set. And let f ∈ R[X]
s.t. f > 0 on KS. Then f ∈ TS .

To prove this we first need the Representation Theorem:

2. REPRESENTATION THEOREM (STONE-KRIVINE, KADISON-DUBOIS)

Let A be a commutative ring with 1. Let

χ := Hom(A,R) =
{
α | α : A→ R, α ring homomorphism

}
.

Notation 2.1. If M ⊆ A denote

χM =
{
α ∈ χ | α(M) ⊆ R+

}
.

Notation 2.2. For a ∈ A define a map

â : χ→ R by
â(α) := α(a)

1
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Remark 2.3. Let M ⊆ A, with notations 2.1 and 2.2 we see that

χM :=
{
α ∈ χ| α(M) ⊆ R+

}
=
{
α ∈ χ| α(a) ≥ 0,∀ a ∈M

}
=
{
α ∈ χ| â(α) ≥ 0,∀ a ∈M

}
So, χM is “the nonnegativity set” of M in χ.

Observation 2.4. a ∈ M ⇒ â ≥ 0 on χM , because if α ∈ χM , then
â(α) ≥ 0 (by definition).

Conversely, answer the question: for a ∈ A, if â > 0 on χM ⇒ a ∈M ?

Exkurs 2.5. One can view χ = Hom(A,R) as a topological subspace of
(Sper(A), spectral topology) as follows:

1. Embedding of Hom(A,R) in Sper(A) :

Consider the map defined by

Hom(A,R)→ Sper(A)

α 7→ Pα := α−1
(
R+

)
,

where (recall that) Sper(A):=
{
P ; P is an ordering of A

}
.

Then (i) this map is well defined i.e. Pα ⊆ A is an ordering.

(ii) this map is injective : α 6= β ⇒ Pα 6= Pβ .

(iii) support(Pα) = ker α .

2. Topology on χ :

Endow χ with a topology : for a ∈ A

U(â) = {α ∈ χ | â(α) > 0}

is a subbasis of open sets. Then

(iv) for a ∈ A, the map â : χ→ R is continuous in this topology.

(v) in fact this topology on χ is the weakest topology on χ for which
â is continuous for all a ∈ A, i.e. if τ is any other topology on χ
which makes all these maps â (for a ∈ A) continuous then τ has
more open sets than this weakest topology (i.e. U(â) lies in τ).
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(vi) this topology is also the topology induced on χ via the embedding
α 7→ Pα giving Sper(A) the spectral topology [just use the fact
that â(α) > 0 ⇔ a /∈ −Pα ⇔ a >Pα 0. Spectral topology:
U(a) = {P ; a /∈ −P} = {P | a >P 0}].

Now we are back to the question (in Observation 2.4): for a ∈ A, does
â > 0 on χM ⇒ a ∈M ?

Yes under additional assumptions on the subset M that we shall now study:

3. PREPRIMES, MODULES AND SEMI-ORDERINGS IN RINGS

Let A be a commutative ring with 1 and Q ⊆ A. The concept of pre-
ordering generalizes in two directions:

(i) Preprimes

(ii) Modules (special case: quadratic modules)

Definitions 3.1. (1) A preprime is a subset T of A such that

T + T ⊆ T ; TT ⊆ T ; Q+ ⊆ T.

(2) Let T be a preprime of A. M ⊆ A is a T -module if

M +M ⊆M ; TM ⊆M ; 1 ∈M (i.e. T ⊆M).

[Note that in particular, a preprime T is a T -module.]

(3) A preprime T of A is said to be generating if T − T = A .

[Note that if T is any preprime then T −T is already a subring of A because

(t1 − t2) + (t3 − t4) = (t1 + t3)− (t2 + t4)

(t1 − t2)(t3 − t4) = (t1t3 + t2t4)− (t1t4 + t2t3) .]

Proposition 3.2. Every preordering T of A is a generating preprime.

Proof. (i) For
m

n
∈ Q :

m

n
=
( 1

n

)2
mn =

1

n2
+ . . .+

1

n2︸ ︷︷ ︸
(mn-times)

so Q+ ⊆ T .
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(ii) For a ∈ A, a =
(1 + a

2

)2
−
(1− a

2

)2
.

So A = T − T . �

Definitions 3.3. (1) A quadratic module is a T -module over the preprime
T =

∑
A2.

(2) A T -module M is proper if (−1) /∈M .

(3) A semi-ordering M is a quadratic module such that moreover

M ∪ (−M) = A; M ∩ (−M) = p is a prime ideal in A.

Proposition 3.4.
(a) Suppose T is a generating preprime andM is a maximal proper T -module,
then M ∪ (−M) = A.

(b) Suppose T is a preordering and M a maximal proper T -module then
p = M ∩ (−M) is a prime ideal.

(c) Therefore: if T is a preordering and M is a maximal proper T -module
then M is a semi-ordering.

Proof. Similar to proof in the preordering case
(a) Let a ∈ A, a /∈M ∪ (−M).
By maximality of M , we have:

−1 ∈ (M + aT ) and −1 ∈ (M − aT ).

Therefore, −1 = s1 + at1 and −1 = s2 − at2 ; for some s1, s2 ∈ M and
t1, t2 ∈ T .

This implies −at1 = 1 + s1 and at2 = 1 + s2.

So −at1t2 = t2 + s1t2 and at2t1 = t1 + s2t1.

So 0 = t2 + t1 + s1t2 + t1s2.

So −t1 = t2 + s1t2 + t1s2 ∈M.

Now since T is generating, pick t3, t4 ∈ T such that a = t3 − t4, then

−1 = s1 + at1 = s1 + (t3 − t4)t1 = s1 + t1t3 + t4(−t1) ∈ M . This is a
contradiction.

(b) p = M ∩ −M .

Clearly p + p ⊆ p,−p = p, 0 ∈ p, Tp ⊆ p.

Since A = T − T ⇒ Ap ⊆ p. Thus p is an ideal.
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So far we have only used that T is a generating preprime, to show that p is
a prime ideal we need that T is preordering:

Suppose ab ∈ p, a /∈ p. Without loss of generality assume a /∈M .

Now this implies: −1 ∈M + aT , so −1 = s+ at ; s ∈M, t ∈ T
⇒ −b2 = sb2 + ab2t ∈M + p ⊆M .

Now since b2 ∈ T ⊆M , this implies b2 ∈M ∩ −M = p.

So we are reduced to showing: b2 ∈ p⇒ b ∈ p.

Suppose b2 ∈ p, b /∈ p. Without loss of generality b /∈M .

Thus −1 = s+ bt, for some s ∈M and t ∈ T .

So 1 + 2s+ s2 = (1 + s)2 = (−bt)2 = b2t2 ∈ p = M ∩ −M .

Thus −1 = 2s+ s2 + (−b2t2)︸ ︷︷ ︸
( ∈ M )

∈M , a contradiction since −1 /∈M .

(c) Clear. �

Our next aim is to show that under the additional assumption: “M is
archimedian”, then a maximal proper module M over a preordering is an
ordering not just a semi-ordering. This is crucial in proof of Kadison-Dubois.
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1. ARCHIMEDEAN MODULES

Let A be a commutative ring, Q ⊆ A, T a preprime.

Definition 1.1. Let M a T -module. M is archimedean if:

∀ a ∈ A,∃ N ≥ 1, N ∈ Z+ s.t. N + a,N − a ∈M .

Proposition 1.2. Let T be a generating preprime, M a maximal proper
T -module. Assume that M is archimedean. Then ∃ a uniquely determined
α ∈ Hom(A,R) s.t. M = α−1

(
R+

)
= Pα .

(In particular, M is an ordering, not just a semi-ordering.)

Proof. Let a ∈ A, define: cut (a) =
{
r ∈ Q | r − a ∈ M

}
, this is an upper

cut in Q (i.e. final segment of Q) .

Claim 1: cut(a) 6= ∅ and Q\
(
cut(a)

)
:= L(a) 6= ∅, (L(a) is a lower cut in

Q).

Proof of claim 1. Since M is archimedean ∃ n ≥ 1 s.t. n − a ∈ M , so
cut(a) 6= ∅ . Also ∃ m ≥ 1 s.t. (m+ a) ∈M .

If −(m+1)−a ∈M , then adding we get −1 ∈M , a contradiction (since M is
proper). So we have −(m+1)−a /∈M , which implies that −(m+1) ∈ L(a).

�(claim 1)

1
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Now define a map α : A −→ R by

α(a) := inf
(
cut(a)

)
α is well-defined by Claim 1.

Claim 2: α(1) = 1, α(M) ⊆ R+; α(a± b) = α(a)± α(b) ∀ a, b ∈ A and
α(tb) = α(t) α(b) ∀ t ∈ T, b ∈ A .

This is left as an exercise.

Claim 3: α(ab) = α(a) α(b) ∀ a, b ∈ A
Proof of claim 3. T generating ⇒ a = t1 − t2, t1, t2 ∈ T
so, α(ab) = α(t1b− t2b) = α(t1b)− α(t2b)

= α(t1)α(b)− α(t2)α(b) [by claim 2]

=
(
α(t1)− α(t2)

)
α(b) = α(t1 − t2)α(b) = α(a)α(b) .

�(claim 3)

Claim 4: α−1
(
R+

)
= M

Proof of claim 4. By Claim 2, M ⊆ α−1
(
R+

)
so, by maximality of M and

since Pα = α−1
(
R+

)
is an ordering it follows that M = α−1

(
R+

)
. �

Corollary 1.3. Let A be a commutative ring with Q ⊆ A, T an archimedean
preprime, M a proper T -module. Then χM 6= ∅ .

Proof. Since T is archimedean, T is generating
(
because a = (n+ a)−n, for

a ∈ A
)

andM is a proper archimedean module
(
archimedean module because

for an archimedean preprime T , every T -module is also archimedean
)
. By

Zorn’s lemma extend M to a maximal proper archimedean T -module Q.
Apply Proposition 1.2 to Q to get α ∈ Hom(A,R) such that Q = α−1

(
R+

)
.

This implies M ⊆ α−1
(
R+

)
. So, α ∈ χM , which implies ⇒ χM 6= ∅ . �

2. REPRESENTATION THEOREM (STONE-KRIVINE, KADISON-DUBOIS)

The following corollary (to Proposition 1.2 and Corollary 1.3) answers the
question raised in the last lecture:

Corollary 2.1. (Stone-Krivine, Kadison-Dubois) Let A be a commu-
tative ring with Q ⊆ A, T an archimedean preprime in A, M a proper
T -module. Let a ∈ A and

â : χ→ R defined by

â(α) := α(a)
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If â > 0 on χM , then a ∈M .

Proof. Assume â > 0 on χM , i.e. â(α) > 0 ∀ α ∈ χM .

To show: a ∈M

• Consider M1 := M − aT
Since α(a) > 0 ∀ α ∈ χM , we have χM1 = ∅ [because if α ∈ χM1 , then
α(M1) ⊆ R+. So, α(−a) = −α(a) ≥ 0. So, α(a) ≤ 0, but α ∈ χM so
α(a) > 0, a contradiction].

So (since M1 is an archimedean T -module), we can apply Corollary 1.3
to M1 to deduce that −1 ∈M1 .

Write −1 = s− at , s ∈M, t ∈ T
⇒ at− 1 = s ∈M (?)

• Consider
∑

:= {r ∈ Q | r + a ∈M}
We claim that: ∃ ρ ∈

∑
; ρ < 0

Once the claim is established we are done (with the proof of corollary)
because

a = (a+ ρ)︸ ︷︷ ︸
∈ M

+ (−ρ)︸︷︷︸
∈ M

∈M .

Proof of the claim: First observe that
∑
6= ∅

(
since ∃ n ≥ 1 s.t n+a ∈

T ⊆M , so n ∈
∑ )

.

Now fix r ∈
∑

, r ≥ 0 and fix an integer k ≥ 1 s.t (k − t) ∈ T

Write: kr − 1 + ka = (k − t)︸ ︷︷ ︸
∈ T

(r + a)︸ ︷︷ ︸
∈ M

+ (at− 1)︸ ︷︷ ︸
∈ M

+ rt︸︷︷︸
∈ M

∈M by (?).

Multiplying by
1

k
, we get(

r − 1

k

)
+ a ∈M , i.e.

(
r − 1

k

)
∈
∑

Repeating we eventually find ρ ∈
∑
, ρ < 0 . �

Notation 2.2. For a quadratic module M ⊆ R[X], set

KM := {x ∈ Rn | g(x) ≥ 0 ∀ g ∈M}.
Note that if M = MS with S = {g1, . . . , gs}, then KS = KM .
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We have the following corollaries to Corollary 2.1. (Stone-Krivine, Kadison-
Dubois):

Corollary 2.3. (Putinar’s Archimedean Positivstellensatz) Let M ⊆
R[X] be an archimedean quadratic module. Then for each f ∈ R[X]:

f > 0 on KM ⇒ f ∈M .

Corollary 2.4. Let A = R[X] and S = {g1, . . . , gs}. Assume that the
finitely generated preordering TS is archimedean. Then for all f ∈ A:

f > 0 on KS ⇒ f ∈ TS.

Remark 2.5.

1. To apply the corollary we need a criterion to determine when a pre-
ordering (quadratic module) is archimedean.

2. TS is archimedean⇒ for f =
∑
X2
i : ∃ N s.t. N−f = N−

∑
X2
i ∈ TS

⇒ N −
∑
X2
i ≥ 0 on KS.

⇒ KS is bounded. Also KS is closed.

So TS is archimedean implies KS is compact.
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2. Schmüdgen’s Positivstellensatz 2

1. RINGS OF BOUNDED ELEMENTS

Let A be a commutative ring with 1, Q ⊆ A and M be a quadratic module
⊆ A.

Definition 1.1. Consider

BM = {a ∈ A | ∃ n ∈ N s.t. n+ a and n− a ∈M},
BM is called the ring of bounded elements, which are bounded by M .

Proposition 1.2.

(1) M is an archimedean module of A iff BM = A.

(2) BM is a subring of A.

(3) ∀ a ∈ A, a2 ∈ BM ⇒ a ∈ BM .

(4) More generally, ∀ a1, . . . , ak ∈ A,
k∑
i=1

a2i ∈ BM ⇒ ai ∈ BM ∀ i = 1, . . . , k.

Proof. (1) Clear.

(2) Clearly Q ⊆ BM and BM is an additive subgroup of A.

1
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To show: a, b ∈ BM ⇒ ab ∈ BM

Using the identity

ab =
1

4

[
(a+ b)2 − (a− b)2

]
,

we see that in order to show that BM is closed under multiplication it is
sufficient to show that: ∀ a ∈ A : a ∈ BM ⇒ a2 ∈ BM .

Let a ∈ BM . Then n± a ∈M for some n ∈ N. Now n2 + a2 ∈M .

Also 2n(n2 − a2) = (n2 − a2)[(n+ a) + (n− a)].

So, (n2 − a2) =
1

2n

[
(n+ a)(n2 − a2) + (n− a)(n2 − a2)

]
=

1

2n

[
(n+ a)2(n− a) + (n− a)2(n+ a)

]
∈M .

So (n2 + a2) and (n2 − a2) both ∈M . So by definition a2 ∈ BM . � (2)

(3) Assume a2 ∈ BM . Say n−a2 ∈M , for some n ∈ N, then use the identity:

(n± a) =
1

2

[
(n− 1) + (n− a2) + (a± 1)2

]
∈M.

So, a ∈ BM . � (3)

(4) If
∑
a2j ∈ BM . Say

(
n−

∑
a2j
)
∈M , then for all i, we have

(n− a2i ) =
(
n−

∑
a2j

)
+
∑
j 6=i

a2j ∈M.

So, a2i ∈ BM and so by (3), ai ∈ BM . � (4)
�

Corollary 1.3. LetM be a quadratic module of R[X]. ThenM is archimedean
iff there exists N ∈ N such that

N −
n∑
i=1

X2
i ∈M

Proof. (⇒) Clear by definition of archimedeanness.
(⇐) First note that R+ ⊆M so, R ⊆ BM (BM subring).

Also N−
n∑
i=1

X2
i and N+

n∑
i=1

X2
i ∈M . Therefore by definition

n∑
i=1

X2
i ∈ BM .

So (by Proposition 1.2) X1, . . . , Xn ∈ BM . This implies R[X1, . . . , Xn] = BM

and so M is archimedean. �

2. SCHMÜDGEN’S POSITIVSTELLENSATZ
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Theorem 2.1. Let S = {g1, . . . gs} ⊆ R[X]. Assume that K := KS =
{x | gi(x) ≥ 0} is compact. Then there exists N ∈ N such that

N −
n∑
i=1

X2
i ∈ TS =: T.

In particular T is an archimedean preordering (by Corollary 1.3) and thus
∀f ∈ R[X]: f > 0 on KS ⇒ f ∈ T .

Proof. [Reference: Dissertation, Thorsten Wörmann]

• K compact ⇒ K bounded ⇒ ∃ k ∈ N such that
(
k −

n∑
i=1

X2
i

)
> 0 on

K.

• By applying the Positivstellensatz to above we get: ∃ p, q ∈ T such

that p
(
k−

n∑
i=1

X2
i

)
= 1+q. So, p

(
k−

n∑
i=1

X2
i

)2
= (1+q)

(
k−

n∑
i=1

X2
i

)
.

So, (1 + q)
(
k −

n∑
i=1

X2
i

)
∈ T.

• Set T
′

= T +
(
k −

n∑
i=1

X2
i

)
T . By Corollary 1.3, T

′
is an archimedean

preordering. Therefore ∃ m ∈ N such that (m− q) ∈ T ′
; say: m− q =

t1 + t2

(
k −

n∑
i=1

X2
i

)
for some t1, t2 ∈ T .

• So, (m − q)(1 + q) = t1(1 + q) + t2

(
k −

n∑
i=1

X2
i

)
(1 + q) ∈ T. So (m −

q)(1 + q) ∈ T.

• Adding

(m− q)(1 + q) = mq − q2 +m− q ∈ T, (1)(m
2
− q
)2

=
m2

4
+ q2 −mq ∈ T. (2)

yields (
m+

m2

4
− q
)
∈ T. (3)
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• Multiplying (3) by k ∈ T , and adding
(
k −

n∑
i=1

X2
i

)
(1 + q) ∈ T and

q
( n∑
i=1

X2
i

)
∈ T , yields

k
(
m+

m2

4
− q
)

+
(
k −

n∑
i=1

X2
i

)
(1 + q) + q

( n∑
i=1

X2
i

)
∈ T

i.e. km+ k
m2

4
+ k −

n∑
i=1

X2
i ∈ T

i.e. k
(m

2
+ 1
)2
−

n∑
i=1

X2
i ∈ T

Set N := k
(m

2
+ 1
)2

. �

2.2. Final Remarks on Schmüdgen’s Positivstellensatz (SPSS):

1. Corollary (Schmüdgen’s Nichtnegativstellensatz):

Let KS be compact, f ≥ 0 on KS ⇒ ∀ε real, ε > 0 : f + ε ∈ TS.

2. SPSS fails in general if we drop the assumption that “K is compact”.

For example:

(i) Consider n = 1, S = {X3}, then KS = [0,∞) (noncompact). Take
f = X + 1. Then f > 0 on KS. Claim: f /∈ TS, indeed elements of
TS have the form t0 + t1X

3, where t0, t1 ∈
∑

R[X]2. We have shown
before in Lecture 15, Example 2.4(1)(iii) that non zero elements of this
preordering either have even degree or odd degree ≥ 3.

(ii) Consider n ≥ 2, S = ∅, then KS = Rn. Take strictly positive
versions of the Motzkin polynomial

m(X1, X2) := 1−X2
1X

2
2 +X2

1X
4
2 +X4

1X
2
2 ,

i.e. mε := m(X1, X2) + ε ; ε ∈ R+. Then mε > 0 on KS = R2, and it is
easy to show that mε /∈ TS =

∑
R[X]2 ∀ε ∈ R+.

3. SPSS fails in general for a quadratic module instead of a preordering.
[Mihai Putinar’s question answered by Jacobi + Prestel in Dissertation
of T. Jacobi (Konstanz)]
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4. SPSS fails in general if the condition “f > 0 on KS” is replaced by
“f ≥ 0 on KS”.

Example (Stengle): Consider n = 1, S = {(1 − X2)3}, KS = [−1, 1]
compact. Take f := 1−X2 ≥ 0 on KS but 1−X2 /∈ TS. (This example
has already been considered in Lecture 15, Example 2.4(1)(ii).

5. PSS holds for any real closed field but not SPSS:

Example: Let R be a non archimedean real closed field. Take n =
1, S = {(1 − X2)3}, then KS = [−1, 1]R = {x ∈ R | − 1 ≤ x ≤ 1}.
Take f = 1 + t − X2, where t ∈ R>0 is an infinitesimal element (i.e.
0 < t < ε, for every positive rational ε). Then f > 0 on KS. We claim
that f /∈ TS:

Let v be the natural valuation on R. So v(t) > 0. Now suppose for a
contradiction that f ∈ TS. Then

1 + t−X2 = t0 + t1(1−X2)3; t0, t1 ∈
∑
R[X]2 (1)

Let ti =
∑
f 2
ij ; for i = 0, 1 and fij ∈ R[X].

Let s ∈ R be the coefficient of the lowest value appearing in the fij,
i.e. v(s) = min{v(a) | a is coefficient of some fij}.

Case I. if v(s) ≥ 0, then applying the residue map
(
θv −→ R :=

θv
Iv

;

defined by x 7−→ x, where θv is the valuation ring and Iv is the valuation

ideal
)

to (1), we obtain

1−X2 = t0 + t1(1−X2)3

and since ti =
∑
fij

2 ∈
∑

R[X]2; i = 0, 1; we get a contradiction to
Example 2.4(1)(ii) of Lecture 15.

Case II. if v(s) < 0. Dividing f by s2 and applying the residue map we
obtain

0 =
t0
s2

+
t1
s2

(1−X2)3(
Note that v(s2) = 2v(s) is min{v(a) | a is coefficient of some f 2

ij},

i.e. v(s2) ≤ v(a) for any such coefficient a, so
f 2
ij

s2
has coefficients with

value ≥ 0.
)

So we obtain

0 = t
′
0 + t

′
1(1−X2)3, with t

′
0, t

′
1 ∈

∑
R[X]2 not both zero.
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Since t
′
0, t

′
1 have only finitely many common roots in R and 1−X2 > 0

on the finite set (−1, 1), this is impossible. �(claim)

6. SPSS holds over archimedean real closed fields.
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1. SCHMÜDGEN’S NICHTNEGATIVSTELLENSATZ AND LINEAR
FUNCTIONALS ON R[X]

1.1. Schmüdgen’s Nichtnegativstellensatz : Let KS be a compact basic closed
semi algebraic set and f ∈ R[X]. Then

f ≥ 0 on KS ⇒ ∀ε real, ε > 0 : f + ε ∈ TS .

Corollary 1.2. Let K = KS be a compact basic closed semi algebraic set and
L : R[X] −→ R be a linear functional with L(1) = 1. Then

L(TS ) ≥ 0︸      ︷︷      ︸(
i.e. L( f ) ≥ 0 ∀ f ∈ TS

)⇒ L(Psd(KS )) ≥ 0︸             ︷︷             ︸(
i.e. L( f ) ≥ 0 ∀ f ≥ 0 on KS

)
.

Proof. Let f ∈ Psd(KS ) and assume L(TS ) ≥ 0,

To show: L( f ) ≥ 0

By 1.1, ∀ ε > 0 : f + ε ∈ TS

So, L( f + ε) ≥ 0 i.e. L( f ) ≥ −ε ∀ ε > 0 real

⇒ L( f ) ≥ 0. �

We shall now relate this to the problem of representation of linear functionals
via integration along measures

(
i.e.

∫
dµ

)
.

1
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2. APPLICATION OF SPSS TO THE MOMENT PROBLEM

Let X be a locally compact Hausdorff topological space.

Definition 2.1. X is locally compact if ∀ x ∈ X ∃ openU in X s.t. x ∈ U andU
(closure) is compact.

Notation 2.2. Bδ(X) := set of Borel measurable sets in X
= the smallest family of subsets ofX containing all compact

subsets of X, closed under finite
⋃

, set theoretic differ-
ence A \ B and countable

⋂
.

Definition 2.3. A Borel measure µ on X is a positive measure on X s.t. every
set in Bδ(X) is measurable. We also require our measure to be regular i.e. ∀B ∈
Bδ(X) and ∀ ε > 0 ∃ K,U ∈ Bδ(X),K compact, U open s.t. K ⊆ B ⊆ U and
µ(K) + ε ≥ µ(B) ≥ µ(U) − ε.

2.4. Moment problem is the following:
Given a closed set K ⊆ Rn and a linear functional L : R[X] −→ R
Question:

when does ∃ a Borel measure µ on K s.t. ∀ f ∈ R[X] : L( f ) =

∫
f dµ ? (1)

Necessary condition for (1): ∀ f ∈ R[X], f ≥ 0 on K ⇒ L( f ) ≥ 0 (2)

in other words: L(Psd(K)) ≥ 0 (3)

Is this necessary condition also sufficient?
The answer is YES.

Theorem 2.5. (Haviland) Given K ⊆ Rn closed and L : R[X] −→ R a linear
functional with L(1) = 1:

∃ µ as in (1) iff ∀ f ∈ R[X] : L( f ) ≥ 0 if f ≥ 0 on K.

We shall prove Haviland’s Theorem later. For now we shall deduce a corollary
to SPSS.

Corollary 2.6. Let KS =
{
x | gi(x) ≥ 0; i = 1, . . . , s

}
⊆ Rn be a basic closed semi-

algebraic set and compact, L : R[X] −→ R a linear functional with L(1) = 1. If

L(TS ) ≥ 0, then ∃ µ positive Borel measure on K s.t. L( f ) =

∫
KS

f dµ ∀ f ∈ R[X].
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Remark 2.7. Let S =
{
g1, . . . , gs

}
.

1. L(TS ) ≥ 0 can be written as

L(h2ge1
1 . . . g

es
s ) ≥ 0 ∀ h ∈ R[X], e1, . . . , es ∈ {0, 1}.

2. Compare Haviland to Schmüdgen’s moment problem, for compact KS : we do
not need to check L(Psd(KS )) ≥ 0 we only need to check L(TS ) ≥ 0.

3. Reformulation of question (1) (in 2.4) in terms of moment sequences:
Let L : R[X] −→ R, with L(1) = 1. Consider {Xα = Xα1

1 . . . Xαn
n ; α ∈ Nn

0} a
monomial basis for R[X]. So L is completely determined by the (multi)sequence
of real numbers τ(α) := L(Xα) ; α = (α1, . . . , αn) ∈ Nn

0, i.e. by the function
τ : Nn

0 −→ R is a function) and conversely, every such sequence determines a
linear functional L :

L
(∑

α

aαXα
)

:=
∑
α

aατ(α)).

So, (1) (in 2.4) can be reformulated as:
Given K ⊆ Rn closed, and a multisequence τ = τ(α)

α∈Nn
0

of real numbers, ∃ µ
positive Borel measure on K s.t

∫
K

Xα dµ = τ(α) for all α ∈ Nn
0 ?

Definition 2.8. A function τ : Nn
0 −→ R is a K−moment sequence if ∃ µ positive

borel measure on K s.t τ(α) =

∫
K

Xα dµ for all α ∈ Nn
0

So (1) can be reformulated as: given K and a function τ : Nn
0 −→ R, when is τ

a K−moment sequence?

Definition 2.9. A function τ : Nn
0 −→ R is called psd if

m∑
i, j=1

τ
(
ki + k j

)
ci c j ≥ 0,

for m ≥ 1, arbitrary distinct k1, . . . , km ∈ N
n
0; c1, . . . , cm ∈ R.

Definition 2.10. Given τ : Nn
0 −→ R a function and a fixed polynomial

g(X) =
∑

k ∈ N0
n

ak Xk ∈ R[X]. Define a new function g(E)τ : Nn
0 −→ R by

g(E)τ
(
l
)

:=
∑

k ∈ N0
n

ak τ(k + l); for any l ∈ Nn
0.
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Lemma 2.11. Let L : R[X]→ R be a linear functional and denote by

τ : (N0)n → R

the corresponding multisequence
(
i.e. τ(k) := L(Xk) ∀ k ∈ (N0)n).

Fix g ∈ R[X]. Then L(h2g) ≥ 0 for all h ∈ R[X] if and only if the multisequence
g(E)τ is psd.
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1. APPLICATION OF SPSS TO THE MOMENT PROBLEM (continued)

Lemma 1.1. (Lemma 2.11 of last lecture) Let L : R[X]→ R be a linear functional
and denote by

τ : Nn
0 → R

the corresponding multisequence
(
i.e. τ(k) := L(Xk) ∀ k ∈ Nn

0
)
.

Fix g ∈ R[X]. Then L(h2g) ≥ 0 for all h ∈ R[X] if and only if the multisequence
g(E)τ is psd.

Proof. Compute:

1. L(Xlg) =
∑

k ∈ Z+

n

akτ(k + l) = g(E)τ(l); for all l ∈ Nn
0.

Thus if h =
∑

i

ciXki ∈ R[X] then h2 =
∑

i, j

cic jXki+k j .

2. So, L(h2g) = L
[(∑

i, j

cic jXki+k j
)
g
]

=
∑

i, j

cic jL
(
Xki+k jg

)
=︸︷︷︸

[by 1.]

∑
i, j

g(E)τ(ki + k j)cic j. �

1
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Theorem 1.2. (Schmüdgen’s NNSS) (Reformulation in terms of moment se-
quences) Let K = KS compact, S = {g1, . . . , gs} and τ : Nn

0 → R be a given
multisequence. Then τ is a K-moment sequence if and only if the multisequences
(ge1

1 . . . g
es
s )(E)τ : Nn

0 → R are all psd for all (e1, . . . , es) ∈ {0, 1}s. �

Next we reformulate question (1) in 2.4 of Lecture 15 in terms of Hankel
matrices and bilinear forms.

2. SCHMÜDGEN’S NNSS, HANKEL MATRICES AND BILINEAR FORMS

We want to understand L(h2g) ≥ 0; h, g ∈ R[X] in terms of Hankel matrices.

Definition 2.1. A real symmetric n × n matrix A is psd if xT Ax ≥ 0 ∀ x ∈ Rn.
An N × N symmetric matrix (say) A is psd if xT Ax ≥ 0 ∀ x ∈ Rn and ∀ n ∈ N.

Definition 2.2. Let L , 0; L : R[X] −→ R be a given linear functional. Fix
g ∈ R[X]. Consider symmetric bilinear form:

〈 , 〉g : R[X] × R[X]→ R

〈h, k〉g := L(hkg) ; h, k ∈ R[X]

Denote by S g theN×N real symmetric matrix with αβ-entry 〈Xα, Xβ
〉g ∀ α, β ∈ N

n
0,

i.e. the αβ-entry of S g is L(Xα+β g).

Example. Let g = 1, then

〈Xα, Xβ
〉1 = L(Xα+β) := sα+β.

More generally, if g =
∑

aγ Xγ then

〈Xα, Xβ
〉g = L

(∑
γ

aγ Xα+β+γ
)

=
∑
γ

aγ sα+β+γ .

Proposition 2.3. Let L, g be fixed as above. Then the following are equivalent:

1. L(σg) ≥ 0 ∀ σ ∈
∑
R[X]2.

2. L(h2g) ≥ 0 ∀ h ∈ R[X].

3. 〈 , 〉g is psd (i.e. 〈h, h〉g ≥ 0 for all h ∈ R[X]2).

4. S g is psd.

Proof. (1)⇔ (2) is clear.
Since 〈h, h〉g = L(h2g), (2)⇔ (3) is clear.
(3)⇔ (4) is also clear. �
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2.4. Example. (Hamburger) Let n = 1. A linear functional L : R[X]→ R comes
from a Borel measure on R if and only if L(σ) ≥ 0 for every σ ∈

∑
R[X]2.

Proof. From Haviland we know L comes from a Borel measure iff L( f ) ≥ 0 for
every f (X) ∈ R[X], f ≥ 0 on R. But Psd(R) =

∑
R[X]2 (by exercise in Real

Algebraic Geometry course in WS 2009-10). So the condition is clear. �

Remark 2.5. We can express Hamburgers’s Theorem via Hankel matrix S g with
g = 1 the constant polynomial since n = 1, so (for i, j ∈ N) the i j th coefficient of
S 1 is si+ j = L(Xi+ j).

Hence, S 1 =


s0 s1 s2 . . .
s1 s2 . . .

s2 . . .
. . .

. . . . . .

 is psd.

END OF RAG I IN WISE 2022/2023

2.1. REFORMULATION OF SCHMÜDGEN’S SOLUTION TO THE MOMENT
PROBLEM IN TERMS OF HANKEL MATRICES

2.6. Let S = { g1, . . . , gs} ⊆ R[X] and KS ⊆ R
n is compact. A linear functional L

on R[X] is represented by a Borel measure on K iff the 2S N×N Hankel matrices{
S ge1

1 ... ges
s
|(e1, . . . , es) ∈ {0, 1}s

}
are psd, where S g := [L(Xα+βg)]α,β ; α, β ∈ Nn.

3. FINITE SOLVABILITY OF THE K- MOMENT PROBLEM

Definition 3.1. Let K be a basic closed semi-algebraic subset of Rn.

1. The K-moment problem (KMP) is finitely solvable if there exists S finite,
S ⊆ R[X] such that:

(i) K = KS , and

(ii) ∀ linear functional L on R[X] we have: L(TS ) ≥ 0⇒ L(Psd(K)) ≥ 0(
equivalently, (iii) L(TS ) ≥ 0⇒ ∃ µ : L =

∫
dµ

)
.

2. We shall say S solves the KMP if (i) and (ii)
(
equivalently (i) and (iii)

)
hold.
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3.2. Schmüdgen’s solution to the KPM for K compact b.c.s.a. Let K ⊆ Rn be
a compact basic closed semi-algebraic set. Then S solves the KMP for any finite
description S of K (i.e. for all finite S ⊆ R[X] with K = KS ).

One can restate the condition “S solves the K-Moment problem” via the equal-
ity of two preorderings. We shall adopt this approach throughout:

Definition 3.3. Let TS ⊆ R[X] be a preordering. Define the dual cone of TS :

T v
S :=

{
L | L : R[X]→ R is a linear functional; L(TS ) ≥ 0

}
,

and the double dual cone:

T vv
S :=

{
f | f ∈ R[X]; L( f ) ≥ 0 ∀ L ∈ T v

S
}
.

Lemma 3.4. For S ⊆ R[X], S finite:

(a) TS ⊆ T vv
S

(b) T vv
S ⊆ Psd (KS ).

Proof. (a) Immediate by definition.

(b) Let f ∈ T vv
S . To show: f (x) ≥ 0 ∀ x ∈ KS .

Now every x ∈ Rn determines an R-algebra homomorphism

evx := Lx ∈ Hom(R[X],R); Lx(g) = evx(g) := g(x) ∀ g ∈ R[X],

this Lx is in particular a linear functional.

Moreover we claim that Lx(TS ) ≥ 0 for x ∈ KS . Indeed if g ∈ TS then
Lx(g) = g(x) ≥ 0 for x ∈ KS .

So, by assumption on f we must also have Lx( f ) ≥ 0 for x ∈ KS , i.e.
f (x) ≥ 0 for all x ∈ KS as required.

�

We summarize as follows:

Corollary 3.5. For finite S ⊆ R[X]:

TS ⊆ T vv
S ⊆ Psd(KS ).

Corollary 3.6. (Reformulation of finite solvability) Let K ⊆ Rn be a b.c.s.a. set
and S ⊆ R[X] be finite. Then S solves the KMP iff
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(j) K = KS , and

(jj) T vv
S = Psd(K).

Proof. Assume (ii) of definition 3.1, i.e. ∀ L : L(TS ) ≥ 0 ⇒ L(Psd(K)) ≥ 0, and
show (jj) i.e. T vv

S = Psd(K):
Let f ∈ Psd(K). Show f ∈ T vv

S i.e. show L( f ) ≥ 0 ∀ L ∈ T v
S .

Assume L(TS ) ≥ 0. Then by assumption L(Psd(K)) ≥ 0. So, L( f ) ≥ 0 as required.

Conversely, assume (jj) and show (ii):
Let L(TS ) ≥ 0, i.e. L ∈ T v

S . Show L(Psd(K)) ≥ 0, i.e show L( f ) ≥ 0 ∀ f ∈ Psd(K).
Now [by assumption (jj)] f ∈ Psd(K)⇒ f ∈ T vv

S ⇒ L( f ) ≥ 0 ∀ L ∈ T v
S . �

We shall come back later to T vv
S and describe it as closure w.r.t. an appropriate

topology.

4. HAVILAND’S THEOREM

For the proof of Haviland’s theorem (2.5 of lecture 15), we will recall Riesz Rep-
resentation Theorem.

Definition 4.1. A topological space is said to be Hausdorff (or seperated) if it
satisfies
(H4): any two distinct points have disjoint neighbourhoods, or
(T2): two distinct points always lie in disjoint open sets.

Definition 4.2. A topological space χ is said to be locally compact if ∀ x ∈ χ ∃
an open neighbourhoodU 3 x such thatU is compact.

Theorem 4.3. (Riesz Representation Theorem) Let χ be a locally compact
Hausdorff space and L : Contc(χ,R) → R be a positive linear functional i.e.
L( f ) ≥ 0 ∀ f ≥ 0 on χ. Then there exists a unique (positive regular) Borel mea-

sure µ on χ such that L( f ) =

∫
χ

f dµ ∀ f ∈ Contc(χ,R), where Contc(χ,R) :=

the ring (R-algebra) of all continuous functions f : χ→ R (addition and multipli-
cation defined pointwise) with compact support i.e. such that the set supp( f ) :=
{x ∈ χ : f (x) , 0} is compact.

Definition 4.4. L positive means:

L( f ) ≥ 0 ∀ f ∈ ContC(χ,R) with f ≥ 0 on χ.


